Planning with Diffusion

for Flexible Behavior Synthesis

diffusion-planning.github.io

A simple recipe for RL and data-driven control:

A simple recipe for RL and data-driven control:

Inputs: Dataset of transitions D = {(s¢, as, S¢41),-- -}

A simple recipe for RL and data-driven control:

Inputs: Dataset of transitions D = {(s¢, as,S¢41), - - - |, reward function (-, -)

A simple recipe for RL and data-driven control:

Inputs: Dataset of transitions D = {(s¢, as,S¢41), - - - |, reward function 7 (-, -), current state sq

A simple recipe for RL and data-driven control:

Inputs: Dataset of transitions D = {(s¢, as,S¢41), - - - |, reward function 7 (-, -), current state sq

1: Train a predictive model

minifmize Est,at,st+1ND [||St+1 — f(Sta at)“]

A simple recipe for RL and data-driven control:

Inputs: Dataset of transitions D = {(s¢, as,S¢41), - - - |, reward function 7 (-, -), current state sq

1: Train a predictive model

minifmize Es, a;,8:01~D [||St41 — f(5¢,a4)]|]

2: Use model to evaluate potential plans ag.7, selecting the best one:

maximize r(so,a9) + 7r(s1,a1) + r(s2,a2) + ...
0:T

A simple recipe for RL and data-driven control:

Inputs: Dataset of transitions D = {(s¢, as,S¢41), - - - |, reward function 7 (-, -), current state sq

1: Train a predictive model

minifmize Est,at,st+1~D [||St+1 — f(Sta at)“]

2: Use model to evaluate potential plans ag.7, selecting the best one:

mazlcgglize r(so,a9) + r(f(so,a0),a1) + 7(f(f(so,a0),a1),az) + ...

A simple recipe for RL and data-driven control:

Algorithm 1 Model-based RL (idealized)

Inputs: Dataset of transitions D = {(s¢, as,S¢41), - - - |, reward function 7 (-, -), current state sq

1: Train a predictive model

minifmize Es, a;,8:01~D [||St41 — f(5¢,a4)]|]

2: Use model to evaluate potential plans ag.7, selecting the best one:

ma;cgglize r(so,a0) + 7(f(so,a0),a1) + r(f(f(so,a0),a1),az) + ...

A simple recipe for RL and data-driven control:

Algorithm 1 Model-based RL (idealized)

Inputs: Dataset of transitions D = {(s¢, as,S¢41), - - - |, reward function 7 (-, -), current state sq

1: Train a predictive model

minifmize Es, a;,8:01~D [||St41 — f(5¢,a4)]|]

2: Use model to evaluate potential plans ag.7, selecting the best one:

ma;cgglize r(so,a0) + 7(f(so,a0),a1) + r(f(f(so,a0),a1),az) + ...

A simple recipe for RL and data-driven control:

supervised learning [minifmize Es, a:,8:41~D lIste1 — f(st, at)||]]

A simple recipe for RL and data-driven control:

supervised learning [minifmize Es, a:,8:41~D lIste1 — f(st, at)||]]

ao: T

trajectory optimization [maximize r(sg,a9) + r(f(so,a0),a1) + r(f(f(so,a0),a1),as) + ..]

Neural nets + trajectory optimization

Great in principle, a headache in practice.

Neural nets + trajectory optimization

Great in principle, a headache in practice.

e [t does sometimes work

* But most contemporary model-based RL algorithms pull more from the model-free RL

toolbox than from trajectory optimization

Neural nets + trajectory optimization

Great in principle, a headache in practice.

Why?

Neural nets + trajectory optimization

Great in principle, a headache in practice.

Why?

* Long-horizon predictions are unreliable

Neural nets + trajectory optimization

Great in principle, a headache in practice.

Why?

* Long-horizon predictions are unreliable

* Optimizing for reward with neural net models produces adversarial examples in trajectory space

Neural nets + trajectory optimization

Great in principle, a headache in practice.

Why?

* Neural net models aren’t good enough?

Is the model the bottleneck?

e This reasoning should sound suspicious

* Generative modeling (on images) is really working!

e What can RL learn from these successes?

