

Unsupervised Ground Metric Learning Using Wasserstein Singular Vectors

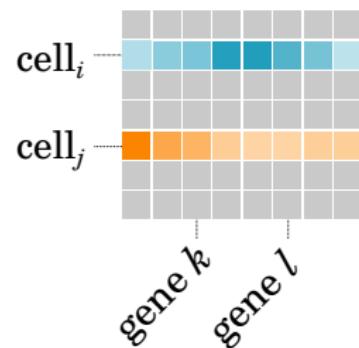
Geert-Jan Huizing, Laura Cantini, Gabriel Peyré

Comparing distributions

Defining meaningful distances between distributions is a fundamental topic in machine learning.

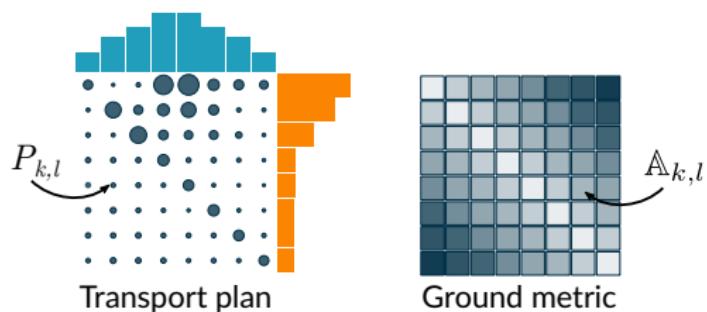
Example in **single-cell genomics**:

- **cells** as distributions over **genes**
- enables discovery of new cell types



Wasserstein Distance

Optimal Transport¹ computes the **transportation cost** from one *cell* to another. The **ground metric** \mathbb{A} encodes a cost between *genes*.



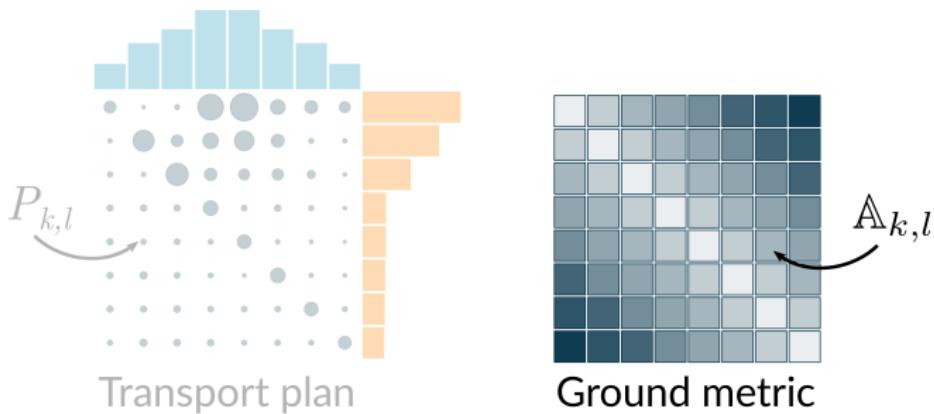
$$W_{\mathbb{A}}(a_i, a_j) \stackrel{\text{def.}}{=} \min_{P \in \mathbb{R}_+^{n \times n}} \langle P, \mathbb{A} \rangle$$

s.t. $P \mathbb{1}_n = a_i$ and $P^\top \mathbb{1}_n = a_j$.

