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1Carnegie Mellon University
2ENSAE, CREST, IP Paris

ICML 2022

1/ 16



Quantization problem

Problem : Approximate a target distribution π ∈ P(Rd) by a
finite set of n points x1, . . . , xn,

Aim. Approximate integrals of functions f :

err(x1, . . . , xn) =

∣∣∣∣∣1n
n∑

i=1

f (xi)−
∫
Rd

f (x)dπ(x)

∣∣∣∣∣ .
Several approaches, among which :
▶ MCMC methods : generate a Markov chain whose law

converges to π. err(x1, . . . , xn) = O(n−1/2)
[Łatuszyński et al., 2013]

▶ interacting particle-based algorithms. Goal: Smaller
err(x1, . . . , xn).
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Sampling as optimization over distributions

4 algorithms/particle systems at study:
▶ Maximum Mean Discrepancy Descent [Arbel et al., 2019]

▶ Kernel Stein Discrepancy Descent [Korba et al., 2021]

▶ Stein Variational Gradient Descent [Liu and Wang, 2016]

▶ Normalized Stein Variational Gradient Descent

The sampling task can be recast as an optimization problem:

π = argmin
µ∈P2(Rd )

F(µ), F(µ) = D(µ|π),

where D is a dissimilarity functional and F "a loss".

Starting from an initial distribution µ0 ∈ P2(Rd), one can
consider the gradient flow of F to transport µ0 to π.
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MMD and KSD Descent

For MMD F(µ) = sup
∥f∥Hk ≤1

∫
f dµ−

∫
f dπ

MMD/KSD are well defined for discrete measures µn = 1
n

∑n
i=1 δX i ; let

F (X 1, . . . ,X n) := F(µ). MMD descent is the gradient flow of F .
▶ If F is the MMD, the gradient of F is

∇x i F (X 1, . . . ,X n) =
1
n

n∑
j=1

∇2k(X i ,X j)−
∫

∇2k(X i , x)dπ(x).

▶ If F is the KSD,

∇x i F (X 1, . . . ,X n) =
1
n

n∑
j=1

∇2kπ(X i ,X j).

MMD/KSD Descent: at each time l ≥ 0 and time step γ

X i
l+1 = X i

l − γ∇x i F (X 1
l , . . . ,X

n
l ) i = 1, . . . ,n.
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Stein Variational Gradient Descent

Let π ∼ e−U . In continuum, SVGD flow is defined by the equation

∂µt

∂t
+∇ · (µtvµt ) = 0, vµt = k ⋆ (µt∇U)−∇k ⋆ µt ,

It is the gradient flow of the KL divergence with respect to Stein
metric, studied by [Duncan et al., 2019]

SVGD: let γ > 0 be the step-size. Starting from x1
0 , . . . , x

n
0 ∼ µ0,

SVGD algorithm updates the n particles as follows at each iteration :

x i
l+1 = x i

l −
γ

n

n∑
j=1

[
−∇U(x j

l )k(x
i
l , x

j
l ) +∇x j

l
k(x i

l , x
j
l )
]
.

Remark: SVGD flow is quadratic in density µ, which means the
velocity would be small in low density regions.
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Normalized Stein Variational Gradient Descent

Introduce another kernel of bandwidth h > 0: ηh(x − y) = 1
hd η

( x−y
h

)
and let µh = µ ∗ ηh. We introduce the density-dependent kernel:

Kµ(x , y) = K (x − y)µh(x)−1/2µh(y)−1/2

NSVGD: In the discrete setting where µ = 1/n
∑n

i=1 δxi , we can write
the NSVGD vector field ruling the particle system as

ẋi = −1
n

n∑
j=1

∇Kµ(xi − xj)−
1
n

n∑
j=1

Kµ(xi − xj)∇U(xj),

where Kµ(xi − xj) = K (xi − xj)µh(xi)
−1/2µh(xj)

−1/2,

µh(xi) =
1
n

∑
j

ηh(xi − xj).

