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A simple recipe for RL and data-driven control:
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A simple recipe for RL and data-driven control:

supervised learning [minifmize Es, a:,8:41~D lIste1 — f(st, at)||]]

ao: T

trajectory optimization [ maximize r(sg,a9) + r(f(so,a0),a1) + r(f(f(so,a0),a1),as) + .. ]




Neural nets + trajectory optimization

Great in principle, a headache in practice.
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Great in principle, a headache in practice.

e [t does sometimes work

* But most contemporary model-based RL algorithms pull more from the model-free RL

toolbox than from trajectory optimization
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Neural nets + trajectory optimization

Great in principle, a headache in practice.

Why?

* Long-horizon predictions are unreliable

* Optimizing for reward with neural net models produces adversarial examples in trajectory space



Neural nets + trajectory optimization

Great in principle, a headache in practice.

Why?

* Neural net models aren’t good enough?



Is the model the bottleneck?

e This reasoning should sound suspicious

* Generative modeling (on images) is really working!

e What can RL learn from these successes?



Planning as generative modeling

e Offload as much of MBRL into contemporary generative modeling as possible

Algorithm 1 Model-based RL (idealized)

1: Inputs: Dataset of transitions D = {(s;, a¢, S¢+1), - - . }, reward function (-, -), current state s

2: Train a predictive model

minifmize ]Est,at,stﬂ,\,p [||St+1 — f(St, at)”]

3: Use model to evaluate potential plans ag.7, selecting the best one:

ma;cimize r(sp,a9) + r(s1,a1) + r(sz,as) + ...
0:T




Planning as generative modeling

e Offload as much of MBRL into contemporary generative modeling as possible

replace prediction with big generative model

V4
[minifmize Es, a,5,00p (8621 — (50, 20)]] J




Planning as generative modeling

e Offload as much of MBRL into contemporary generative modeling as possible

replace prediction and planning with big generative model

/1: Train a predictive model

minifmize Est,at,stHND |ste1 — f(se,a)]|]

2: Use model to evaluate potential plans ag.7, selecting the best one:

\ maximize T(So,ao) + ’I“(Sl, 8.1) + ’I“(Sg,ag) + ...
ao:T

~




A generative model of trajectories

Represent trajectories as single-channel images
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A generative model of trajectories

 Represent trajectories as single-channel images

denoising

 Train a diffusion model to iteratively denoise

entire trajectory
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A generative model of trajectories

Represent trajectories as single-channel images

Train a diffusion model to iteratively denoise

entire trajectory

Use (one-dimensional) convolutions for temporal

equivariance and horizon-independence

denoising

local receptive field
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Compositionality via local consistency

« Diffuser is non-Markovian, but still compositional due to temporal convolutions
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Variable-length predictions

« Trajectory horizon is determined by the size of the noise initialization
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Diffuser




Non-autoregressive prediction

* Prediction is non-autoregressive: entire trajectory is predicted simultaneously
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Non-autoregressive prediction

* Prediction is non-autoregressive: entire trajectory is predicted simultaneously
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Sampling from Diffuser

 Sampling occurs by iteratively refining randomly-initialized trajectories
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Sampling from Diffuser

 Sampling occurs by iteratively refining randomly-initialized trajectories




Sampling from Diffuser
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Flexible Behavior Synthesis through Composing
Distributions

Synthesize different behaviors through conditional trajectory synthesis with different learned

guidance functions:

~

Po(T) o< po(T) h(T)

Behavior Diffusion
Model Model

Guidance functions transforms an unconditional trajectory model into a conditional policy for

diverse tasks.



Offline Reinforcement Learning through Value Guidance

 (Can use a value function to bias trajectory model to particular task

-}
p—t
(S
(N
1=
t
(@]

po(T) | | | | | ]

ab
o
&
oV
N
e
oo
oV
1
Q0
(&g
Q0
o




Offline Reinforcement Learning through Value Guidance

 (Can use a value function to bias trajectory model to particular task

po(T) | | | | |ﬂ | |

h(T) | r(s0) + vr(s1) + VPr(s2) + v'r(ss) + 7'r(ss) + ¥V (ss)




Offline Reinforcement Learning through Value Guidance

Can use a value function to bias trajectory model to particular task

po(T) | | | | ] | |

h(T) |r(so) +yr(s1) + Yr(s2) + ¥°r(ss) + y'r(ss) + ¥V (ss)

Can use a single Diffuser model for multiple different tasks



Offline Reinforcement Learning through Value Guidance
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Goal Planning through Inpainting

* Specify a guidance function over the first and goal state of a trajectory
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Goal Planning through Inpainting

* Specify a guidance function over the final explicit goal state of a trajectory




Goal Planning through Inpainting

* Specify a guidance function over the final explicit goal state of a trajectory
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 Construct a goal seeking policy through guidance




Goal Planning through Inpainting
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Goal Planning through Inpainting
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Goal Planning through Inpainting
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Test-Time Cost Functions

 (Can use guidance function to specify arbitrary costs on a trajectory
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Test-Time Cost Specification

Can use guidance function to specify arbitrary costs on a trajectory

po(T) | | | | | |f | |

h(T) |clso) + c(s1) + c(s2) + c(s3) + c(s4) + c(ss)

Can be seen as a learned analogue of trajectory optimization




Test-Time Cost Specification
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Test-Time Cost Specification

Average normalized return
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Thanks!
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