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Kernel methods

•

• Pros: non-parametric flexibility & analytical inference

• Cons: limited scalability – at least O(N^2) complexity, typically O(N^3);
inefficiency issue in the test phase



Kernel approximation
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• Approximate the kernel with the inner product of some explicit vector 
representations of the data:

• A small k is desired for scalability while the approximation is low-rank

• Popular approaches:
1. Random Fourier features [Rahimi & Recht, 2007; 2008]

2. Nystrom method [Nystrom, 1930; Williams & Seeger, 2001]

3. …



Random features (RFs) 
Kernel approximation
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Performer (RFs for exp(x, x’))
[Choromanski et al., 2021]

For shift-invariant kernels
[Rahimi et al., 2007]
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• Mercer’s theorem

where !! denote the eigenfunctions of the kernel " w.r.t. the 
probability measure q, and #! ≥ 0 refer to the corresponding eigenvalues

• By the definition of eigenfunction, we have

and

Kernel approximation
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• Given , perform MC integration:

• Eigendecompose and get

• Kernelized solutions:

• Less scalable; the testing entails extensive computes

Nystrom method 
Kernel approximation



• Classic local kernels suffer from curse of dimensionality [Bengio et al., 2005]

• Neural network Gaussian process (NNGP) kernels [Neal, 1995; Lee et al., 2017; 
Khan et al., 2019]

• Neural tangent kernels (NTKs) [Jacot et al., 2018]

Kernels meet NNs
The modern kernels
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Kernels meet NNs
The modern kernels
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• Nevertheless, writing down their detailed mathematical formulae is non-
trivial [Arora et al., 2019] and evaluating them with recursion is both time and
memory consuming.

• They have poor compatibility with standard kernel approximation methods.



Our solution
NeuralEF: approximate the eigenfunctions of kernels by NNs
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Spectral Inference Networks (SpIN) [Pfau et al., 2018]
A closely related work
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• Recover the top eigenfunctions with NNs due to their universal 
approximation capability and parametric nature

• Introduce a vector-valued NN function and solve:

• However, this objective makes Ψ recover the subspace spanned by the top-
k eigenfunctions rather than the top-k eigenfunctions themselves [Pfau et al., 
2018]. 



Spectral Inference Networks (SpIN) [Pfau et al., 2018]
A closely related work
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• Recover the top eigenfunctions with NNs due to their universal 
approximation capability and parametric nature

• Introduce a vector-valued NN function and solve:

• To address this issue, SpIN relies on a gradient masking trick which involves 
a Cholesky decomposition per training iteration.

• SpIN also involves tracking the exponential moving average (EMA) of the 
Jacobian matrix to debias the stochastic optimization.



Our new results
Eigendecomposition as asymmetric maximization problems
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Normalization
constraint

Orthogonality
constraint

Generalized
Rayleigh quotient



Proof scratch-–the first problem
Eigendecomposition as asymmetric maximization problems
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• The ground-truth eigenfunctions form a set of orthonormal bases of the 
L2(X , q) space

• Represent the approximations in such a new axis system

• The the maximization objective reduces to

• And the constraint reduces to

• It is straight-forward to see the maxima



Proof scratch-–the second problem
Eigendecomposition as asymmetric maximization problems
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• Given

• is constrained in the orthogonal complement of the subspace spanned by 

• Then we can apply an analysis similar to that for the first problem

• Applying this procedure incrementally to the additional problems then 
finishes the proof



Eigendecomposition as asymmetric maximization problems
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• Slack the constraints on orthogonality as penalties and solve the first k
optimization problems

• Our objective forms a function-space generalization of that in 
EigenGame [Gemp et al., 2020]



Use an ensemble of k DNNs to approximate the top-k eigenfunctions
DNNs as eigenfunctions
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• Mini-batch training -- by MC estimation:

• L2 Batch normalization (L2BN) to absorb the normalization constraints:

• The gradients:

• Extension to matrix-valued kernels (e.g., NTKs):
strategy 1: use multi-output DNNs
strategy 2: make a factorization assumption



The algorithm
NeuralEF
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Based on thousands of random features
Enable the learning of NN-GP kernels and NTKs

18

• Computing the training kernel matrices by MC estimation
given a distribution &(() satisfying , then



The impact of NeuralEF
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• NeuralEF approximate NTKs and NN-GP kernels with less NN forward
passes than RFs

• It gives rise to an unsupervised representation learning paradigm, where the 
pairwise similarity captured by kernels is embedded into NNs

• It relates two fields of research



Find the eigenfunctions of classic kernels
The applications
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Process MLP-GP kernels
The applications
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Process CNN-GP kernels
The applications
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Find the eigenfunctions of NTK which itself is hard to compute
The applications

23



Improve linearised Laplace approximation with NeuralEF
The applications
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Inverse of the Gauss-Newton of
size # of params × # of params

By Woodbury matrix identity and Mercer’s theorem

The concatenation of the k
eigenfunctions for the NTK

Size: k × k



Bayesian deep learning by modeling SGD trajectory
The applications
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Thanks!


