Do More Negative Samples Necessarily Hurt in Contrastive Learning?

Pranjal Awasthi

Nishanth Dikkala*

Pritish Kamath

Self-Supervised Learning

- **Objective**: Learn *useful* groupings/representations of complex unlabeled data.
- Harder than supervised learning but larger potential
 - Labeling is expensive. Unlabeled data is cheap
- Of late, deep unsupervised learning approaches made significant strides
 - *Game playing* AlphaZero learns via self-play
 - *Masked Prediction in NLP* Large language models PaLM, GPT-3, OPT-175B etc.
 - Contrastive Approaches in Vision SimCLR [2020] Achieves AlexNet level downstream classification performance

Contrastive Learning

- Introduced in early 2000s
- Gaining popularity for deep unsupervised learning
 - CLIP encoder in DALL.E and DALL.E 2.
 - SimCLR [2020] 76.5% top-1 accuracy on Imagenet (downstream)
- **High-Level Idea**: *Contrast* between different inputs.
 - Similar examples have representations close to each other.
 - Dissimilar examples have representations far from each other.

Bear in mind, digital art

3D render of a fish that looks like a corgi in an aquarium

 $x \sim \mathcal{D}$

 $x \sim \mathcal{D} \qquad x^+ \sim \mathcal{A}(. | x)$

 $x \sim \mathcal{D}$

 $x^+ \sim \mathcal{A}(.|x)$

 $x^- \sim \mathcal{D}$

(x, x^+) - positive pair

 $x^+ \sim \mathcal{A}(.|x)$

 $x^- \sim \mathcal{D}$

(x, x^+) - positive pair

 $x^+ \sim \mathcal{A}(.|x)$ $x \sim \mathcal{D}$

negative sample

 $x^- \sim \mathcal{D}$

(x, x^+) - positive pair

 $x \sim \mathcal{D}$ $x^+ \sim \mathcal{A}(.|x)$ $f_{\theta}(x) \in \mathbb{R}^d$ $f_{\theta}(x^+) \in \mathbb{R}^d$

negative sample

 $x^- \sim \mathcal{D}$ $f_{\theta}(x^{-}) \in \mathbb{R}^{d}$

(x, x^+) - positive pair

 $x \sim D$

 $x^+ \sim \mathcal{A}(.|x)$ $f_{\theta}(x) \in \mathbb{R}^d$ $f_{\theta}(x^+) \in \mathbb{R}^d$ negative sample

 $x^- \sim \mathcal{D}$ $f_{\theta}(x^{-}) \in \mathbb{R}^d$

Assume $||f_{\theta}(x)||_2 = 1$ (standard in practice) Hence, representations are vectors on the sphere \mathbb{S}^{d-1}

 (x, x^+) - positive pair

 $\begin{aligned} x \sim \mathcal{D} & x^+ \sim \mathcal{A}(. \, | x) \\ f_{\theta}(x) \in \mathbb{R}^d & f_{\theta}(x^+) \in \mathbb{R}^d \end{aligned}$

negative sample

 $x^- \sim \mathcal{D}$ $f_{\theta}(x^-) \in \mathbb{R}^d$

Assume $||f_{\theta}(x)||_2 = 1$ (standard in practice) Hence, representations are vectors on the sphere \mathbb{S}^{d-1}

$$\begin{array}{l} \underline{\text{Noise contrastive estimation}}\\ \min_{\theta} \text{ NCE Loss} \equiv \mathbb{E}_{x,x^+,x^-} \log \left(1 + \frac{\exp(f(x)^T f(x^-))}{\exp(f(x)^T f(x^+))} \right) \end{array}$$

