

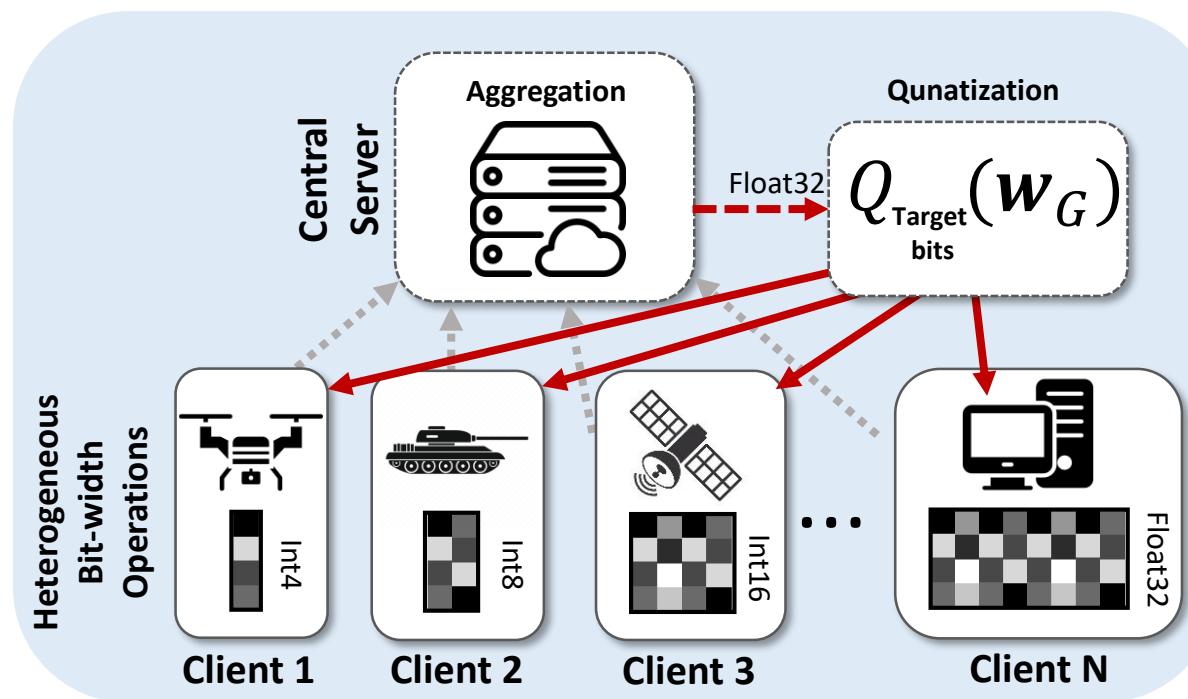
Bitwidth Heterogeneous Federated Learning with Progressive Weight Dequantization

Jaehong Yoon*, Geon Park*, Wonyong Jeong, Sung Ju Hwang
(*: equal contribution)