NSVGD behaves better than SVGD in low density regions.
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Quantization problem review

We are interested in establishing bounds on the quantization
error

Qn = inf
Xn=x1,...,xn

D(π, µn), for µn =
1
n

n∑
i=1

δxi ,

where D is the MMD or KSD.

Remark: For x1, . . . , xn ∼ π i.i.d., the rate is known to be
O(n−1/2)
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Quantization result for the MMD

Theorem 1: Suppose K is sufficiently smooth. Then, there exists a
constant Cd depending on d , such that for all n ≥ 2,

▶ If π is Lebesgue on [0,1]d , there exist points x1, . . . , xn such that

MMD(π, µn) ≤ Cd
(log n)d−1

n
.

▶ If π ∈ mathcalP([0,1]d ) there exist points x1, . . . , xn such that

MMD(π, µn) ≤ Cd
(log n)

3d+1
2

n
.

Proposition 1: Suppose K is sufficiently smooth. Assume π is a
light-tailed distribution on Rd . Then, for n ≥ 2 there exist points
x1, ..., xn such that

MMD(π, µn) ≤ Cd
(log n)

5d+1
2

n
.
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Experiments

1. We compare the practical behavior of SVGD & NSVGD

2. We investigate numerically the quantization properties of :
▶ SVGD & NSVGD
▶ MMD & KSD Descent
▶ Kernel Herding (KH) & Stein points (SP) :

greedy minimization of the MMD & KSD
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Practical behavior of SVGD & NSVGD
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(a) Gaussian mixture sampling task

Figure: Convergence speed of SVGD (tuned time-step or Ada- Grad)
and Normalized SVGD (fixed time-step) on a 2D mixture of
Gaussians, with 128 particles.
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Quantization rates of the algorithms, π = N (0, 1/dId)
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Figure: Averaged over 10 runs of each algorithm. Initial particles are
i.i.d. samples of π. We use MMD with Gaussian kernel to evaluate;
MMD/KSD Descent use bandwidth 1; SVGD and NSVGD use
Laplace kernel.

11/ 16



d Eval. SVGD MMD-lbfgs KSD-lbfgs KH SP

2 KSD -0.98 -1.48 -1.46 -0.84 -0.77
MMD -1.04 -1.60 -1.54 -0.93 -0.77

3 KSD -0.91 -1.38 -1.44 -0.84 -0.78
MMD -0.96 -1.51 -1.49 -0.92 -0.75

4 KSD -0.91 -1.35 -1.39 -0.89 –
MMD -0.94 -1.46 -1.40 -0.95 –

8 KSD -0.84 -1.14 -1.16 – –
MMD -0.77 -1.25 -1.13 – –

Some remarks:
▶ The slopes remain much steeper than the Monte Carlo

rate, even when the dimension increases
▶ MMD/KSD slopes are better than our theoretical upper

bounds
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Robustness to evaluation discrepancy

Figure: Fragility of MMD and KSD based quantization with respect to
bandwidth of the MMD evaluation metric, in 2D. From Left to Right:
evaluation MMD bandwidth = 1, 0.7, 0.3.
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Conclusion

Contributions:
▶ Optimization: NSVGD accelerates the dynamics
▶ Quantization: Interacting-particle based sampling

algorithms can create "super samples"

Future work/open questions:
▶ Improve our quantization bounds for MMD/KSD

(dependence in dimension, Laplace kernel?)
▶ Obtain quantization bounds for SVGD
▶ What is a robust way to measure quantization error?
▶ What are good ensemble based algorithms to quantize a

measure?
Thank you !

14/ 16



References I

Arbel, M., Korba, A., Salim, A., and Gretton, A. (2019).
Maximum mean discrepancy gradient flow.
In Advances in Neural Information Processing Systems,
pages 6481–6491.

Duncan, A., Nüsken, N., and Szpruch, L. (2019).
On the geometry of stein variational gradient descent.
arXiv preprint arXiv:1912.00894.

Korba, A., Aubin-Frankowski, P.-C., Majewski, S., and Ablin,
P. (2021).
Kernel Stein discrepancy descent.
International Conference of Machine Learning.

15/ 16



References II
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