 (x, x^+) - positive pair

 $\begin{aligned} x \sim \mathcal{D} & x^+ \sim \mathcal{A}(. | x) \\ f_{\theta}(x) \in \mathbb{R}^d & f_{\theta}(x^+) \in \mathbb{R}^d \end{aligned}$

negative sample

 $x^- \sim \mathcal{D}$ $f_{\theta}(x^-) \in \mathbb{R}^d$

Assume $||f_{\theta}(x)||_2 = 1$ (standard in practice) Hence, representations are vectors on the sphere \mathbb{S}^{d-1}

$$\min_{\theta} \text{ NCE Loss} \equiv \mathbb{E}_{x,x^+,x^-} \log \left(1 + \frac{exp(f(x)^T f(x^-))}{exp(f(x)^T f(x^+))} \right) \xleftarrow{}$$

Multiple Negative Samples

•
$$(x, x^+), (x_1^-, x_2^-, ..., x_k^-) \sim \mathcal{D}^k$$

• NCE Loss = $\mathbb{E}_{x, x^+, x_{1:k}^-} \log \left(1 + \frac{\sum_{i=1}^k \exp(f(x)^T f(x_i^-))}{\exp(f(x)^T f(x^+))} \right)$

- Intuition: More contrastive signal for the learner
- Simulates batches in practice.
- SimCLR uses up to 4096 negative samples per positive pair!

Three central questions

- 1. Why does minimizing the contrastive loss help with downstream inference tasks?
- 2. What is the effect of increasing the number of negative samples?
- 3. What is the geometry of the representations optimizing the population contrastive loss?

 \mathcal{C} - set of latent classes, $|\mathcal{C}| = C$. Distribution over classes - ρ

- 1. Sample $c \sim \rho$.
- 2. Sample $(x, x^+) \sim \mathcal{D}_c^2$
- 3. Sample $x_1^-, x_2^-, \dots, x_k^- \sim \mathcal{D}^k$ where $\mathcal{D} = \sum_c \mathcal{D}_c \rho_c$ is marginal distribution.

 \mathcal{C} - set of latent classes, $|\mathcal{C}| = C$. Distribution over classes - ρ

- 1. Sample $c \sim \rho$.
- 2. Sample $(x, x^+) \sim \mathcal{D}_c^2$
- 3. Sample $x_1^-, x_2^-, \dots, x_k^- \sim \mathcal{D}^k$ where $\mathcal{D} = \sum_c \mathcal{D}_c \rho_c$ is marginal distribution.

C- set of latent classes, |C| = C. Distribution over classes - ρ

- 1. Sample $c \sim \rho$.
- 2. Sample $(x, x^+) \sim \mathcal{D}_c^2$
- 3. Sample $x_1^-, x_2^-, \dots, x_k^- \sim \mathcal{D}^k$ where $\mathcal{D} = \sum_c \mathcal{D}_c \rho_c$ is marginal distribution.

C- set of latent classes, |C| = C. Distribution over classes - ρ

- 1. Sample $c \sim \rho$.
- 2. Sample $(x, x^+) \sim \mathcal{D}_c^2$
- 3. Sample $x_1^-, x_2^-, \dots, x_k^- \sim \mathcal{D}^k$ where $\mathcal{D} = \sum_c \mathcal{D}_c \rho_c$ is marginal distribution.

C- set of latent classes, |C| = C. Distribution over classes - ρ

- 1. Sample $c \sim \rho$.
- 2. Sample $(x, x^+) \sim \mathcal{D}_c^2$
- 3. Sample $x_1^-, x_2^-, \dots, x_k^- \sim \mathcal{D}^k$ where $\mathcal{D} = \sum_c \mathcal{D}_c \rho_c$ is marginal distribution.

• NCE Loss:
$$\mathcal{L}_{NCE}^{(k)}(f) = \mathbb{E}_{\mathcal{D}_{NCE}}\left[\ell\left(\langle f(x)^T(f(x^+) - f(x_i^-))\rangle_{i=1}^k\right)\right]$$

when $\ell(v) = \log(1 + \sum_{i=1}^k \exp(-v_i))$ we recover logistic loss.

