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Problem Formulation: Robot-to-robot Policy Transfer
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Existing Imitation Learning / Learning from Demonstration
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Existing Imitation Learning / Learning from Demonstration
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Existing Imitation Learning / Learning from Demonstration
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Existing Imitation Learning / Learning from Demonstration

But What if
MDP Transition Dynamics

and T_ . are Very Different?
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Existing Imitation Learning / Learning from Demonstration

But What if
MDP Transition Dynamics
and T_ . are Very Different?
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Proposed Paradigm: Continuous Robot Evolution
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Proposed Paradigm: Continuous Robot Evolution
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“Bridge” between source and target robots
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Proposed Paradigm: Continuous Robot Evolution
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Continuous Robot Evolution: How?
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Continuous Robot Evolution Step 1: Morphology Matching

Robot 1 Robot 2
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Continuous Robot Evolution Step 1: Morphology Matching

\
Robot 1 Morphology Robot 2
Matched Robot

22



Continuous Robot Evolution Step 1: Morphology Matching
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After this step, state and action space of the two robots are unified!
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Continuous Robot Evolution Step 1: Morphology Matching
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Now the only difference is transition dynamics
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Continuous Robot Evolution Step 2: Kinematic Interpolation
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Continuous Robot Evolution Step 2: Kinematic Interpolation
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Hardware parameter of the robot at evolution progress «
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Policy Transfer on Continuously Evolving Robots
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Policy Transfer on Continuously Evolving Robots
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Policy Transfer on Continuously Evolving Robots: Naive
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Policy Transfer on Continuously Evolving Robots: Naive
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Policy Transfer on Continuously Evolving Robots: Naive
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Small evolution progress?
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Policy Transfer on Continuously Evolving Robots: Naive
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Large evolution progress?
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Policy Transfer on Continuously Evolving Robots: Naive
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What is the best evolution progression step size?
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Policy Transfer on Continuously Evolving Robots: Naive
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What is the best evolution progression step size?

Too small: waste RL iterations on too small robot changes
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Policy Transfer on Continuously Evolving Robots: Naive
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What is the best evolution progression step size?

Too small;: waste RL iterations on too small robot changes
Too large: reward / success rate drop and hurt sample efficiency
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Policy Transfer on Continuously Evolving Robots: Naive
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What is the best evolution progression step size?

The best evolution step size cannot be predicted beforehand
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Proposed: |Local Randomized Evolution Progression
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Proposed: |Local Randomized Evolution Progression
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Sample from a moving window: both small and large
evolution progress step sizes
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Proposed: |Local Randomized Evolution Progression

457

Sample from a moving window: both small and large
evolution progress step sizes

Small step size: maintain sufficient sample efficiency
Large step size: risk on large evolution to improve adaptation
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Proposed: Evolution Reward Shaping

a
r'=r exp(h- )
Put more weight on reward received from robots with
larger evolution progress « to improve adaptation towards target robot
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Proposed: Evolution Reward Shaping

Theoretical results show the relationship between the
evolution reward shaping and the optimization objective

Theorem 4.1. Suppose the policy that optimizes the objec-
tive in Equation (6) with evolution reward shaping factor
of h is the optimal policy 3, on robot M, = E (p),p €
(o, o + &), ie

arg max E E Z yrsexp(h - B)
T B~U(ak,ar+€)  ag~m(-|st) 7
Mpg=E(B) st+1~Mga(|st,ar)
= Ty, = argmax E zfytrt
7f ag~m(|se) 7
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Then when & — 0, ¢ = ay, + 3£ + 7hE? + o(£?).
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Related Works (2/2)

To Build Controllers that Generalize Across Robots:
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NerveNet: Structured Policy with GNN Hardware Conditioned Policies
T. Wang, ICLR 2018 T. Chen, NeurlPS 2018

Shared Modular Policies for ¢ . / } st | | ( D

)%
Module Module
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Ours: Assume Given Good Controller for Some Robot, Generate Controller for Some
New Robot; Does Not Need to Generalize Across Robots 45



Experiments: MudoCo Gym
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Experiments: Hand Manipulation Suite
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Experiments: Hand Manipulation Suite, Hammer Task

Robot at evolution
progress a = 0.0
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Experiments: Hand Manipulation Suite, Hammer Task

Robot at evolution
progress a = 0.8
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Experiments: Hand Manipulation Suite, Hammer Task

Robot at evolution
progress a = 1.0
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Experiments: Hand Manipulation Suite, Door Task
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Experiments: Hand Manipulation Suite, Door Task
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Experiments: Hand Manipulation Suite, Door Task

Robot at evolution
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Experiments: Hand Manipulation Suite, Door Task
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Experiments: Hand Manipulation Suite, Door Task

Robot at evolution
progress a = 1.0




Experiments: Hand Manipulation Suite, Relocate Task
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Robot at evolution
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Experiments: Hand Manipulation Suite
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