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Smart Devices: Perpetual Data Generators




Federated Learning: Collaborative Training

e (Goal: Distributed, privacy-preserving, resource-efficient learning
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Step 1: Share Model with Clients
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Step 2: Train Models on Local Data




Step 3: Aggregate Models in a Secure Manner
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Step 4: Repeat Process with New Global Model
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What's the catch?

e Needs user interaction: Interaction patterns form labels
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What's the catch?

e Needs user interaction: Interaction patterns form labels

e Most sensors collect data in non-interactive manners
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Need to go Unsupervised



Limitations of Conventional Unsupervised Learning

o Useful unsupervised learning algorithms traditionally require large
amounts of compute and data

Batch size

65.0
62.5
—
2 60.0
—
57.5
55.0
52.5
50.0 .

EEE 256
Em 1024

B 2048

E 4096

100 200 300 400 500 600 700
Training epochs

H 819

Source: Chen et al., A Simple Framework for Contrastive Learning of Visual Representations. ICML, 2020.
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Limitations of Conventional Unsupervised Learning

o Useful unsupervised learning algorithms traditionally require large
amounts of compute and data
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» Edge devices have small memories and
few data points

* Minimal compute resources necessitate
small batch-sizes

» Federated algorithms need to work with
non-lID datasets

Source: Chen et al., A Simple Framework for Contrastive Learning of Visual Representations. ICML, 2020.
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Our Proposition:

Orchestra: Unsupervised Federated Learning with Globally
Consistent Clustering

Client Server
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Step 1: Compute data representations
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Step 2:

Compute local centroids, share with server
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Step 3: Compute “global” centroids from “local” ones
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Step 4: Aggregate local models




Step 5: Share global centroids and model with clients

Client Server




Step 6: Local training: Cluster Prediction Task

Original
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The Concert: Experimental Evaluation

e Datasets: CIFAR-10 (left) and CIFAR-100 (right)

e (General Setting: Cross-device, 100 clients, 10 local epochs, 16 batch-size
 Baselines: Federated versions of SOTA unsupervised learning algorithms
 Implementation’: Flower (Beutel et al., 2020)

Code: https://github.com/akhilmathurs/orchestra
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Evaluation 1: Sensitivity to Heterogeneity

e Better absolute accuracy
 Thrives under heterogeneity
e Robust under extreme settings too
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Evaluation 1: Sensitivity to Heterogeneity

e Orchestra’s robustness to heterogeneity arises from its use of local clustering,

a task that becomes easier with more non-|lID data!

e See paper for detailed theoretical statements
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Evaluation 2: Scalability with Number of Clients

 Much better absolute accuracy in all settings
e Scales well with large number of clients
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Evaluation 3: Participation Ratio

* Much higher robustness to participation ratio

e Especially more effective with smaller ratios, compared to other methods
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Evaluation 4: Robustness to Local Epochs

e More compute efficient

e More communication efficient
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Conclusion

 Orchestra provides a scalable, resource-efficient methodology for
unsupervised federated learning

* The method is highly robust to heterogeneity and comes with guarantees
e For several more experiments, see the main paper
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