Planning as generative modeling

e Offload as much of MBRL into contemporary generative modeling as possible

Algorithm 1 Model-based RL (idealized)

1: Inputs: Dataset of transitions D = {(s;, a¢, S¢+1), - - . }, reward function (-, -), current state s

2: Train a predictive model

minifmize]Est,at,stﬂ,\,p [||St+1 — f(St, at)”]

3: Use model to evaluate potential plans ag.7, selecting the best one:

ma;cimize r(sp,a9) + r(s1,a1) + r(sz,as) + ...
0:T

Planning as generative modeling

e Offload as much of MBRL into contemporary generative modeling as possible

replace prediction with big generative model

V4
[minifmize Es, a,5,00p (8621 — (50, 20)]] J

Planning as generative modeling

e Offload as much of MBRL into contemporary generative modeling as possible

replace prediction and planning with big generative model

/1: Train a predictive model

minifmize Est,at,stHND |ste1 — f(se,a)]|]

2: Use model to evaluate potential plans ag.7, selecting the best one:

\ maximize T(So,ao) + ’I“(Sl, 8.1) + ’I“(Sg,ag) + ...
ao:T

~

A generative model of trajectories

Represent trajectories as single-channel images

S S S

0 1 2 3

|
S

I N T
aO al a2 a3
| | I |

<

planning horizon

Y

state dim +
action dim

—

A generative model of trajectories

 Represent trajectories as single-channel images

denoising

 Train a diffusion model to iteratively denoise

entire trajectory

|
1 1 1 1 1 1 1
S, S8, 8, 83 8, 85 8
| | | | | | |
1 1 1 1 1 1 1
g B Gy Ee o 8L G Gl
| | | | | | |
Diffuser
| | | | | | |
0 0 0 0 0 0 0
S, 8, 8, 83 8, 55 5
| | | | | | |
0 0 0 0 0 0 0
g Bh sl Bl 8L GR o Ep
| | | | | | |

planning horizon

Y

A generative model of trajectories

Represent trajectories as single-channel images

Train a diffusion model to iteratively denoise

entire trajectory

Use (one-dimensional) convolutions for temporal

equivariance and horizon-independence

denoising

local receptive field

1
Sl

1

|
al

I
1
= 1

1

I
a4
I

I
S].

5

1

5

I
a

|

1
SG

|
al

6

I I I I |
\ SN /NN /N N

Diffuser

)

/A

VoA

W\
|

0
SO

0

I
a0
I

I
0
= 1

0

I
a1
I

I
0
= 2

0

|
a2
|

/ \I/ '\
I

0
S3

0

I
a3
I

0
S4

I
a
I

planning horizon

Y

Compositionality via local consistency

« Diffuser is non-Markovian, but still compositional due to temporal convolutions

data

Compositionality via local consistency

« Diffuser is non-Markovian, but still compositional due to temporal convolutions

data plan

Variable-length predictions

« Trajectory horizon is determined by the size of the noise initialization

Diffuser

!

Variable-length predictions

« Trajectory horizon is determined by the size of the noise initialization

Variable-length predictions

« Trajectory horizon is determined by the size of the noise initialization

Diffuser

Non-autoregressive prediction

* Prediction is non-autoregressive: entire trajectory is predicted simultaneously

L

Non-autoregressive prediction

* Prediction is non-autoregressive: entire trajectory is predicted simultaneously

Non-autoregressive prediction

* Prediction is non-autoregressive: entire trajectory is predicted simultaneously

denoising po (T TY)
L j L j
diffusion Q(‘TZ | Ti_l)

<
0

Sampling from Diffuser

 Sampling occurs by iteratively refining randomly-initialized trajectories

Sampling from Diffuser

initialized trajectories

Sampling occurs by iteratively refining randomly-

°s

@ ..'..

« .

Qe

Sampling from Diffuser

 Sampling occurs by iteratively refining randomly-initialized trajectories

Sampling from Diffuser

Flexible Behavior Synthesis through Composing
Distributions

Flexible Behavior Synthesis through Composing
Distributions

* Synthesize different behaviors through conditional trajectory synthesis with different learned

guidance functions:

Flexible Behavior Synthesis through Composing
Distributions

* Synthesize different behaviors through conditional trajectory synthesis with different learned

guidance functions:

po(T) o< po(T) h(T)

Flexible Behavior Synthesis through Composing
Distributions

* Synthesize different behaviors through conditional trajectory synthesis with different learned

guidance functions:

po(T) o< po(T) h(T)

Diffusion
Model

(¢

Flexible Behavior Synthesis through Composing
Distributions

* Synthesize different behaviors through conditional trajectory synthesis with different learned

guidance functions:

Flexible Behavior Synthesis through Composing
Distributions

* Synthesize different behaviors through conditional trajectory synthesis with different learned

guidance functions:

po(T) o< po(T) h(T)

W

™

Behavior Diffusion
Model Model

Flexible Behavior Synthesis through Composing
Distributions

Synthesize different behaviors through conditional trajectory synthesis with different learned

guidance functions:

~

Po(T) o< po(T) h(T)

Behavior Diffusion
Model Model

Guidance functions transforms an unconditional trajectory model into a conditional policy for

diverse tasks.

