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Bitwidth Heterogeneous Federated Learning

Embedded devices participating in federated learning may have to operate using 
different bit-widths for computation and storage during training and inference.
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Related Works

Embedded devices participating in federated learning may have to operate using 
different bit-widths for computation and storage during training and inference.
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Challenges

We observed that the weights from low-bitwidth clients cannot easily be 
combined with high-bitwidth weights due to distributional incompatibility.
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Methodology Overview

The server dequantizes the received mixed-bitwidth models into 
float32, before aggregating them and broadcasting to each client.

Illustration of our ProWD framework
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The Progressive Weight Dequantizer and Selective Weight 
Aggregation can alleviate the distribution disparity problem.



Progressive Dequantizer

Each block in our dequantizer progressively converts a set of weights 
into a higher bitwidth.
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The dequantizer is fine-tuned periodically during the BHFL process using the 
weights sent from the clients, and a tiny server-side data buffer.

ProWD Objective

Reconstruction error Distillation loss

Reconstruction of Low-bitwidth Weights
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Selective Weight Aggregation

In order to improve the stability of the training process, before 
aggregating, we impose a mask on the clients’ weights based on the 
relevancy among the weights.

Mask Computation Selective weight aggregation



Experiments

ProWD consistently outperforms strong baselines such as FedAvg, 
FedProx, FedCOM, and FedGroupedAvg.
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Local Training 69.59 75.82 72.71

FedAvg 76.88 76.23 76.56

FedProx 71.16 69.28 70.22

FedCOM 75.37 77.69 76.53

GroupedAvg 61.85 85.08 73.46

ProWD (Ours) 82.87 85.99 84.43
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Conclusion

• We propose a novel yet practical scenario for FL where the 
participating devices operate using different bit-widths, called BHFL.

• We propose a novel framework, ProWD, for bit-heterogeneous FL, 
which can tackle these issues based on progressive weight 
dequantization and selective weight aggregation.

• We evaluate ProWD on realistic BHFL scenarios and show the 
effectiveness of our framework.



Thank you

Contact Information:

Jaehong Yoon          jaehong.yoon@kaist.ac.kr
Geon Park                geon.park@kaist.ac.kr
Sung Ju Hwang       sjhwang82@kaist.ac.kr

mailto:jaehong.yoon@kaist.ac.kr
mailto:geon.park@kaist.ac.kr
mailto:sjhwang82@kaist.ac.kr

