Neural Language Models are not Born Equal to Fit Brain Data,
but Training Helps
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Using Neural Language Models to explore language
processing in the human brain

Trained on large corpora, NLMs acquire some linguistics knowledge, notably some aspects
of the semantics of words or sentences.

The activation patterns in these networks correlates with brain activations.
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Questions

* Which characteristics of neural language models (model type,
number of layers) affect the prediction of brain data?

* |s model Perplexity a good predictor of a model’s ability to fit brain
data?

 What is the effect of the size of the training corpus on brain
predictability ?



Comparing NLM activations
with brain activations

Human participants (N=51) were presented with
an auditory version of The Little Prince story
while their brain activity was recorded with fMRI.

Neural models were presented with a text
transcription and the entire state of the network
was recorded for each word.

After several pre-processing steps, the two
signals were aligned using a regression model.

Finally, cross-validated correlation coefficient
between models' predictions and fMRI time-series
to produce R maps.
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Models
performance

Untrained models achieve significant
brain scores, with untrained LSTM and
Glove performing better than
transfomers (GPT-2 and BERT)

The fitting process captures the
similarities in brain responses to words
that repeat in both the train and test
sets.

Transformers benefit more from training
than LSTMs. The more layers they
have, the better their fitting
performance.



Regions where training improves brain score

A. Increases in Ryegt values with training
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Training significantly improves brain scores in
the same brain regions regardless of models.
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In Green, regions showing a increase of R with training,
across models.

In Red: regions showing significant effects for untrained
models

In Blue: their overlap (18%).



Relationship between perplexity and
brain score
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Perplexity (contd.)

Effect of training epoch
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Conclusions

Untrained models achieve significant brain scores (The fitting process captures the
similarities in brain responses to words that repeat in both the train and test sets).

Transformers benefit more from training than LSTMs. The more layers they have, the
better their fitting performance.

Training has an effect on brain scores in the same set of brain regions, consistently
across models.

Perplexity is not an efficient predictor of brain score.

The size of the training corpus significantly affects brain scores. Off-the-shelf models,
trained on small datasets, might lack statistical power to capture brain activations.
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