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Using Neural Language Models to explore language 
processing in the human brain

Trained on large corpora, NLMs acquire some linguistics knowledge, notably some aspects
 of the semantics of words or sentences.

The activation patterns in these networks correlates with brain activations.

(Mitchell et al., 2008, Science)



  

Questions

● Which characteristics of neural language models (model type, 
number of layers) affect the prediction of brain data?

● Is model Perplexity a good predictor of a model’s ability to fit brain 
data?

● What is the effect of the size of the training corpus on brain 
predictability ?



  

Comparing NLM activations to 
with brain activations

Human participants (N=51) were presented with 
an auditory version of The Little Prince story 
while their brain activity was recorded with fMRI.

Neural models were presented with a text 
transcription and the entire state of the network 
was recorded for each word.

After several pre-processing steps, the two 
signals were aligned using a regression model. 

Finally, cross-validated correlation coefficient 
between models' predictions and fMRI time-series 
to produce R maps.



  

Models 
performance

● Untrained models achieve significant 
brain scores, with untrained LSTM and 
Glove performing better than 
transfomers (GPT-2 and BERT) 

The fitting process captures the 
similarities in brain responses to words 
that repeat in both the train and test 
sets.

● Transformers benefit more from training 
than LSTMs. The more layers they 
have, the better their fitting 
performance.



  

Regions where training improves brain score

LSTM

GPT-2

BERT

In Green, regions showing a increase of R with training, 
across models.

In Red: regions showing significant effects for untrained 
models

In Blue: their overlap (18%).

Training significantly improves brain scores in 
the same brain regions regardless of models. 



  

Relationship between perplexity and 
brain score
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Perplexity (contd.)
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Conclusions
● Untrained models achieve significant brain scores (The fitting process captures the 

similarities in brain responses to words that repeat in both the train and test sets).

● Transformers benefit more from training than LSTMs. The more layers they have, the 
better their fitting performance.

● Training has an effect on brain scores in the same set of brain regions, consistently 
across models. 

● Perplexity is not an efficient predictor of brain score.

● The size of the training corpus significantly affects brain scores. Off-the-shelf models, 
trained on small datasets, might lack statistical power to capture brain activations.
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