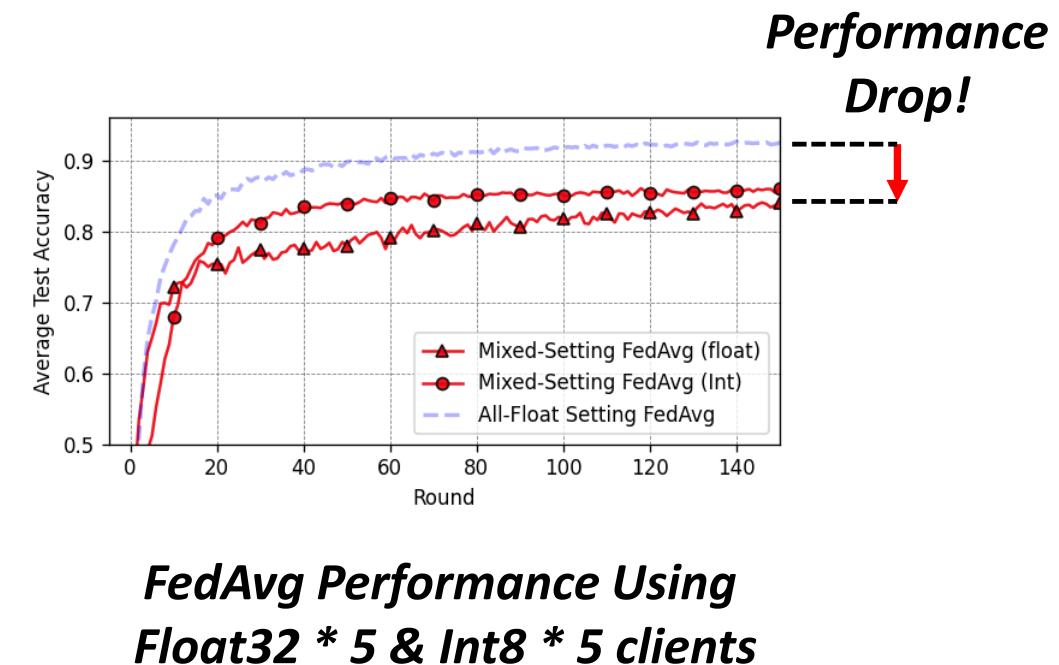
KAIST, South Korea

Bitwidth Heterogeneous Federated Learning

Embedded devices participating in federated learning may have to operate using **different bit-widths** for computation and storage during **training and inference**.



Bitwidth Heterogeneous Federated Learning (BHFL)



Related Works

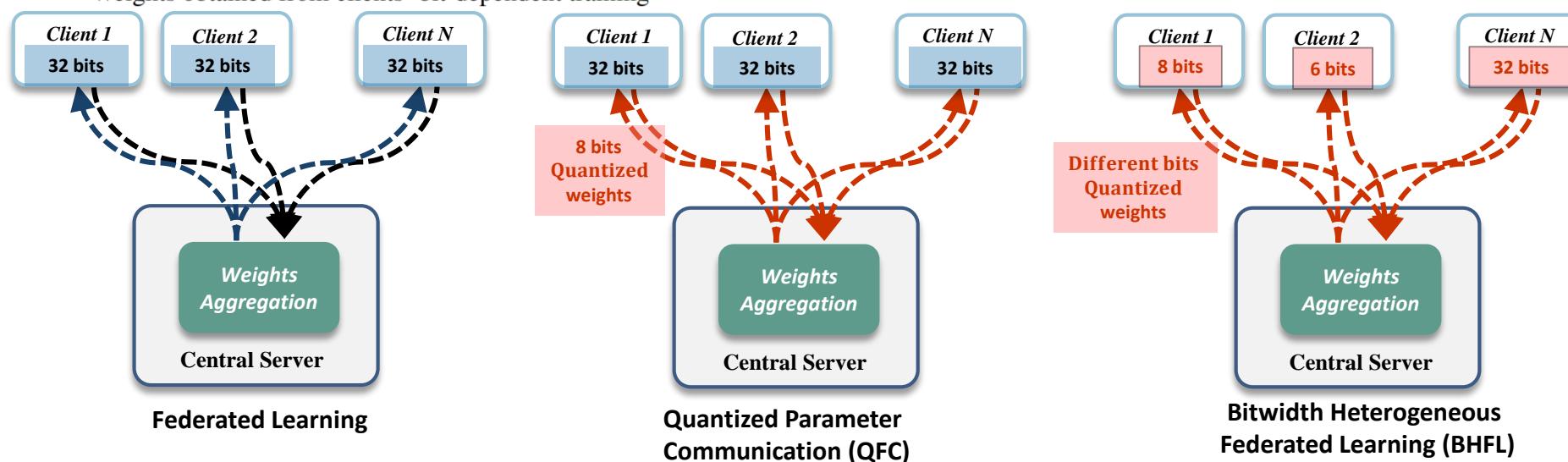
Embedded devices participating in federated learning may have to operate using **different bit-widths** for computation and storage during **training and inference**.

