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Comparing distributions

Defining meaningful distances between distributions is a
fundamental topic in machine learning.

ai =  , aj =  

Example in single-cell genomics:
• cells as distributions over genes
• enables discovery of new cell types
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Wasserstein Distance

Optimal Transport1 computes the transportation cost from one cell
to another. The ground metric A encodes a cost between genes.

Pk,l

Transport plan Ground metric

WA(ai, aj)
def.
= minP∈Rn×n

+
⟨P,A⟩

s.t. P1n = ai and P⊤
1n = aj.

1Monge, 1781; Kantorovich, 1942
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Ground Metric Learning

• No straightforward ground metric on genes.
• Ground Metric Learning2 refers to learning the matrix A.
• Unlabeled data motivates unsupervised ground metric learning.

2Cuturi & Avis, 2014; Wang & Guibas, 2012; Xu et al., 2021; Heitz et al., 2020
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Distance on cells, distance on genes

• We call B the Wasserstein distance matrix between cells ai, aj.
• We require A to be a distance matrix between genes bk, bl.
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Bootstrapping intuition

• Starting from some distance A, we can define a Wasserstein
distance matrix B between cells.

• Then, we can use B to update A. And so on!

Bi,j = WA(ai, aj)

, Ak,l = WB(bk, bl)
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Wasserstein Singular Vectors

• More formally, we would like

µB = ΦA(A), λA = ΦB(B).

• Where ΦA,ΦB map ground costs to Wasserstein distance matrices

ΦA(A)i,j = WA(ai, aj) + τR(ai − aj)

Theorem (Existence)
For τ > 0, there exists a pair of Wasserstein Singular Vectors.
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Power Iterations

This singular vectors problem can be solved using power iterations:

At+1
def.
=

ΦB(Bt)

∥ΦB(Bt)∥∞
, Bt+1

def.
=

ΦA(At+1)

∥ΦA(At+1)∥∞
.

Theorem (Convergence)
For τ large enough, the power
iterations converge linearly.

In practice, we observe
convergence even for τ = 0.
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Stochastic Power Iterations

• Issue: computing n2 distances per iteration is expensive.
• Solution: we show convergence for stochastic power iterations.

(B̃t)i,j
def.
=

{
ΦA(At)i,j/µ̃t if (i, j ) ∈ I,
(Bt)i,j otherwise.
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Sinkhorn Singular Vectors

• Issue: Optimal Transport is expensive in high dimension.

• Solution: we use Sinkhorn Divergences3 instead.

Φε
B(B) = λA, Φε

A(A) = µB

• Interpolation between Wasserstein Singular Vectors (ε → 0)
and squared euclidean distances on PCA embeddings (ε → ∞).

3Genevay et al., 2018
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Sinkhorn Singular Vectors for single-cell genomics

• The method scales to ∼ 3,000 cells, and ∼ 1,000 genes.
• Biologically informative distances on cells and on genes.

monocytes

B cells

B cell markers

UMAP projection of cell-cell
distances

UMAP projection of gene-gene
distances
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Key takeaways

• Wasserstein Singular Vectors are a canonical pair of metrics on
samples and on features

• Stochastic power iterations and entropic OT allow to scale the
method to large datasets

• We demonstrated the method on single-cell genomics, but it
can be applied to any positive dataset
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Perspectives

• In-depth theoretical analysis when τ = 0 and ε > 0
• Extension to unbalanced optimal transport
• Further results for stochastic approximation
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Thanks!

gjhuizing/wsingular pip install wsingular gjhuizing
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