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Multi-Agent Reinforcement Learning

» Current Status:

>

>
>
>

>
>

Learning to collaborate is critical in multi-agent reinforcement learning.
Centralized Training with Decentralized Execution (CTDE) is a mainstream frameworks (Non-stationary).
Many CTDE-based MARL algorithms are proposed including MADDPG, MASAC, VDN and QMIX.

Optimizing the decentralized policies of multiple agents only through reward signals is often inefficient,
especially when the reward signals are stochastic or sparse. (additional machansims are often critical to
facilitating effective collaboration).

A complementary branch of works proposes to leverage the correlation or influence of agents.

Agents with high correlation behaviors (influence) are more likely to form collaboration. Motivated by this,

previous works propose to maximize the correlation of agents’ behaviors to promote collaboration.

> Our focus:

>

YV V VYV VY

SIC (Chen et al., 2021) shared signals z and the joint policy (i.e., I(z; 7))

MAVEN (Mahajan et al., 2019)  shared signals z and the trajectories (i.e., I1(z; 7))

SI (Jaques et al., 2019) any two agents’ action (i.e., I(a;; a;|s))

SI-MOA (Jaques et al., 2019) one agent’ current action and the other agent’ next action (i.e., I(at,; a,{ |stj )

VM3-AC (Kim et al., 2020) any two agents’ action (i.e., I(a;; a;ls, z))
Can maximizing influence or correlation (Ml) of agents ensure good collaboration?



Why Can MI-based Collaboration Fail?
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The optimal joint behavior here is to rescue target A collaboratively, while other joint behaviors lead to sub-
optimal collaborations.
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Progressive Mutual Information
Collaboration (PMIC)

Dual Progressive Collaboration Buffer Dual Mutual Information Estimator
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A New Collaboration Criterion

»Previous M1 forms:
»1(z; 1)
»1(z;m)
>I(ai., ajls, z), I(aiﬂ; ai |st]), I(ai, aj|z)
>I(St]+1; St, ar)
» Limitations:
»measuring correlation with the MI of any two agents’ actions can be computationally infeasible with the increase of the

number of agents (i.e., the scalability issue)
»additional shared latent variables and the joint policy (or trajectories) which violates the CTDE paradigm and makes

the methods fail in some real-world deployment scenarios when global communication is not available during execution
»>We first propose a new criterion to measure the degree of multiagent collaboration

I(s;u) =H(u) — H(u | s)
= H(u) — H(u; | s) — H(u—; | u;, 8)
» H (u) describes the ability to explore various behaviors of all agents (via joint actions), which could help generate

diverse trajectories and avoid policy collapse when maximized
»—H (u;|s) measures the behavioral uncertainty of agent i, which encourages the agent to behave deterministically

given global state s when minimized
»—H (u_;|u;, s) measures the uncertainty of agent i about the actions of other agents, which implicitly characterizes the

correlation between agents’ behavior and will drives agents to coherent joint behaviors when minimized.



Dual Progressive Collaboration Buffer
(Du-PCB)

» To achieve the main idea, we introduce Du-PCB which includes a positive and a negative buffer to
dynamically keep the superior and inferior collaboration separately.

>

Positive Buffer: this buffer only keeps superior trajectories, based on the episodic return. The new
trajectory return is Ry, the lowest return in the buffer is Ry, , the current policy performance is R. If

Ry > max(Ry,y , R), the trajectory will be added to the buffer. When the buffer is full, DPCB
overwrites the samples with the worst episodic return to ensure the collaboration patterns’ quality could
be monotonically increased.

Negative Buffer: We consider collaboration patterns which are not added into the positive buffer as
inferior patterns. The negative buffer is updated according to the first-in first-out (FIFO) manner.



