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Offline Reinforcement Learning

Conservatism is the key for a succuessful offline
algorithm

I Constraining Policy (He and Hou, 2020;
Fujimoto et al., 2019)

I Penalizing Uncertainty (Kumar et al., 2020;
Wu et al., 2021; Yu et al., 2021)

Is there a simpler solution?
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The Role of Discount Factor in Offline RL

I A smaller γ reduces the complexity of
potential value/policy function class.

I A smaller γ means that the
probability of “dying” is higher,
forming a kind of pessimism.

3



Regularization Effect

Lemma (PAC guarantee for negative bonus, informal)

Suppose there exists an finite coverage coefficient c†, then with probability 1− ξ, the
policy π̂ generated by value iteration with proper negative bonus satisfies

SubOpt
(
π̂, s; γ

)
≤ 2c

(1− γ)2

√
c†d3ζ/N · rmax, ∀s ∈ S,

where d is the dimension of the linear MDP, ζ = log (4dN/(1− γ)ξ) and c is a
constant.
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Regularization Effect

Lemma (Jiang et al. (2015))

For any MDP M with rewards in [0, rmax], ∀π : S ×A → R and γ ≤ γe,

VM,γ(π) ≤ VM,γe(π) ≤ VM,γ(π) +
γe − γ

(1− γ)(1− γe)
rmax,

where γe is the evaluation discount factor.
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Putting together

Theorem (PAC guarantee for regularization effect, informal)

Suppose there exists an finite coverage coefficient c†, then with probability 1− ξ, the
policy π̂ generated by value iteration with a lower guidance dicount factor γ and
proper negative bonus satisfies

SubOpt
(
π̂; γe

)
≤ 2c

(1− γ)2

√
c†d3ζ/N · rmax

+
γe − γ

(1− γ)(1− γe)
· rmax.
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Pessimism Effect
An interesting equivalence

The optimal value function with a lower discount factor is equivalent to the
pessimistic value function over a set of models. Formally, let

π∗Mε
∈ arg max

π∈Π
min
M∈Mε

VM,γ(π), (1)

where
Mε = {M |PM (·|s, a) = (1− ε)PM0(·|s, a) + εP (·)} ,

and P (·) is an arbitrary distribution over S, then we have

V ∗M0,(1−ε)γ = VM0,γ(π∗Mε
) + ∆, (2)

where ∆ is a constant.
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Pessimistic Effect

Theorem (PAC guarantee for pessimistic effect, informal)

Suppose there exists a finite coverage coefficient c†. Set γ = (1− ε)γe, where ε ≥ ζ.
Then with probability 1− ξ, Learning with a guidance discount factor γ yields a
policy π̂ such that

SubOpt
(
π̂; γe

)
≤ c3

(1− γe)2

√
c†d2ζ/N · rmax, (3)

where ζ = c1 log (c2Nd/ξ)
√
d/N , and c1 ∼ c4 are universal constants.

I Note that the dataset size N needs to be large enough such that ξ ≤ 1.
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Tabular Experiments
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Results on D4RL Tasks
Regularization Effect

Tasks BCQ BCQ (γ) TD3+BC TD3+BC (γ) COMBO COMBO (γ)

walker2d (0 noised traj) 59.6±2.7 51.5±3.6 62.0±3.2 52.2±1.1 26.1±3.2 65.5±1.7
walker2d (10 noised traj) 53.7±2.5 51.8±1.3 60.9.±1.2 45.7±4.2 27.9±2.3 63.1±1.6
walker2d (50 noised traj) 20.3±3.3 52.4±3.9 4.3±1.2 46.8±1.9 27.2±1.6 69.6±1.9
walker2d (100 noised traj) 18.6±1.9 52.1±2.2 2.1±0.2 46.6±1.3 13.3±1.1 70.7±2.3
hopper (0 noised traj) 52.8±2.1 40.3±2.5 52.5±1.8 51.0±0.9 1.5±0.1 53.5±3.2
hopper (10 noised traj) 47.9±2.1 41.0±2.7 15.4±0.5 47.9±0.3 1.2±0.1 56.5±2.5
hopper (50 noised traj) 12.7±3.5 44.1±1.9 3.0±0.2 47.0±0.5 1.0±0.1 48.6±4.2
hopper (100 noised traj) 1.0±0.1 41.6±0.6 1.5±0.4 46.3±0.7 1.3±0.1 52.3±1.7
halfcheetah (0 noised traj) 40.2±1.3 42.1±1.1 45.3±1.5 46.9±1.6 32.6±1.6 27.6±1.5
halfcheetah (10 noised traj) 39.5±0.3 40.2±3.3 45.7±0.4 47.3±1.6 32.3±2.8 29.7±2.7
halfcheetah (50 noised traj) 36.5±0.9 37.8±0.8 45.9±0.3 47.3±1.3 31.1±4.7 28.0±1.6
halfcheetah (100 noised traj) 35.4±1.1 36.4±1.7 47.3±1.0 46.1±1.8 30.0±1.9 29.3±0.6
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Results on D4RL Tasks
Pessimism Effect

SAC-N random-v2 medium-v2 medium-expert-v2 expert-v2

Halfcheetah (γ=0.95) 30.0±1.6 65.1±0.9 51.4±2.2 82.7±0.8
Halfcheetah (γ=0.99) 26.6±1.5 48.7±1.3 26.7±1.1 80.2±0.6

random-v2 medium-v2 medium-expert-v2 expert-v2

Hopper (γ=0.95) 8.4±1.7 22.4±2.1 23.1±1.9 14.5±2.6
Hopper (γ=0.99) 14.5±3.5 7.1±2.0 15.4±1.4 2.3±0.3

Table 1: Results on Halfcheetah and Hopper tasks in D4RL. Q-ensemble size N is 2 in
Halfcheetah and N is 50 in Hopper.

Adroit pen-expert-v0 door-expert-v0 hammer-expert-v0

SAC-N (lower γ) 97.1±3.2 106.4±1.9 100.6±2.3
SAC-N (γ=0.99) 3.6±1.1 2.2±0.2 65.5±4.2

Table 2: Results on Adroit tasks in D4RL. Q-ensemble size N is 50 and γ = 0.95.
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Summary

Discount factor plays an important role in offline RL

I Regularization Effect
I A lower discount factor reduces complexity of the value function class

I Pessimistic Effect
I A lower discount factor is equivalent to model-based pessimism

The applicability of a lower guidance discount factor

Dataset size/quality w other pessimisms w\o other pessimisms

Large, good coverage pessimism effect X
Small or bad coverage regurlarization effect X

12



Thanks for Listening!

I Check out our paper for more details

I Happy to answer questions by email:
hu-h19@mails.tsinghua.edu.cn
chongjie@tsinghua.edu.cn
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