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Self-Supervised Learning

• Objective: Learn useful groupings/representations of 
complex unlabeled data.

• Harder than supervised learning but larger potential
• Labeling is expensive. Unlabeled data is cheap

• Of late, deep unsupervised learning approaches made 
significant strides
• Game playing – AlphaZero – learns via self-play
• Masked Prediction in NLP - Large language models – PaLM, 

GPT-3, OPT-175B etc.
• Contrastive Approaches in Vision - SimCLR [2020] – Achieves 

AlexNet level downstream classification performance



Contrastive Learning

• Introduced in early 2000s
• Gaining popularity for deep 

unsupervised learning
• CLIP encoder in DALL.E and DALL.E 2.
• SimCLR [2020] – 76.5% top-1 accuracy on 

Imagenet (downstream)

• High-Level Idea: Contrast between 
different inputs.
• Similar examples have representations 

close to each other.
• Dissimilar examples have representations 

far from each other.

A phone made of 
grass, digital art

Bear in mind, 
digital art

3D render of a fish 
that looks like a 
corgi in an aquarium

Images generated by DALL.E 2 model of OpenAI.
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Multiple Negative Samples

• (𝑥, 𝑥!), 𝑥"#, 𝑥$#, … , 𝑥%# ∼ 𝒟%

• NCE Loss = 𝔼&,&!,&":$% log 1 +
∑𝒊'𝟏
𝒌 𝐞𝐱𝐩 𝒇 𝒙 𝑻𝒇 𝒙𝒊

%

𝐞𝐱𝐩 𝒇 𝒙 𝑻𝒇 𝒙!

• Intuition: More contrastive signal for the learner
• Simulates batches in practice.
• SimCLR uses up to 4096 negative samples per positive pair!



Three central questions
1. Why does minimizing the contrastive loss help with downstream 

inference tasks?
2. What is the effect of increasing the number of negative samples?
3. What is the geometry of the representations optimizing the

population contrastive loss?
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A Theoretical Model [Saunshi et al 2019]

𝒞- set of latent classes, 𝒞 = 𝐶.  Distribution over classes - 𝜌

1. Sample 𝑐 ∼ 𝜌.
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Collisions 
possible!
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Learn representation 
(green layer)

Train linear predictor on top of 
learnt representations
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• For small 𝑘, minimizing ℒ$%&
' 𝑓 ⟹ minimizing ℒ!"# 𝑓 .

• However, performance of contrastive learning seems to degrade exponentially fast with 
increasing 𝑘.

• Collision-Coverage Tradeoff: Collisions are negative samples which are drawn from same 
class as 𝑥. As 𝑘 increases, 
• First the coverage of all classes in 𝒞 increases, so performance improves.
• As 𝑘 increases further, #collisions increase leading to degradation in performance.
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Our Results

• Focus on population loss to decouple issues of generalization.
• (Assumption) Non-overlapping latent classes: Distributions 
𝒟.: 𝑐 ∈ 𝒞 have disjoint supports.

• We prove that collision-coverage tradeoff doesn’t exist for the 
minimizer of a certain family of contrastive losses (includes logistic 
loss)!

• The downstream classification accuracy of the optimal 
representation doesn’t necessarily degrade with increasing 𝒌.



Our Results

Lemma 1: (A Structural Property of the Optimal Representation)

The optimal representation is latent-indistinguishable for any k.
For a strictly convex loss ℓ, and any 𝑓:𝒳 → 𝕊#$%, there exists (𝑓:𝒳 → 𝕊#$%, 
such that
• (𝑓 𝑥 = (𝑓 𝑥′ for any 𝑥, 𝑥′ from the same class and
• ℒ&'(

) (𝑓 < ℒ&'(
) (𝑓).

≼
Suboptimal



Our Results

Balanced class distribution 𝝆𝒄 =
𝟏
𝑪

- For any 𝒌, optimal representation
is Simplex ETF (when 𝑑 ≥ 𝐶 − 1).
• Simplex Equiangular Triangular Frame (ETF):

• 𝑓 𝑥 = 𝑓 𝑥′ for any 𝑥, 𝑥′ from the same class
• Angle between representations of any two distinct classes is same.
• 𝑓 𝑥 !𝑓 𝑥" = − #

$%#
for any 𝑥, 𝑥" 𝑠. 𝑡. 𝑐 𝑥 ≠ 𝑐(𝑥").

• Therefore, downstream classification loss is non-increasing with increasing 𝑘.

Unbalanced class distributions 
• Optimal representation is latent-indistinguishable with separation between 

representations determined by class distribution 𝜌.
• Conjecture: Downstream classification loss is non-increasing with 𝑘.
• provide evidence from simulations

Example of Simplex ETF with 3 
vectors in 3+ dimensional space.
[Papyan, Han and Donoho (2020)]
Figure from: 
https://medium.com/mlearning-ai/what-
is-neural-collapse-de1decf83f48
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Proof Outline –(2) Simplex ETF Optimality for 
Balanced Class Distribution
Established that optimal representation is latent-indistinguishable.

• Step 1: Equiangularity is optimal (Jensen’s inequality).

• Step 2: Among equiangular representations, simplex ETF is 
optimal.
• ∑+ 𝑢+ ,

, = 𝐶 + ∑+--+ 𝑢+.𝑢+/ ⟹ 𝔼+,+-∼2 𝑢+.𝑢+-| 𝑐 ≠ 𝑐′ ≥ − )
%*)

• Simplex ETF achieves the − )
%*)

lower bound.

2𝜋
3



Experiments
CIFAR 10/100 – Balanced datasets

Cosine Similarity 𝑢, 𝑣 = .&/
. ' / '
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Thank you!