¹Monge, 1781; Kantorovich, 1942

Ground Metric Learning

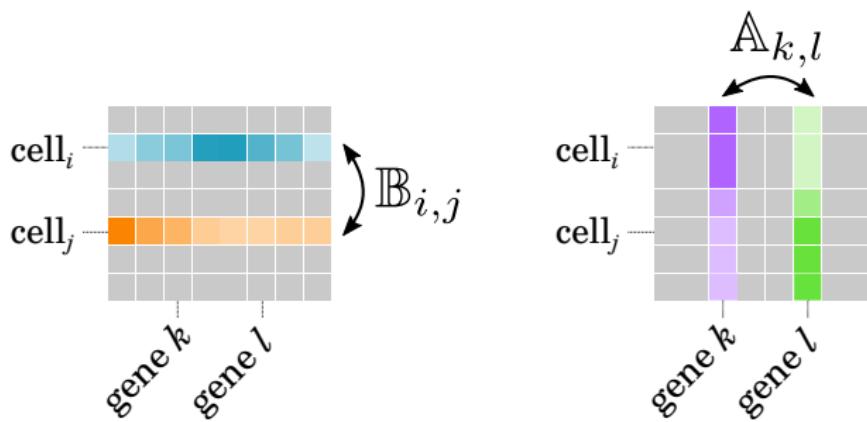
- No straightforward ground metric on genes.
- **Ground Metric Learning**² refers to learning the matrix \mathbb{A} .
- Unlabeled data motivates **unsupervised ground metric learning**.



²Cuturi & Avis, 2014; Wang & Guibas, 2012; Xu et al., 2021; Heitz et al., 2020

Distance on cells, distance on genes

- We call \mathbb{B} the **Wasserstein distance matrix** between *cells* a_i, a_j .
- We require \mathbb{A} to be a **distance matrix** between *genes* b_k, b_l .



Bootstrapping intuition

- Starting from some distance \mathbb{A} , we can define a **Wasserstein distance matrix** \mathbb{B} between cells.

$$\mathbb{B}_{i,j} = W_{\mathbb{A}}(a_i, a_j)$$

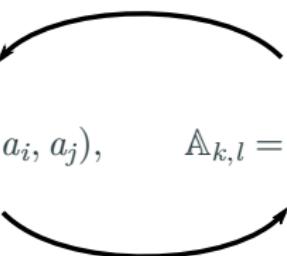
Bootstrapping intuition

- Starting from some distance \mathbb{A} , we can define a **Wasserstein distance matrix \mathbb{B}** between cells.
- Then, we can use \mathbb{B} to update \mathbb{A} .

$$\mathbb{B}_{i,j} = W_{\mathbb{A}}(a_i, a_j), \quad \mathbb{A}_{k,l} = W_{\mathbb{B}}(b_k, b_l)$$

Bootstrapping intuition

- Starting from some distance \mathbb{A} , we can define a **Wasserstein distance matrix \mathbb{B}** between cells.
- Then, we can use \mathbb{B} to update \mathbb{A} . And so on!


$$\mathbb{B}_{i,j} = W_{\mathbb{A}}(a_i, a_j), \quad \mathbb{A}_{k,l} = W_{\mathbb{B}}(b_k, b_l)$$

Wasserstein Singular Vectors

- More formally, we would like

$$\mu\mathbb{B} = \Phi_A(\mathbb{A}), \quad \lambda\mathbb{A} = \Phi_B(\mathbb{B}).$$

- Where Φ_A, Φ_B map ground costs to Wasserstein distance matrices

$$\Phi_A(\mathbb{A})_{i,j} = W_{\mathbb{A}}(a_i, a_j) + \tau R(a_i - a_j)$$

Theorem (Existence)

For $\tau > 0$, there exists a pair of Wasserstein Singular Vectors.

Power Iterations

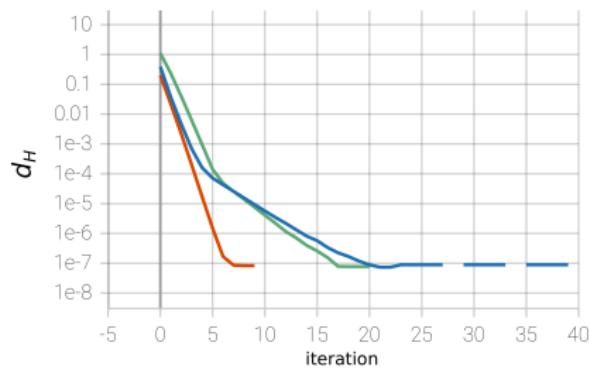
This singular vectors problem can be solved using **power iterations**:

$$\mathbb{A}_{t+1} \stackrel{\text{def.}}{=} \frac{\Phi_B(\mathbb{B}_t)}{\|\Phi_B(\mathbb{B}_t)\|_\infty}, \quad \mathbb{B}_{t+1} \stackrel{\text{def.}}{=} \frac{\Phi_A(\mathbb{A}_{t+1})}{\|\Phi_A(\mathbb{A}_{t+1})\|_\infty}.$$

