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planning “in the now”:    Kaelbling & Lozano-Pérez. AAAI 2010.
van Hasselt, Hessel, & Aslanides. NeurIPS 2019.
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trajectory optimization



Great in principle, a headache in practice.

Why?

• Long-horizon predictions are unreliable

• Optimizing for reward with neural net models produces adversarial examples in trajectory space

Neural nets + trajectory optimization

• It does sometimes work [Chua et al. 2018; Argenson & Dulac-Arnold 2021]

• But most contemporary model-based RL algorithms pull more from the model-free RL 

toolbox than from trajectory optimization
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Great in principle, a headache in practice.

Why?

• Long-horizon predictions are unreliable

• Optimizing for reward with neural net models produces adversarial examples in trajectory space

• Neural net models aren’t good enough?

Neural nets + trajectory optimization



• This reasoning should sound suspicious

• Generative modeling (on images) is really working! 

Is the model the bottleneck?

• What can RL learn from these successes?

DALL-E 2: Ramesh et al, 2022. Imagen: Saharia et al, 2022.



• Offload as much of MBRL into contemporary generative modeling as possible
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Planning as generative modeling

replace prediction and planning with big generative model
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A generative model of trajectories

• Represent trajectories as single-channel images

• Train a diffusion model to iteratively denoise 

entire trajectory

diffusion models: Sohl-Dickstein et al. ICML 2015 & Ho et al. NeurIPS 2020.



• Represent trajectories as single-channel images

• Train a diffusion model to iteratively denoise 

entire trajectory

• Use (one-dimensional) convolutions for temporal 

equivariance and horizon-independence

A generative model of trajectories
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Flexible Behavior Synthesis through Composing 
Distributions 

• Synthesize different behaviors through conditional trajectory synthesis with different learned 

guidance functions:

Diffusion
Model

Guidance
Function

Behavior
Model

• Guidance functions transforms an unconditional trajectory model into a conditional policy for 

diverse tasks.

See also: Model Based Planning with Energy Based Models: Du at al, CoRL 2019.
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Offline Reinforcement Learning through Value Guidance

• Can use a value function to bias trajectory model to particular task

• Can use a single Diffuser model for multiple different tasks 

∗
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• Specify a guidance function over the final explicit goal state of a trajectory 

∗

• Construct a goal seeking policy through guidance
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Goal Planning through Inpainting

Single Task Planning Multi-Task Planning
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• Can use guidance function to specify arbitrary costs on a trajectory

Test-Time Cost Specification

• Can be seen as a learned analogue of trajectory optimization

∗
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Thanks!

diffusion-planning.github.io