Dual Mutual Information Estimator (Du-MIE)

Maximize mutual information associated with superior collaboration

» To maximize the MI associated with the positive buffer, we leverage MINE to measure MI which
provides a tight lower bound based on Jensen-Shannon divergence as:
1(510) 2 Iy (5;1) = Supo, |Epgy [=5p(=Tu, (5,0))] = Epspy[5P(T, (5,1)))]
\ J
|
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Minimize mutual information associated with inferior collaboration

» To ensure that agents do not fall into sub-optimal collaboration, the agents should always be as
different from the suboptimal collaboration as possible:

I(S' u) = ICLUB(S; u) = ]]\E‘:Pgu [log Twz (u | S)]}_ EPg@PU [lOg Twz (u | S)]

|
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Integrate PMIC with MARL algorithms

» we propose a new objective function for

PMIC-MARL that combines the two

types of MI estimates (as additional per-

step rewards) with the conventional
objective:

JPMIC (71' ,u~1r [Z yt(ry + 'PFMIC)]

’I‘EMIC

= alviNg (st; ut) — BlcLus(st; ut))
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Algorithm 1: PMIC-MADDPG

Input: the update frequency k for Du-MIE and maximum

episode length 7'.
Initialize the critic network ¢, n actor networks 0...6,, and
corresponding target networks ¢, 61",....,6,’".

Initialize Du-MIE parameterized by w1 and wo.

Initialize Du-PCB and experience replay buffer D

repeat

fort=1,...,T do
Execute joint actions u; via collecting u; ~ g, (0}).
Receive 011 = {0}11}7 1 and team reward 7.

Store trajectory v = {04, Uz, 0441, Tt }i—q to D

if R, > max(Riw, R) then

| Add v to the positive buffer
else

| Add v to the negative buffer

Update Du-MIE with Du-PCB every k steps > see Eq. 4
Update the actors and critic networks > see Eq. 6

until reaching maximum training steps,




Experiments

> Environments
» MPE (Lowe et al.,2017)

» Multi-Agent MuJoCo (de Wittet al., 2020)

» SMAC (Samvelyan et al., 2019)

> Baselines
» MADDPG (Lowe et al.,2017)

» VM3-AC (Kim et al., 2020)

» MASAC (Kim et al., 2020)

» Fac-MADDPG and COMIX

(de Witt et al., 2020)

» SIC-MADDPG (Chen et al., 2019)
» RODE(Wang et al., 2020)




Wildlife Rescue

10
—— MADDPG
s —— MASAC
—— PMIC-MADDPG
o 6 — SIC-MADDPG
@ VM3_AC
§ 4
o
2
(. ——— =
W
1 2 3 4
Time Steps (1e6)
Predator Prey (6 agents)
70
60

00 05 10 15 20 25 30 35 40
Time Steps (1e6)

Predator Prey (24 agents)

Reward
w
o

0.0 1.0 20 3.0 4.0 50 6.0
Time Steps (1e6)

Experiments

> Integrate PMIC with MADDPG (MPE)
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> Integrate PMIC with RODE (SMAC)
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Experiments

» Integrate PMIC with MADDPG
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» Integrate PMIC with QMIX on SMAC
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Experiments

» Ablation on MI maximization & minimization
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> Ablation on Du-PCB
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» maximizing MI associated with optimal and suboptimal data to guide agents. Right: minimizing Ml
to break inferior behaviors
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Experiments

>

Reward

» Comparison of PMIC with MINE and PMIC
with normal estimator.
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Conclusion & Limitations & Future work

» Conclusion:

» To address the potentially detrimental effects of only maximizing mutual information, we propose
the PMIC framework with maximizing and minimizing MI.

> In our experiments, we evaluate several implementations of PMIC-MARL in a wide range of
cooperative environments with both continuous action space and discrete action space. The results
demonstrate the effectiveness and generalization of PMIC.

» Limitations & Future work:
» Lack of theory support
» Sensitive to a and B (Fixed hyperparameters)
» More precise methods to sort data.
» More efficient forms of mutual information to measure collaboration/influence.
» More applications such as communication in MARL and hierarchical reinforcement learning (HRL).



