

Thresholded Lasso Bandit

Kaito Ariu ^{1,2}, Kenshi Abe ², Alexandre Proutière ¹

¹KTH Royal Institute of Technology

²CyberAgent, Inc.

Background

Linear contextual bandits have been applied in online services such as

- Online advertisement
- Recommendation systems
- Personalized medicine, etc.

Joint information about a user, ad image... are encoded in a context vector.

- Typically, only a few features are significant

Model and Objective

In each round $t \geq 1$:

- (1) The decision-maker receives a set of feature vectors \mathcal{A}_t :

$$\mathcal{A}_t = \{A_{t,k} \in \mathbb{R}^d : k \in [K]\}$$

- (2) She selects a vector $A_t \in \mathcal{A}_t$
- (3) Observes a random reward with sub-Gaussian noise:

$$r_t = \langle A_t, \theta \rangle + \varepsilon_t$$

The high-dimensional parameter vector $\theta \in \mathbb{R}^d$ is fixed but unknown.

Sparsity. Assume that θ has at most s_0 non-zero components and $s_0 \ll d$.

Objective. Devise an algorithm with minimal regret, where regret is defined as:

$$\begin{aligned} R(T) &:= \mathbb{E} \left[\sum_{t=1}^T \max_{A \in \mathcal{A}_t} \langle A, \theta \rangle - r_t \right] \\ &= \mathbb{E} \left[\sum_{t=1}^T \max_{A \in \mathcal{A}_t} \langle A - A_t, \theta \rangle \right]. \end{aligned}$$

Proposed Algorithm: Thresholded Lasso Bandit

In each round $t \geq 1$:

1. Receive feature vectors $\mathcal{A}_t = \{A_{t,k} \in \mathbb{R}^d : k \in [K]\}$
2. Greedily select arm $A_t = \arg \max_{A \in \mathcal{A}_t} \langle A, \hat{\theta}_t \rangle$
3. Obtain support estimate \hat{S} by applying the two-step thresholding procedure to the Lasso estimate
4. Obtain new estimate $\hat{\theta}_{t+1}$ using OLS **only** on \hat{S}

Fewer parameters:

- Does not require the prior knowledge of s_0
- There is only one hyper-parameter λ_0
 - Can be even parameter-free when d is large enough

Regret Upper Bounds for Thresholded Lasso Bandit

Regret bounds with/without the margin condition (a probabilistic condition on the separation of the arm rewards) under some symmetric assumptions in Oh et al., 2021, etc.

Theorem. *Regret of Thresholded Lasso Bandit satisfies,*

(a) *Under the margin condition,*

$$R(T) = \mathcal{O}(\log d + \log T).$$

(b) *Without the margin condition,*

$$R(T) = \mathcal{O}(\log d + \sqrt{T}).$$

Previously, the regret bounds were $\mathcal{O}(\log d \log T)$ and $\mathcal{O}(\log d + \sqrt{T \log(dT)})$.
Match the minimax lower bound.

Numerical Experiments