Learn representation (green layer)

- NCE Loss: $\mathcal{L}_{NCE}^{(k)}(f) = \mathbb{E}_{\mathcal{D}_{NCE}}\left[\ell\left(\langle f(x)^T(f(x^+) f(x_i^-))\rangle_{i=1}^k\right)\right]$ when $\ell(v) = \log(1 + \sum_{i=1}^k \exp(-v_i))$ we recover logistic loss.
- Downstream Supervised Task: Classify examples from ${\mathcal C}$ using a linear predictor over the representations.

For any d-dimensional representation $f : \mathcal{X} \to \mathbb{S}^{d-1}$,

$$\mathcal{L}_{sup}(f) = \inf_{\{w_c \mid c \in \mathcal{C}, \|w_c\|=1\}} \mathbb{E}_{(x,c) \sim \mathcal{D}_{sup}} \ell(\langle f(x)^T (w_c - w_{c'})) \rangle_{c' \neq c})$$

Learn representation

(green layer)

• NCE Loss:
$$\mathcal{L}_{NCE}^{(k)}(f) = \mathbb{E}_{\mathcal{D}_{NCE}}\left[\ell\left(\langle f(x)^T(f(x^+) - f(x_i^-))\rangle_{i=1}^k\right)\right]$$

when $\ell(v) = \log(1 + \sum_{i=1}^k \exp(-v_i))$ we recover logistic loss.

• **Downstream Supervised Task**: Classify examples from \mathcal{C} using a linear predictor over the representations.

For any d-dimensional representation $f : \mathcal{X} \to \mathbb{S}^{d-1}$,

$$\mathcal{L}_{sup}(f) = \inf_{\{w_c \mid c \in \mathcal{C}, \|w_c\|=1\}} \mathbb{E}_{(x,c) \sim \mathcal{D}_{sup}} \ell(\langle f(x)^T (w_c - w_{c'})) \rangle_{c' \neq c})$$

• [Saunshi et al 2019], [Ash et al 2021]: For any representation f,

$$\mathcal{L}_{sup}(f) \le \alpha(k,\rho) \left(\mathcal{L}_{NCE}^{(k)}(f) - \tau(k) \right)$$

where α initially decreases with k, then grows exponentially with k.

$$(\frac{\eta^k}{k} \text{ for } \eta = 1 + \frac{1}{C-1})$$

• [Saunshi et al 2019], [Ash et al 2021]: For any representation f,

$$\mathcal{L}_{sup}(f) \le \alpha(k,\rho) \left(\mathcal{L}_{NCE}^{(k)}(f) - \tau(k) \right)$$

where α initially decreases with k, then grows exponentially with k.

$$(\frac{\eta^k}{k} \text{ for } \eta = 1 + \frac{1}{C-1})$$

• For small k, minimizing $\mathcal{L}_{NCE}^{(k)}(f) \Longrightarrow$ minimizing $\mathcal{L}_{sup}(f)$.

• [Saunshi et al 2019], [Ash et al 2021]: For any representation f,

$$\mathcal{L}_{sup}(f) \le \alpha(k,\rho) \left(\mathcal{L}_{NCE}^{(k)}(f) - \tau(k) \right)$$

where α initially decreases with k, then grows exponentially with k.

$$(rac{\eta^k}{k}$$
 for $\eta=1+rac{1}{C-1}$)

- For small k, minimizing $\mathcal{L}_{NCE}^{(k)}(f) \Longrightarrow$ minimizing $\mathcal{L}_{sup}(f)$.
- However, performance of contrastive learning seems to degrade exponentially fast with increasing k.

• [Saunshi et al 2019], [Ash et al 2021]: For any representation f,

$$\mathcal{L}_{sup}(f) \le \alpha(k,\rho) \left(\mathcal{L}_{NCE}^{(k)}(f) - \tau(k) \right)$$

where α initially decreases with k, then grows exponentially with k.

