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Multi-Agent Reinforcement Learning
➢Current Status:

➢ Learning to collaborate is critical in multi-agent reinforcement learning.

➢ Centralized Training with Decentralized Execution (CTDE) is a mainstream frameworks (Non-stationary).

➢ Many CTDE-based MARL algorithms are proposed including MADDPG, MASAC, VDN and QMIX.

➢ Optimizing the decentralized policies of multiple agents only through reward signals is often inefficient, 

especially when the reward signals are stochastic or sparse. (additional machansims are often critical to 

facilitating effective collaboration).

➢ A complementary branch of works proposes to leverage the correlation or influence of agents.

➢ Agents with high correlation behaviors (influence) are more likely to form collaboration. Motivated by this, 

previous works propose to maximize the correlation of agents’ behaviors to promote collaboration.

➢Our focus:

➢ SIC (Chen et al., 2021)    shared signals z and the joint policy (i.e., 𝐼(𝑧; 𝜋))

➢ MAVEN (Mahajan et al., 2019)     shared signals z and the trajectories  (i.e., 𝐼(𝑧; 𝜏))

➢ SI (Jaques et al., 2019)   any two agents’ action (i.e., 𝐼(𝑎𝑖; 𝑎𝑗|𝑠))

➢ SI-MOA (Jaques et al., 2019)   one agent’ current action and the other agent’ next action (i.e., 𝐼(𝑎𝑡+1
𝑖 ; 𝑎𝑡

𝑗
|𝑠𝑡

𝑗
))

➢ VM3-AC (Kim et al., 2020) any two agents’ action (i.e., 𝐼(𝑎𝑖; 𝑎𝑗|𝑠, 𝑧))

Can maximizing influence or correlation (MI) of agents ensure good collaboration?



Why Can MI-based Collaboration Fail?

The optimal joint behavior here is to rescue target A collaboratively, while other joint behaviors lead to sub-

optimal collaborations. 

➢Our idea: 
To achieve an ideal learning process, agents not only 1) need to enhance 

the correlation of their joint behaviors to form collaborations, but also 2) 

need to be capable of escaping from a sub-optimal collaboration to reach 

a better one.



Progressive Mutual Information 
Collaboration (PMIC)



A New Collaboration Criterion
➢Previous MI forms:

➢𝐼(𝑧; 𝜏)
➢𝐼(𝑧; 𝜋)

➢𝐼(𝑎𝑖 , 𝑎𝑗|𝑠, 𝑧), 𝐼(𝑎𝑡+1
𝑖 ; 𝑎𝑡

𝑗
|𝑠𝑡
𝑗
), 𝐼 𝑎𝑖 , 𝑎𝑗 𝑧

➢𝐼(𝑠𝑡+1
𝑗

; 𝑠𝑡
𝑖 , 𝑎𝑡

𝑖)

➢Limitations:

➢measuring correlation with the MI of any two agents’ actions can be computationally infeasible with the increase of the 

number of agents (i.e., the scalability issue)

➢additional shared latent variables and the joint policy (or trajectories) which violates the CTDE paradigm and makes 

the methods fail in some real-world deployment scenarios when global communication is not available during execution

➢We first propose a new criterion to measure the degree of multiagent collaboration

➢𝑯(𝒖) describes the ability to explore various behaviors of all agents (via joint actions), which could help generate 

diverse trajectories and avoid policy collapse when maximized

➢−𝑯(𝒖𝒊|𝒔) measures the behavioral uncertainty of agent 𝑖, which encourages the agent to behave deterministically 

given global state s when minimized

➢−𝑯(𝒖−𝒊|𝒖𝒊, 𝒔) measures the uncertainty of agent 𝑖 about the actions of other agents, which implicitly characterizes the 

correlation between agents’ behavior and will drives agents to coherent joint behaviors when minimized.



Dual Progressive Collaboration Buffer 
(Du-PCB)

➢ To achieve the main idea, we introduce Du-PCB which includes a positive and a negative buffer to 

dynamically keep the superior and inferior collaboration separately.

