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Grad-CAM for “Cat"

User Experience with Al

Selvaraju et al., 2019
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pours a dark amber color with decent head that does
not recede much . it ’s a tad too dark to see the
carbonation , but fairs well . smells of roasted malts
and mouthfeel is quite strong in the sense that you
can get a good taste of it before you even swallow .

t

Rationale Extractor

)

pours a dark amber color with decent head that does
not recede much . it’s a tad too dark to see the
carbonation , but fairs well . smells of roasted malts
and mouthfeel is quite strong in the sense that you
can get a good taste of it before you even swallow .

Bastings et al., 2020
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Grad-CAM for “Dog"
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xplanations
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Why is [person4jfl] pointing at
[person1§y]?

a) He is telling [persong
the pancakes.

b) He just told a joke.

c) He is feeling accusatory towards [person1].

d) He is giving [person1] directions.

Rationale: | think so because...

a) [person1ﬂ] has the pancakes in front of him.

b) [person4ﬂ] is taking everyone's order and asked for

clarification.

‘ mmeoMeds»J

c) [personSQ] is looking at the pancakes both she and

[person2m1 are smiling slightly.

d) [person3@] is delivering food to the table, and she

might not know whose order is whose.

Zellers et al., 2019
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Rich Representation of Explanations

Q: how does
[person2] feel about
what[personl] Is
telling him?

Q: how does
[person2] feel about
what[personl] Is
telling him?

A: He’s concerned
and a little upset

A: He’s concerned
and a little upset

extractive

-
He is in shock thinking

to happen.
_

~

something bad is about

_J

abstractive



Natural Language Explanations (NLEs)

Q: how does

[ person2] feel about A: He’s concerned
what[personl] is and a little upset
telling him?

* NLE should be plausible and consistent to the input

-
He is in shock thinking

to happen.

\—

~

something bad is about

_J

abstractive

* NLE should be accurate and faithful to explain the prediction

* NLE should be grounded into world knowledge



Predictive Task

A neural predictive model is employed to solve task.
For example: Natural Language Inference (NLI)

premise
" R
Two men are competing in a
bicycle race
\_ _J
_ label
hypothesis entailment

C People are riding bikes ]

Instance from SNLI dataset



Rationales

A rationale (or extractive rationale) is a sufficient and minimal part
of the input that is a significant indicator of a model’s prediction.

premise
" R
Two men are competing in a
bicycle race
\_ _J
_ label
hypothesis entailment

C People are riding bikes ]

Realized via smallest lexical units e.g., tokens for language or super-pixels for images



Natural Language Explanations (NLEs)

An NLE is a textual abstraction of the model explanation.
This Is grounded In background knowledge that the model
believes.

premise
~ R
Two men are competing in a - ~
. bicycle race y Competing in a
label bicycle race
hypothesis entailment requires men
riding bikes

C People are riding bikes ] — Y




Background Knowledge

A model believes In a set of background knowledge given the
iInput. This knowledge is pivotal to construct the NLEs.

premise

(

_

Two men are competing in a

bicycle race

~

_J

hypothesis

C People are riding bikes ]

- men are people

- bicycle race requires bikes
- race requires riding bikes
- bicycle race needs helmet

./

label
entallment | Competing in a
bicycle race
requires men
riding bikes

\_

~




Instance

Premise

A white dog with long
hair jumps to catch a
red and green toy.

Hypothesis

An animal is jumping to
catch an object.

Premise

Label

4

Explanation

A

A A

A A A
Hypothesis

predict-then-explain (Camburu et al., 2018)

Candidate Explanation
Generators

Goontradict

v

S

Gneutral

> Gentail ’

Generated
explanations

Entailment explanation

A dog is an animal.

Contradiction explanation

A dog cannot be jumping to catch
a toy and object simultaneously.

Neutral explanation

The object may not be a toy.

|
I
I
I
1
I
1

——

*

—

Explanation
Processor

»
»

Step I: Generate Label-specific
candidate explanations

Predicted

= A dog is an animal. Explanation

: lentail
_,. Icontradict Label
: Scores
Ineutral

Step II: Process explanations

to infer the task label

generate label-specific explanations, then choose the correct one

(Kumar et al., 2018)

Previous Works

Question: Why is person on the right pointing to the
person on the left?

