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User Experience with AI Explanations

https://jalammar.github.io/explainable-ai/

Selvaraju et al., 2019

Bastings et al., 2020

Zellers et al., 2019



Rich Representation of Explanations

Q: how does 
[person2] feel about 
what[person1] is 
telling him?

A: He’s concerned 
and a little upset

Q: how does 
[person2] feel about 
what[person1] is 
telling him?

A: He’s concerned 
and a little upset

He is in shock thinking 
something bad is about 

to happen.

abstractive

extractive



Natural Language Explanations (NLEs)

Q: how does 
[person2] feel about 
what[person1] is 
telling him?

A: He’s concerned 
and a little upset

He is in shock thinking 
something bad is about 

to happen.

abstractive

• NLE should be plausible and consistent to the input

• NLE should be accurate and faithful to explain the prediction 

• NLE should be grounded into world knowledge



Predictive Task

A neural predictive model is employed to solve task.

For example: Natural Language Inference (NLI)

Two men are competing in a 
bicycle race 

premise

People are riding bikes

hypothesis
label 

entailment

Instance from SNLI dataset



Rationales

A rationale (or extractive rationale) is a sufficient and minimal part 
of the input that is a significant indicator of a model’s prediction.


Realized via smallest lexical units e.g., tokens for language or super-pixels for images

Two men are competing in a 
bicycle race 

premise

People are riding bikes

hypothesis
label 

entailment



Natural Language Explanations (NLEs)

An NLE is a textual abstraction of the model explanation. 
This is grounded in background knowledge that the model 
believes.

Competing in a 
bicycle race 
requires men 
riding bikes

Two men are competing in a 
bicycle race 

premise

People are riding bikes

hypothesis
label 

entailment



Background Knowledge

A model believes in a set of background knowledge given the 
input. This knowledge is pivotal to construct the NLEs.

Competing in a 
bicycle race 
requires men 
riding bikes

Two men are competing in a 
bicycle race 

premise

People are riding bikes

hypothesis
label 

entailment

- bicycle race requires bikes

- race requires riding bikes

- bicycle race needs helmet

- men are people



Previous Works

predict-then-explain

generate label-specific explanations, then choose the correct one

stacked steps of feature extraction, selection, commonsense inference

(Camburu et al., 2018)

(Kumar et al., 2018)

(Marasovic´ et al., 2018)



Rationale + Knowledge + NLE = RExC

Input Input

In
pu

t

Rationales are responsible for relevant knowledge retrieval

Knowledge (latent) selection acts as a soft bottleneck 

RExC is a self-rationalizing model that produces NLE and task output



Natural Language and Visual-Language Tasks

Natural Language Inference

Commonsense Validation

Commonsense QA

Visual Entailment

Visual Commonsense 
Reasoning

A: Coffee stimulates people
B: Coffee depresses people

Two men are competing in a bicycle race premise

People are riding bikeshypothesis
label


entailment

label

B is invalid

A: a) cage, b) sky, c) countryside, d) 
desert, e) windowsill

Q: Where does a wild bird usually live? label

sky

Hypothesis: 
Some tennis 
players pose

label

entailment

Q: What is the place?
label


They are in a 
hospital room
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Plausibility via BertScore
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RExC outperforms all previous SOTA for NLE quality/plausibility



How Rationale, Knowledge Help
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Rationale and Selected Knowledge individually contribute to performance



Human Evaluation via e-ViL Scores
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All RExC versions are highly rated by human users



RExC closing Performance-Explainability Gap
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Faithful NLEs
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NLEs from RExC are faithful as both NLEs and task outputs are highly correlated

Rationales are sufficient and comprehensive 



Summary

A: They are in a 
hospital room

NLE: There are 
hospital beds and 
nurses in the room

Hospital room has 
hospital beds

Hospital has nurses

Q: Where are [person2] and [person3]?

Rationale: Selected 
Knowledge:

Thanks!
Come at the poster session 1 

today, Tue Jul 19  
06:30 PM -- 08:30 PM (EDT) @ Hall E

• A self-rationalizing framework 
capable of producing both NLEs and 
rationales 


• Generated NLEs are grounded in 
background knowledge obtained 
from rationales


• RExC achieves SOTA for NLE, 
Rationale quality, task performance


• RExC generated explanations are 
faithful, sufficient, and comprehensive 