➢ Positive Buffer: this buffer only keeps superior trajectories, based on the episodic return. The new 

trajectory return is 𝑅𝑘, the lowest return in the buffer is 𝑅low , the current policy performance is ᪄𝑅. If 

𝑅𝑘 > max 𝑅low , ᪄𝑅 , the trajectory will be added to the buffer. When the buffer is full, DPCB 

overwrites the samples with the worst episodic return to ensure the collaboration patterns’ quality could 

be monotonically increased.

➢ Negative Buffer:  We consider collaboration patterns which are not added into the positive buffer as 

inferior patterns. The negative buffer is updated according to the first-in first-out (FIFO) manner.



Dual Mutual Information Estimator (Du-MIE)

Maximize mutual information associated with superior collaboration

➢ To maximize the MI associated with the positive buffer, we leverage MINE to measure MI which 

provides a tight lower bound based on Jensen-Shannon divergence as:

𝐼(𝑠; 𝑢) ≥ 𝐼𝑀𝐼𝑁𝐸(𝑠; 𝑢) = sup𝜔1
𝔼ℙ𝒮𝒰 −𝑠𝑝 −𝑇𝜔1

(𝑠, 𝑢) − 𝔼ℙ𝒮⊗ℙ𝒰 𝑠𝑝 𝑇𝜔1
(𝑠, 𝑢)

Minimize mutual information associated with inferior collaboration

➢ To ensure that agents do not fall into sub-optimal collaboration, the agents should always be as 

different from the suboptimal collaboration as possible:

𝐼(𝑠; 𝑢) ≤ 𝐼𝐶𝐿𝑈𝐵(𝑠; 𝑢) = 𝔼ℙ𝒮𝒰 log 𝑇𝜔2
(𝑢 ∣ 𝑠) − 𝔼ℙ𝒮⊗ℙ𝒰 log 𝑇𝜔2

(𝑢 ∣ 𝑠)

−ℒ 𝜔1

−ℒ 𝜔2



Integrate PMIC with MARL algorithms

➢ we propose a new objective function for 

PMIC-MARL that combines the two 

types of MI estimates (as additional per-

step rewards) with the conventional 

objective:



Experiments
➢ Environments

➢ MPE (Lowe et al.,2017)

➢ Multi-Agent MuJoCo (de Wittet al., 2020)

➢ SMAC (Samvelyan et al., 2019) 

➢ Baselines

➢ MADDPG (Lowe et al.,2017)

➢ VM3-AC (Kim et al., 2020)

➢ MASAC (Kim et al., 2020)

➢ Fac-MADDPG and COMIX 

(de Witt et al., 2020)

➢ SIC-MADDPG (Chen et al., 2019) 

➢ RODE(Wang et al., 2020) 



Experiments
➢ Integrate PMIC with MADDPG (MPE) ➢ Integrate PMIC with RODE (SMAC)



Experiments

➢ Integrate PMIC with MASAC 

on MPE and MAMuJoCo

➢ Integrate PMIC with MADDPG 

on MAMuJoCo ➢ Integrate PMIC with QMIX on SMAC



Experiments

➢ maximizing MI associated with optimal and suboptimal data to guide agents. Right: minimizing MI 

to break inferior behaviors

➢ Ablation on MI maximization & minimization ➢ Ablation on Du-PCB



Experiments

➢ Comparison of PMIC with MINE and PMIC 

with normal estimator.

➢ Influence of Du-PCB size ➢ Ablation on 𝜶 and 𝜷

➢ Comparison of PMIC with different MI forms.



Conclusion & Limitations & Future work 

➢Conclusion：

➢ To address the potentially detrimental effects of only maximizing mutual information, we propose 

the PMIC framework with maximizing and minimizing MI.

➢ In our experiments, we evaluate several implementations of PMIC-MARL in a wide range of 

cooperative environments with both continuous action space and discrete action space. The results 

demonstrate the effectiveness and generalization of PMIC.

➢Limitations & Future work:

➢ Lack of theory support 

➢ Sensitive to 𝜶 and 𝜷 (Fixed hyperparameters)

➢More precise methods to sort data.

➢More efficient forms of mutual information to measure collaboration/influence.

➢More applications such as communication in MARL and hierarchical reinforcement learning (HRL).