Answer: He is telling the waitress that the person on the
| left ordered the pancakes.

Natural language rationale: The answer is true because
she is delivering food to the table and she doesn't know
whose order is whose.

Relations (semantics) Inferences (pragmatics)

waitress

delivering

l The waitress doesn't
know whose order is

whose.

person

person

pointing

stacked steps of feature extraction, selection, commonsense inference
(Marasovic’ et al., 2018)



Rationale + Knowledge + NLE = RExXC

p

\
Input Selectors Zir Snippets §; Selectors Zik Input NLE Input Output
v b N\ 4 N 4 N 4 N 4
final
< Extractive < select :
. Natural hidden
Ne_ural g Rationales Knowledge |« g 5 Language | S | Predictor
Rationale M select Module o p M by Zk - Explainer —>
Extractor | = ) £ | : P 9p
= emb,(input ) K = Selected &
K T by Z,-r P T Kno_wledge
Snippets
J
(i) Rationale (ii) Knowledge (iii) Knowledge (iv) NLE (v) Task
Extraction Grounding Selection Generation Prediction

Rationales are responsible for relevant knowledge retrieval
Knowledge (latent) selection acts as a soft bottleneck
REXC is a self-rationalizing model that produces NLE and task output



Natural Language Tasks

Vision Language Tasks

Natural Language and Visual-Language Tasks

»

4

»

Natural Language Inference

Commonsense Validation

Commonsense QA

Visual Entailment

Visual Commonsense
Reasoning

premise [Two men are competing in a bicycle racej

hypothesis ( People are riding bikes]

A: Coffee stimulates people
B: Coffee depresses people

LQ: Where does a wild bird usually Iive?j

A: a) cage, b) sky, c) countryside, d)
desert, e) windowsill

Hypothesis:
Some tennis
players pose

label
entailment

label
Bis invalid

label
sky

label
entailment

label
They areina
hospital room



100

75

50

25

Plausibility via BertScore

" Prev. SOTA B REXC B REXC-ZS

91.9
871.7 86.6

86.8

36.4

81.7

60.3

e-SNLI ComVE COSe e-SNLI-VE VCR

REXC outperforms all previous SOTA for NLE quality/plausibility



100

795

50

25

How Rationale, Knowledge Help

B REXC B w/o ER B w/o Knowledge

91.9
86.8

86.]1 85.2 81.7 - 517 86.6

60.3

e-SNLI ComVE COSe e-SNLI-VE VCR

Rationale and Selected Knowledge individually contribute to performance



100

90

380

70

60

Human Evaluation via e-ViL Scores

" Prev. SOTA B REXC B REXC+ B REXC-ZS

949 996

g73 B8.4 574 8719

82.1 81.8

e-SNLI ComVE COSe e-SNLI-VE VCR

All RExC versions are highly rated by human users



REXC closing Performance-Explainability Gap

" Task SOTA SOTA with Explanations B REXC
100

90
380
i “ l
60

e-SNLI ComVE COSe e-SNLI-VE

REXC is task SOTA for model with explanations,
often outperforms other SOTA



Faithful NLEs

B REXC B Random
B VCR 1
100 @)
> 0.75
. b = 10
@ D
3 50 @ -20 0.5 0.45
O >
By 25 Ug) 30 095 0.31
0 -40 0.08
0 10 20 30 0 10 20 30 0
% occluded % occluded

Sufficiency | Comprehensiveness |

NLEs from REXC are faithful as both NLEs and task outputs are highly correlated

Rationales are sufficient and comprehensive
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NLE: There are

hospital beds and
nurses in the room

Hospital room has
: Selected .
Rationale: = nospital beds
Knowledge: .
Hospital has nurses

Thawnlkes!

Come at the poster session 1
today, Tue Jul 19
06:30 PM -- 08:30 PM (EDT) @ Hall E

Summary

A self-rationalizing framework

capable of producing both NLEs and
rationales

Generated NLEs are grounded in

background knowledge obtained
from rationales

* REXC achieves SOTA for NLE,
Rationale quality, task performance

* REXC generated explanations are
faithful, sufficient, and comprehensive