 $(\frac{\eta^k}{k} \text{ for } \eta = 1 + \frac{1}{C-1})$

- For small k, minimizing $\mathcal{L}_{NCE}^{(k)}(f) \Longrightarrow$ minimizing $\mathcal{L}_{sup}(f)$.
- However, performance of contrastive learning seems to degrade exponentially fast with increasing k.
- Collision-Coverage Tradeoff: Collisions are negative samples which are drawn from same class as x. As k increases,
 - First the coverage of all classes in C increases, so performance improves.
 - As k increases further, #collisions increase leading to degradation in performance.

- We prove that collision-coverage tradeoff doesn't exist for the minimizer of a certain family of contrastive losses (includes logistic loss)!
- The downstream classification accuracy of the optimal representation doesn't necessarily degrade with increasing k.

- We prove that collision-coverage tradeoff doesn't exist for the minimizer of a certain family of contrastive losses (includes logistic loss)!
- The downstream classification accuracy of the optimal representation doesn't necessarily degrade with increasing k.
- Focus on population loss to decouple issues of generalization.

- We prove that collision-coverage tradeoff doesn't exist for the minimizer of a certain family of contrastive losses (includes logistic loss)!
- The downstream classification accuracy of the optimal representation doesn't necessarily degrade with increasing k.
- Focus on population loss to decouple issues of generalization.
- (Assumption) Non-overlapping latent classes: Distributions $\{\mathcal{D}_c : c \in \mathcal{C}\}$ have disjoint supports.

Lemma 1: (A Structural Property of the Optimal Representation)

The optimal representation is latent-indistinguishable for any k. For a strictly convex loss ℓ , and any $f: \mathcal{X} \to \mathbb{S}^{d-1}$, there exists $\tilde{f}: \mathcal{X} \to \mathbb{S}^{d-1}$, such that

 \leq

Suboptimal

- $\tilde{f}(x) = \tilde{f}(x')$ for any x, x' from the same class and
- $\mathcal{L}_{NCE}^{(k)}(\tilde{f}) < \mathcal{L}_{NCE}^{(k)}(f).$

Balanced class distribution $\left(\rho_c = \frac{1}{c}\right)$ - For **any** k, optimal representation is Simplex ETF (when $d \ge C - 1$).

- Simplex Equiangular Triangular Frame (ETF):
 - f(x) = f(x') for any x, x' from the same class
 - Angle between representations of any two distinct classes is same.
 - $f(x)^T f(x') = -\frac{1}{c-1}$ for any $x, x' s. t. c(x) \neq c(x')$.
- Therefore, downstream classification loss is non-increasing with increasing k.

Unbalanced class distributions

- Optimal representation is latent-indistinguishable with separation between representations determined by class distribution ρ .
- **Conjecture**: Downstream classification loss is non-increasing with *k*.
- provide evidence from simulations

Example of Simplex ETF with 3 vectors in 3+ dimensional space. [Papyan, Han and Donoho (2020)] Figure from:

https://medium.com/mlearning-ai/what is-neural-collapse-de1decf83f48

For any representation f, and a fixed latent class $c^* \in C$, sample $x^* \sim D_{c^*}$ and define f_{x^*} as follows:

For any representation f, and a fixed latent class $c^* \in C$, sample $x^* \sim D_{c^*}$ and define f_{x^*} as follows:

• We show that
$$\mathbb{E}_{\chi^* \sim \mathcal{D}_{c^*}} \left[\mathcal{L}_{NCE}^{(k)}(f_{\chi^*}) \right] < \mathcal{L}_{NCE}^{(k)}(f).$$

For any representation f, and a fixed latent class $c^* \in C$, sample $x^* \sim D_{c^*}$ and define f_{x^*} as follows:

- We show that $\mathbb{E}_{x^* \sim \mathcal{D}_{c^*}} \left[\mathcal{L}_{NCE}^{(k)}(f_{x^*}) \right] < \mathcal{L}_{NCE}^{(k)}(f).$
- Implies there exists x^* such that $\mathcal{L}_{NCE}^{(k)}(f_{x^*}) < \mathcal{L}_{NCE}^{(k)}(f)$.