Theorem (Convergence)

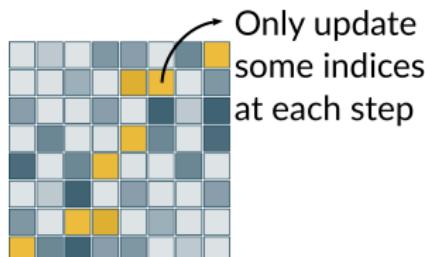
For τ large enough, the power iterations **converge linearly**.

In practice, we observe convergence even for $\tau = 0$.



Stochastic Power Iterations

- **Issue:** computing n^2 distances per iteration is expensive.
- **Solution:** we show convergence for **stochastic power iterations**.



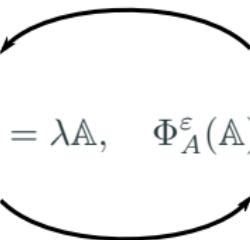
Only update
some indices
at each step

\mathbb{B}_t

$$(\tilde{\mathbb{B}}_t)_{i,j} \stackrel{\text{def.}}{=} \begin{cases} \Phi_A(\mathbb{A}_t)_{i,j} / \tilde{\mu}_t & \text{if } (i, j) \in \mathcal{I}, \\ (\mathbb{B}_t)_{i,j} & \text{otherwise.} \end{cases}$$

Sinkhorn Singular Vectors

- **Issue:** Optimal Transport is expensive in high dimension.
- **Solution:** we use **Sinkhorn Divergences**³ instead.

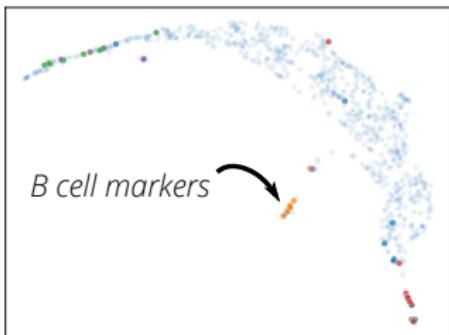
$$\Phi_B^\varepsilon(\mathbb{B}) = \lambda \mathbb{A}, \quad \Phi_A^\varepsilon(\mathbb{A}) = \mu \mathbb{B}$$


- Interpolation between **Wasserstein Singular Vectors** ($\varepsilon \rightarrow 0$) and **squared euclidean distances** on PCA embeddings ($\varepsilon \rightarrow \infty$).

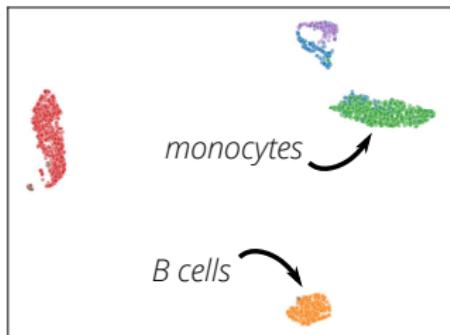
³Genevay et al., 2018

Sinkhorn Singular Vectors for single-cell genomics

- The method scales to $\sim 3,000$ cells, and $\sim 1,000$ genes.
- Biologically informative distances on cells *and* on genes.



UMAP projection of gene-gene distances $\mathbb{A}_{k,l}$



UMAP projection of cell-cell distances $\mathbb{B}_{i,j}$

Key takeaways

- Wasserstein Singular Vectors are a canonical pair of metrics on *samples* and on *features*
- Stochastic power iterations and entropic OT allow to scale the method to large datasets
- We demonstrated the method on **single-cell genomics**, but it can be applied to any positive dataset

- In-depth **theoretical analysis** when $\tau = 0$ and $\varepsilon > 0$
- Extension to **unbalanced optimal transport**
- Further results for **stochastic approximation**

Thanks!

gjhuizing/wsingular

pip install wsingular

gjhuizing