METHODS	FL Type	Bits _{Server}	Bits _{Clients}	Bits _{Uplink}	Bits _{Downlink}	Communication
FEDAVG (McMahan et al., 2017)	FL	Float32	Float32	Float32	Float32	Weights
FEDPROX (Li et al., 2018)	FL	Float32	Float32	Float32	Float32	Weights
FEDPAQ (Reisizadeh et al., 2020)	QPC ¹	Float32	Float32	Target bits	Float32	$Q_{\text{Target_bits}}(\text{Diffs})$ ²
FEDCOM (Haddadpour et al., 2021)	QPC	Float32	Float32	Target bits	Float32	$Q_{\text{Target_bits}}(\text{Diffs})$
FEDCOMGATE (Haddadpour et al., 2021)	QPC	Float32	Float32	Target bits	Float32	$Q_{\text{Target_bits}}(\text{Diffs})$
PROWD (OURS)	BHFL	Float32	Client-specific	Client-specific	Float32 × 2	W_Q ³

¹ Quantized Parameter Communication (QPC)

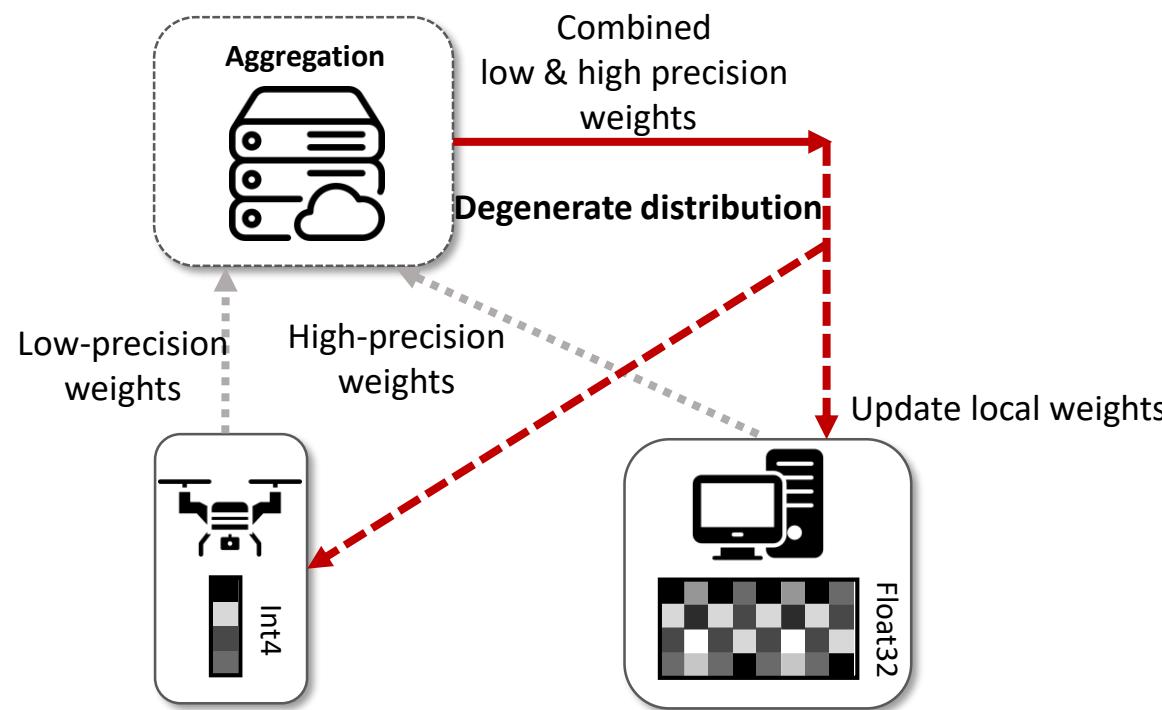
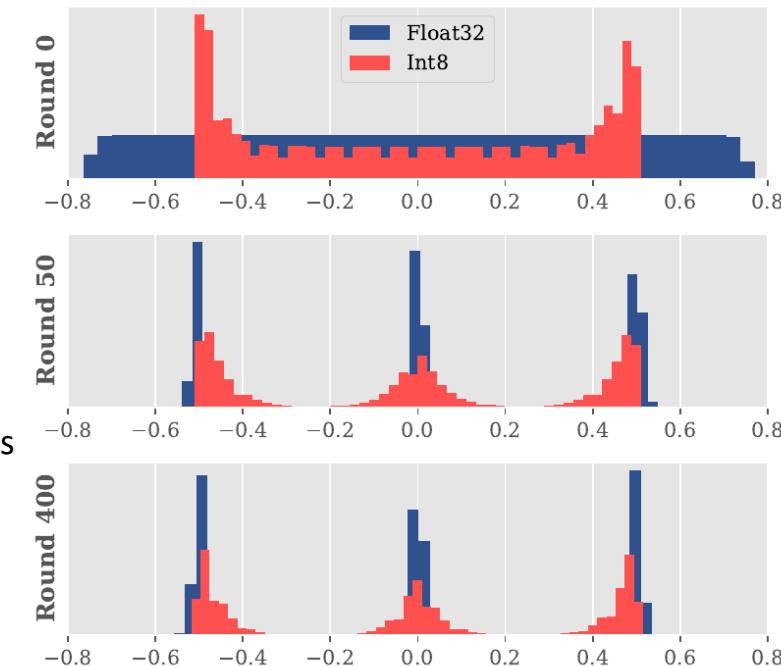
³ Weights obtained from clients' bit-dependent training

