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Quantization problem

Problem : Approximate a target distribution = € P(RY) by a
finite set of n points Xy, ..., Xn,

Aim. Approximate integrals of functions f:

err(X{,...,Xp) =

1 n
n;f(x,-) | f00dr(x).

Several approaches, among which :

» MCMC methods : generate a Markov chain whose law
converges to . err(xy, ..., xp) = O(n~1/?)

> interacting particle-based algorithms. Goal: Smaller
err(xi, ..., Xn).



Sampling as optimization over distributions

4 algorithms/particle systems at study:
» Maximum Mean Discrepancy Descent
» Kernel Stein Discrepancy Descent
» Stein Variational Gradient Descent
» Normalized Stein Variational Gradient Descent

The sampling task can be recast as an optimization problem:

7= argmin F(p), F(u) =D(u|r),
pEP2(RY)

where D is a dissimilarity functional and F "a loss".

Starting from an initial distribution 19 € P2(RY), one can
consider the gradient flow of F to transport pq to .



MMD and KSD Descent

For MMD = sup /fdu /fdw

1111 <1

MMD/KSD are well defined for discrete measures pu, = 15 27:1 Oxi; let
F(X',...,X") := F(u). MMD descent is the gradient flow of F.

» |f 7 is the MMD, the gradient of F is
n
VaF (X', X") = %szk(x",xf) - /ng(X’,x)dw(x).
j=1
» If Fis the KSD,

1 o
1 _
ViF(X' . XT) = §‘ 1jvgkﬁ(x',x/).
j:

MMD/KSD Descent: at each time / > 0 and time step

X=X —yVuF(X,.... X"  i=1,...,n



Stein Variational Gradient Descent

Let 7 ~ e~ Y. In continuum, SVGD flow is defined by the equation
o | =0, v, = k* (uVU) - Vk

W—’_ '(M[VH,)— » Ve = *(/” )_ *Hts
It is the gradient flow of the KL divergence with respect to Stein
metric, studied by

SVGD: let v > 0 be the step-size. Starting from x{,..., x5 ~ po,
SVGD algorithm updates the n particles as follows at each iteration :

n
X1 = x| = 137 [~VUCDK(, X)) + 9,4k (6, X))
j=1

Remark: SVGD flow is quadratic in density 1, which means the
velocity would be small in low density regions.



Normalized Stein Variational Gradient Descent

Introduce another kernel of bandwidth h > 0:  na(x — y) = 40 (52)
and let up = p x np. We introduce the density-dependent kernel:

K. (X, y) = K(x = y)un(x) "2 pn(y) /2

NSVGD: In the discrete setting where p = 1/n>"1_, 6y, we can write
the NSVGD vector field ruling the particle system as

:_*ZVKM x/—fZK i = X)VU(x),

where K.(xi — X)) = K(x; — Xj)uh(X/)’Vzuh()q)*‘/z,

fn(Xi) = ,17 > 1 — X).
)

NSVGD behaves better than SVGD in low density regions.



Quantization problem review

We are interested in establishing bounds on the quantization
error

. 1
Q,= inf  D(m, pn), foru,= - 21: x5
j=

Xn=X1,...,Xn
where D is the MMD or KSD.

Remark: For xq, ..., x, ~ w i.i.d., the rate is known to be
(’)(n—1/2)



Quantization result for the MMD

Theorem 1: Suppose K is sufficiently smooth. Then, there exists a
constant Cy depending on d, such that for all n > 2,

» If  is Lebesgue on [0, 1]9, there exist points xi, . .., X, such that
| d—1
MMD(r, i) < Cd%.
» |f © € mathcalP([0,1]9) there exist points xq, ..., X, such that
(log n)wT+1
MMD(r, jin) < Cg=——

Proposition 1: Suppose K is sufficiently smooth. Assume 7 is a
light-tailed distribution on RY. Then, for n > 2 there exist points
X1, ..., Xp Such that
(log n)*%*
MMD(7, pup) < CdT.



Experiments

1. We compare the practical behavior of SVGD & NSVGD

2. We investigate numerically the quantization properties of :
» SVGD & NSVGD

» MMD & KSD Descent

» Kernel Herding (KH) & Stein points (SP) :
greedy minimization of the MMD & KSD



Practical behavior of SVGD & NSVGD
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(a) Gaussian mixture sampling task

Figure: Convergence speed of SVGD (tuned time-step or Ada- Grad)
and Normalized SVGD (fixed time-step) on a 2D mixture of
Gaussians, with 128 particles.



Quantization rates of the algorithms, = = N(0, 1/aly)

o mmd-ibfgs o mmd-bfgs o mmd-bfgs
N ksd-Ibfgs N ksd-Ibfgs N ksd-Ibfgs
Ny
_2.:;?\\ o SVGD —24 \g‘\\. o SvGD PPN N o SVGD
N NN o NSVGD I Y e nsved NS * NSVGD
N SRS ¢ mmd herding \, AN e mmd herding NN +_mmd herding
R, Y A Y N g
Q. ¢ stein point A\, ¢ steinpoint \ 2 . Qid
IR q —ad N N oo i
\, \ 4 \, —a4
—_ S
©
E -6
S -1
61
-
3 s
L _g4
_g
~101
_104
~104
-12
: . . v v " :
2 4 6 2 2 4 6

loi_ll(n) :

Figure: Averaged over 10 runs of each algorithm. Initial particles are
i.i.d. samples of 7. We use MMD with Gaussian kernel to evaluate;
MMD/KSD Descent use bandwidth 1; SVGD and NSVGD use
Laplace kernel.



d Eval. SVGD MMD-Ibfgs KSD-lbfgs KH SP
2 KSD -0.98 -1.48 -1.46 -0.84 -0.77
MMD -1.04 -1.60 -1.54 -0.93 -0.77
3 KSD -0.91 -1.38 -1.44 -0.84 -0.78
MMD -0.96 -1.51 -1.49 -0.92 -0.75
4 KSD -0.91 -1.35 -1.39 -0.89 -
MMD -0.94 -1.46 -1.40 -0.95 -
8 KSD -0.84 -1.14 -1.16 - -
MMD -0.77 -1.25 -1.13 - -

Some remarks:

» The slopes remain much steeper than the Monte Carlo
rate, even when the dimension increases

» MMD/KSD slopes are better than our theoretical upper

bounds



Robustness to evaluation discrepancy
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Figure: Fragility of MMD and KSD based quantization with respect to

bandwidth of the MMD evaluation metric, in 2D. From Left to Right:
evaluation MMD bandwidth = 1, 0.7, 0.3.



Conclusion

Contributions:
» Optimization: NSVGD accelerates the dynamics

» Quantization: Interacting-particle based sampling
algorithms can create "super samples”

Future work/open questions:

» Improve our quantization bounds for MMD/KSD
(dependence in dimension, Laplace kernel?)

» Obtain quantization bounds for SVGD
» What is a robust way to measure quantization error?

» What are good ensemble based algorithms to quantize a
measure?
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