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𝜋source

“Bridge” between source and target robots 
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Continuous Robot Evolution: How?
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Robot 1 Robot 2

Continuous Robot Evolution Step 1: Morphology Matching
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Continuous Robot Evolution Step 1: Morphology Matching

Robot 1 Robot 2Morphology
Matched Robot
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Continuous Robot Evolution Step 1: Morphology Matching

After this step, state and action space of the two robots are unified!
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Continuous Robot Evolution Step 1: Morphology Matching

Now the only difference is transition dynamics
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Continuous Robot Evolution Step 2: Kinematic Interpolation

𝜃source 𝜃target
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𝜃source 𝜃target

Hardware parameter of the robot at evolution progress 𝛼
𝜃(𝛼) = (1 − 𝛼) · 𝜃source+ 𝛼 · 𝜃target 

0 1𝛼

Continuous Robot Evolution Step 2: Kinematic Interpolation
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Policy Transfer on Continuously Evolving Robots: Naive

Small evolution progress?
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What is the best evolution progression step size?
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Policy Transfer on Continuously Evolving Robots: Naive

What is the best evolution progression step size?

   Too small: waste RL iterations on too small robot changes
   Too large: reward / success rate drop and hurt sample efficiency
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Policy Transfer on Continuously Evolving Robots: Naive

What is the best evolution progression step size?

The best evolution step size cannot be predicted beforehand
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Sample from a moving window: both small and large 
evolution progress step sizes

     Small step size: maintain sufficient sample efficiency
     Large step size: risk on large evolution to improve adaptation

[       ]
Proposed: Local Randomized Evolution Progression
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𝛼
𝑟′𝑡 = 𝑟𝑡 · exp(h · 𝛼)

Put more weight on reward received from robots with 
larger evolution progress 𝛼 to improve adaptation towards target robot 

Proposed: Evolution Reward Shaping

42



Proposed: Evolution Reward Shaping

Theoretical results show the relationship between the 
evolution reward shaping and the optimization objective 
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REvolveR: Continuous Evolutionary Models for
Robot-to-robot Policy Transfer

Thank you
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