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Bitwidth Heterogeneous Federated Learning

Embedded devices participating in federated learning may have to operate using
different bit-widths for computation and storage during training and inference.
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Related Works

Embedded devices participating in federated learning may have to operate using
different bit-widths for computation and storage during training and inference.

METHODS FL Type  Bitsserver BitSciients Bitsupiink Bitspownlink Communication
FEDAVG (McMahan et al., 2017) FL Float32 Float32 Float32 Float32 Weights
FEDPROX (Li et al., 2018) FL Float32 Float32 Float32 Float32 Weights
FEDPAQ (Reisizadeh et al., 2020) QPC!| Float32 Float32 Target bits Float32 QTarger bits (Diffs)?
FEDCOM (Haddadpour et al., 2021) QPC Float32 Float32 Target bits Float32 Qrarget bis (Diffs)
FEDCOMGATE (Haddadpour et al., 2021) QPC Float32 Float32 Target bits Float32x2 QTargerbits (Diffs)
PROWD (OURS) BHFL Float32  |Client-specific ~ Client-specific | Client-specific Weo?

! Quantized Parameter Communication (QPC)
3 Weights obtained from clients’ bit-dependent training
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Challenges

We observed that the weights from low-bitwidth clients cannot easily be
combined with high-bitwidth weights due to distributional incompatibility.
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Methodology Overview

The server dequantizes the received mixed-bitwidth models into
float32, before aggregating them and broadcasting to each client.
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lllustration of our ProWD framework

The Progressive Weight Dequantizer and Selective Weight
Aggregation can alleviate the distribution disparity problem.



Progressive Dequantizer

Each block in our dequantizer progressively converts a set of weights
into a higher bitwidth.
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The dequantizer is fine-tuned periodically during the BHFL process using the
weights sent from the clients, and a tiny server-side data buffer.




Selective Weight Aggregation

In order to improve the stability of the training process, before
aggregating, we impose a mask on the clients” weights based on the
relevancy among the weights.
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Experiments

ProWD consistently outperforms strong baselines such as FedAvg,

FedProx, FedCOM, and FedGroupedAvg.
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Int8 50% Float32 50% Int8 80% Float32 20%
8bits 32bits | Averaged 8bits 32bits | Averaged
Accuracy | Accuracy | accuracy Accuracy | Accuracy | accuracy
Local Training 69.59 75.82 72.71 69.39 76.41 70.79
FedAvg 76.88 76.23 76.56 77.43 74.64 76.87
FedProx 71.16 69.28 70.22 69.60 66.28 68.94
FedCOM 75.37 77.69 76.53 73.60 80.73 75.03
GroupedAvg 61.85 85.08 73.46 71.76 78.07 73.02
ProwD (Ours) 82.87 85.99 84.43 79.23 81.26 79.63
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Conclusion

* We propose a novel yet practical scenario for FL where the
participating devices operate using different bit-widths, called BHFL.

* We propose a novel framework, ProWD, for bit-heterogeneous FL,
which can tackle these issues based on progressive weight
dequantization and selective weight aggregation.

e We evaluate ProWD on realistic BHFL scenarios and show the
effectiveness of our framework.
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