² $Q_{\text{Target_bits}}(w)$: A function quantizes input w to the target bitwidth



Challenges

We observed that the weights from low-bitwidth clients **cannot easily be combined** with high-bitwidth weights due to **distributional incompatibility**.



Degeneration of high-precision weights over naïve BHFL rounds

Methodology Overview

The server **dequantizes** the received mixed-bitwidth models into float32, before aggregating them and broadcasting to each client.

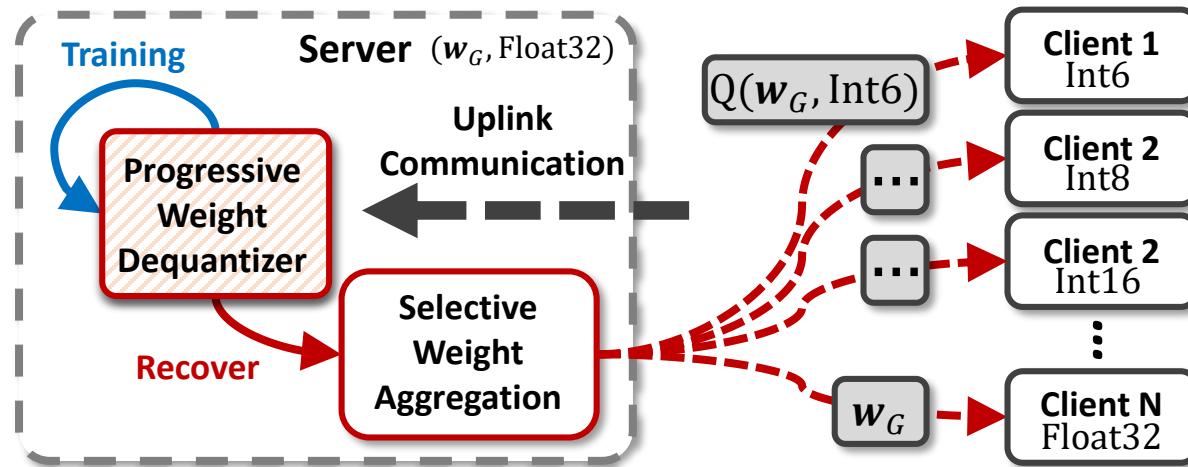
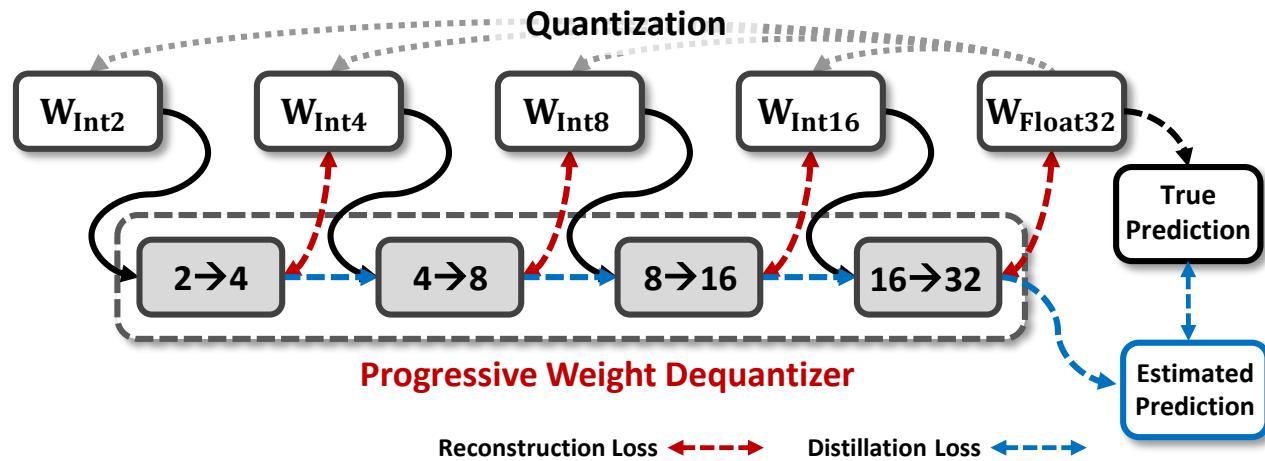
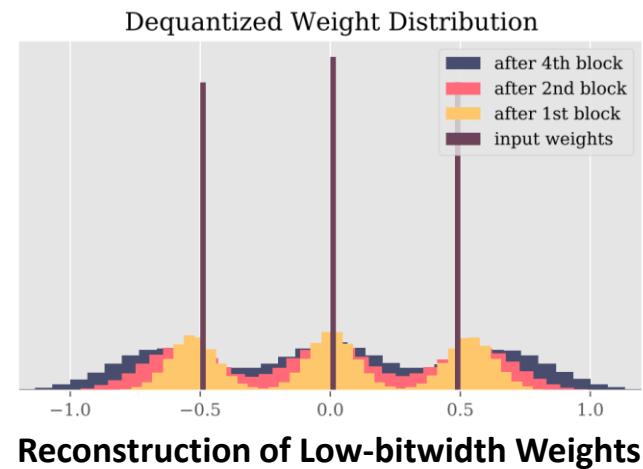


Illustration of our ProWD framework

The **Progressive Weight Dequantizer** and **Selective Weight Aggregation** can alleviate the distribution disparity problem.

Progressive Dequantizer

Each block in our dequantizer **progressively converts** a set of weights into a higher bitwidth.



$$L_{recon} = \sum_{j=0}^{K-1} ||q_{\pi_{j+1}} - \phi^{\pi_j \rightarrow \pi_{j+1}}(q_{\pi_j}; \theta_j)||_1, \quad L_{distill} = -SIM(f(\mathbf{u}; \mathbf{w}), f(\mathbf{u}; \phi^{0 \rightarrow k}(q_{\pi_0}; \theta)))$$

ProWD Objective

$$\mathcal{L} = \mathcal{L}_{recon} + \lambda \mathcal{L}_{distill}$$

Reconstruction error	Distillation loss
----------------------	-------------------

The dequantizer is **fine-tuned periodically** during the BHFL process using the weights sent from the clients, and a tiny server-side data buffer.

