Orchestra: Unsupervised Federated Learning via Globally Consistent Clustering

By: Ekdeep Singh Lubana¹, Chi lan Tang², Fahim Kawsar³, Robert P. Dick¹, and Akhil Mathur³

¹University of Michigan, ²University of Cambridge, ³Nokia Bell Labs (UK)

Smart Devices: Perpetual Data Generators

Federated Learning: Collaborative Training

• Goal: Distributed, privacy-preserving, resource-efficient learning

Step 1: Share Model with Clients

Step 2: Train Models on Local Data

Step 3: Aggregate Models in a Secure Manner

Step 4: Repeat Process with New Global Model

What's the catch?

Needs user interaction: Interaction patterns form labels

What's the catch?

- Needs user interaction: Interaction patterns form labels
- Most sensors collect data in non-interactive manners

Seems too simple... what's the catch?

- Needs user interaction: Interaction patterns form labels
- Most sensors collect data in non-interactive manners

Limitations of Conventional Unsupervised Learning

 Useful unsupervised learning algorithms traditionally require large amounts of compute and data

Limitations of Conventional Unsupervised Learning

 Useful unsupervised learning algorithms traditionally require large amounts of compute and data

- Edge devices have small memories and few data points
- Minimal compute resources necessitate small batch-sizes
- Federated algorithms need to work with non-IID datasets

Our Proposition:

Orchestra: Unsupervised Federated Learning with Globally Consistent Clustering

Step 1: Compute data representations

Step 2: Compute local centroids, share with server

Step 3: Compute "global" centroids from "local" ones

Step 4: Aggregate local models

Step 5: Share global centroids and model with clients

Step 6: Local training: Cluster Prediction Task

The Concert: Experimental Evaluation

- Datasets: CIFAR-10 (left) and CIFAR-100 (right)
- General Setting: Cross-device, 100 clients, 10 local epochs, 16 batch-size
- Baselines: Federated versions of SOTA unsupervised learning algorithms
- Implementation¹: Flower (Beutel et al., 2020)

Evaluation 1: Sensitivity to Heterogeneity

- Better absolute accuracy
- Thrives under heterogeneity
- Robust under extreme settings too

Evaluation 1: Sensitivity to Heterogeneity

- Orchestra's robustness to heterogeneity arises from its use of local clustering, a task that becomes easier with more non-IID data!
 - See paper for detailed theoretical statements

Evaluation 2: Scalability with Number of Clients

- Much better absolute accuracy in all settings
- Scales well with large number of clients

Evaluation 3: Participation Ratio

- Much higher robustness to participation ratio
- Especially more effective with smaller ratios, compared to other methods

Evaluation 4: Robustness to Local Epochs

- More compute efficient
- More communication efficient

Left: CIFAR-10 Right: CIFAR-100

Conclusion

- Orchestra provides a scalable, resource-efficient methodology for unsupervised federated learning
- The method is highly robust to heterogeneity and comes with guarantees
- For several more experiments, see the main paper

