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Comparing distributions

Defining meaningful distances between distributions is a
fundamental topic in machine learning.
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Example in single-cell genomics: cell, — L]
- cells as distributions over genes cell,
- enables discovery of new cell types
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Wasserstein Distance

Optimal Transport' computes the transportation cost from one cell
to another. The ground metric A encodes a cost between genes.
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Ground Metric Learning

- No straightforward ground metric on genes.
- Ground Metric Learning? refers to learning the matrix A.
- Unlabeled data motivates unsupervised ground metric learning.
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Distance on cells, distance on genes

- We call B the Wasserstein distance matrix between cells a;, a;.

- We require A to be a distance matrix between genes by, b;.
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Bootstrapping intuition

- Starting from some distance A, we can define a Wasserstein
distance matrix B between cells.

By ;= Wa(as, a5)



Bootstrapping intuition

- Starting from some distance A, we can define a Wasserstein
distance matrix B between cells.

- Then, we can use B to update A.

B;; = Wa(a;, a5), Ay = Wg(by, br)
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Bootstrapping intuition

- Starting from some distance A, we can define a Wasserstein
distance matrix B between cells.

- Then, we can use B to update A. And so on!
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B;; = Wal(as a)), Ay = Wg(bg, by)
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Wasserstein Singular Vectors

- More formally, we would like

B =®A(A), A = ®g(B).

- Where ® 4, ® 5 map ground costs to Wasserstein distance matrices

(I)A(A)i,j = WA(CL,,;, (lj) + TR(ai — (I,j)

Theorem (Existence) . o
For T > 0, there exists a pair of Wasserstein Singular Vectors.



Power Iterations

This singular vectors problem can be solved using power iterations:
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Theorem (Convergence) 0
For  large enough, the power

iterations converge linearly.
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In practice, we observe et
convergence even for 7 = 0. 1

10 15 20 25 30 35 40
iteration



Stochastic Power Iterations

- Issue: computing n? distances per iteration is expensive.

- Solution: we show convergence for stochastic power iterations.
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Sinkhorn Singular Vectors

- Issue: Optimal Transport is expensive in high dimension.

- Solution: we use Sinkhorn Divergences? instead.
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- Interpolation between Wasserstein Singular Vectors (¢ — 0)
and squared euclidean distances on PCA embeddings (¢ — o).

3Genevay et al, 2018



Sinkhorn Singular Vectors for single-cell genomics

- The method scales to ~ 3,000 cells, and ~ 1,000 genes.

- Biologically informative distances on cells and on genes.
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Key takeaways

- Wasserstein Singular Vectors are a canonical pair of metrics on
samples and on features

- Stochastic power iterations and entropic OT allow to scale the
method to large datasets

- We demonstrated the method on single-cell genomics, but it
can be applied to any positive dataset
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- In-depth theoretical analysis when 7 =0 and e > 0
- Extension to unbalanced optimal transport
- Further results for stochastic approximation



Ogjhuizing/vvsingular & pip install wsingular ’gjhuizing