Selective Weight Aggregation

In order to improve the stability of the training process, before aggregating, we **impose a mask** on the clients' weights based on the **relevancy** among the weights.

$$\mathbf{c}^* = \operatorname{argmax}_{\mathbf{c}} \frac{(\mathbf{c} \odot \Delta \bar{\mathbf{w}}_{\text{Low}})^\top \Delta \bar{\mathbf{w}}_{\text{High}}}{\|\mathbf{c} \odot \Delta \bar{\mathbf{w}}_{\text{Low}}\| \|\Delta \bar{\mathbf{w}}_{\text{High}}\|}, \text{ s.t. } |\mathbf{c}^*| \leq \tau$$

Mask Computation

$$\mathbf{w}_G \leftarrow \frac{1}{N} \sum_{n=1}^N \mathbf{c}_n \odot \mathbf{w}_n$$

Selective weight aggregation

Experiments

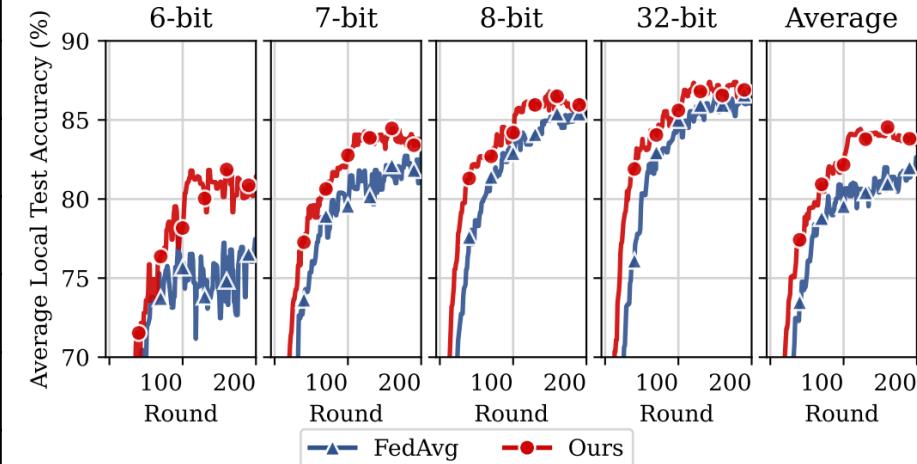
ProWD consistently **outperforms** strong baselines such as FedAvg, FedProx, FedCOM, and FedGroupedAvg.

Int8 50% Float32 50%

	8bits Accuracy	32bits Accuracy	Averaged accuracy
Local Training	69.59	75.82	72.71
FedAvg	76.88	76.23	76.56
FedProx	71.16	69.28	70.22
FedCOM	75.37	77.69	76.53
GroupedAvg	61.85	85.08	73.46
ProWD (Ours)	82.87	85.99	84.43

Int8 80% Float32 20%

	8bits Accuracy	32bits Accuracy	Averaged accuracy
Local Training	69.39	76.41	70.79
FedAvg	77.43	74.64	76.87
FedProx	69.60	66.28	68.94
FedCOM	73.60	80.73	75.03
GroupedAvg	71.76	78.07	73.02
ProWD (Ours)	79.23	81.26	79.63



Conclusion

- We propose a **novel yet practical scenario** for FL where the participating devices operate using different bit-widths, called BHFL.
- We propose a novel framework, *ProWD*, for bit-heterogeneous FL, which can tackle these issues based on progressive weight dequantization and selective weight aggregation.
- We evaluate ProWD on realistic BHFL scenarios and show the effectiveness of our framework.

Thank you

Contact Information:

Jaehong Yoon

jaehong.yoon@kaist.ac.kr

Geon Park

geon.park@kaist.ac.kr

Sung Ju Hwang

sjhwang82@kaist.ac.kr