Offline Reinforcement Learning through Value Guidance

 (Can use a value function to bias trajectory model to particular task

-}
p—t
(S
(N
1=
t
(@]

po(T) | | | | |]

ab
o
&
oV
N
e
oo
oV
1
Q0
(&g
Q0
o

Offline Reinforcement Learning through Value Guidance

 (Can use a value function to bias trajectory model to particular task

po(T) | | | | |ﬂ | |

h(T) | r(s0) + vr(s1) + VPr(s2) + v'r(ss) + 7'r(ss) + ¥V (ss)

Offline Reinforcement Learning through Value Guidance

Can use a value function to bias trajectory model to particular task

po(T) | | | |] | |

h(T) |r(so) +yr(s1) + Yr(s2) + ¥°r(ss) + y'r(ss) + ¥V (ss)

Can use a single Diffuser model for multiple different tasks

Offline Reinforcement Learning through Value Guidance

80 -
=
)
5
—~ 60_
)
O
S
E
g 40 -
S
g
&0
% 20 -
)
>
<
O_

BC CQL IQL DT TT MOPO MOReLL MBOP Diffuser

| Behavior Cloning B8 Temporal Difference B8 Sequence Modeling Model-Based Planning

Goal Planning through Inpainting

* Specify a guidance function over the first and goal state of a trajectory

Goal Planning through Inpainting

* Specify a guidance function over the first and goal state of a trajectory

po(T)

Goal Planning through Inpainting

* Specify a guidance function over the first and goal state of a trajectory

po(T)

_

Goal Planning through Inpainting

* Specify a guidance function over the final explicit goal state of a trajectory

Goal Planning through Inpainting

* Specify a guidance function over the final explicit goal state of a trajectory

I | I | | | |
5, 8, 8, 8; 8, 85 5§
po(T) | | | | | | || — |
i 4 4a a a a; a, 8. B S S
| | | | | | | M ~
sk — Po(T) | |
1 \ 1 a a
I I I
h(t) | s g |— |
I I

 Construct a goal seeking policy through guidance

Goal Planning through Inpainting

Goal Planning through Inpainting

Srndin,

®

Goal Planning through Inpainting

@

n .I = f
ol | I IM

L

Goal Planning through Inpainting

s 125 -
z
S 100 A
o)
D]
N
= 75 -
g
5
= 50
D)
o0
S
o 25 -
<

O_

MPPI CQL IQL. Diffuser

Single Task Planning

Goal Planning through Inpainting

- 125 - - 125 -
— —
B B
2100 A £ 100 A
~ o]
(D) ()
N N
T@ 75 . TG 75 -
= g
8 8
= 50 - = 50 -
(D] (D]
20 20
© ©
3 25 4 o 25 -
5 el
O = T O = T
MPPI CQL IQL Diffuser MPPI IQL Diffuser

Single Task Planning Multi-Task Planning

Test-Time Cost Functions

 (Can use guidance function to specify arbitrary costs on a trajectory

Test-Time Cost Functions

* (Can use guidance function to specify arbitrary costs on a trajectory

Test-Time Cost Specification

* (Can use guidance function to specify arbitrary costs on a trajectory

Test-Time Cost Specification

Can use guidance function to specify arbitrary costs on a trajectory

po(T) | | | | | |f | |

h(T) |clso) + c(s1) + c(s2) + c(s3) + c(s4) + c(ss)

Can be seen as a learned analogue of trajectory optimization

Test-Time Cost Specification

=

height(|

|) > height(]

height(|

|) > height(]

height (|

|) > height(]

Test-Time Cost Specification

height(|

|) > height(]

height(|

|) > height(]

height (|

|) > height(]

Test-Time Cost Specification

Average normalized return

125 A

100 -

75 1

50 -

25

BCQ

QL

Diffuser

Thanks!

ooooo@@ OOOOQNMN&MU
o° 00 0,

(

github
;

ing.

OOO.Q...OOO 060D
o 00 QIO

0000006000

diffusion-plann