For any representation f, and a fixed latent class $c^* \in C$, sample $x^* \sim D_{c^*}$ and define f_{x^*} as follows:

- We show that $\mathbb{E}_{\chi^* \sim \mathcal{D}_{c^*}} \left[\mathcal{L}_{NCE}^{(k)}(f_{\chi^*}) \right] < \mathcal{L}_{NCE}^{(k)}(f).$
- Implies there exists x^* such that $\mathcal{L}_{NCE}^{(k)}(f_{x^*}) < \mathcal{L}_{NCE}^{(k)}(f)$.
- Iterate over all $c^* \in C$ one by one.

For any representation f, and a fixed latent class $c^* \in C$, sample $x^* \sim D_{c^*}$ and define f_{x^*} as follows:

- We show that $\mathbb{E}_{\chi^* \sim \mathcal{D}_{c^*}} \left[\mathcal{L}_{NCE}^{(k)}(f_{\chi^*}) \right] < \mathcal{L}_{NCE}^{(k)}(f).$
- Implies there exists x^* such that $\mathcal{L}_{NCE}^{(k)}(f_{x^*}) < \mathcal{L}_{NCE}^{(k)}(f)$.
- Iterate over all $c^* \in \mathcal{C}$ one by one.

For any representation f, and a fixed latent class $c^* \in C$, sample $x^* \sim D_{c^*}$ and define f_{x^*} as follows:

- We show that $\mathbb{E}_{\chi^* \sim \mathcal{D}_{c^*}} \left[\mathcal{L}_{NCE}^{(k)}(f_{\chi^*}) \right] < \mathcal{L}_{NCE}^{(k)}(f).$
- Implies there exists x^* such that $\mathcal{L}_{NCE}^{(k)}(f_{x^*}) < \mathcal{L}_{NCE}^{(k)}(f)$.
- Iterate over all $c^* \in \mathcal{C}$ one by one.

For any representation f, and a fixed latent class $c^* \in C$, sample $x^* \sim D_{c^*}$ and define f_{x^*} as follows:

- We show that $\mathbb{E}_{\chi^* \sim \mathcal{D}_{c^*}} \left[\mathcal{L}_{NCE}^{(k)}(f_{\chi^*}) \right] < \mathcal{L}_{NCE}^{(k)}(f).$
- Implies there exists x^* such that $\mathcal{L}_{NCE}^{(k)}(f_{x^*}) < \mathcal{L}_{NCE}^{(k)}(f)$.
- Iterate over all $c^* \in \mathcal{C}$ one by one.

For any representation f, and a fixed latent class $c^* \in C$, sample $x^* \sim D_{c^*}$ and define f_{x^*} as follows:

- We show that $\mathbb{E}_{\chi^* \sim \mathcal{D}_{c^*}} \left[\mathcal{L}_{NCE}^{(k)}(f_{\chi^*}) \right] < \mathcal{L}_{NCE}^{(k)}(f).$
- Implies there exists x^* such that $\mathcal{L}_{NCE}^{(k)}(f_{x^*}) < \mathcal{L}_{NCE}^{(k)}(f)$.
- Iterate over all $c^* \in \mathcal{C}$ one by one.

Proof Outline –(2) Simplex ETF Optimality for **Balanced Class Distribution**

Established that optimal representation is latent-indistinguishable.

• **Step 1**: Equiangularity is optimal (Jensen's inequality).

- Step 2: Among equiangular representations, simplex ETF is optimal.
 - $\|\sum_{c} u_{c}\|_{2}^{2} = C + \sum_{c' \neq c} u_{c}^{T} u_{c'} \implies \mathbb{E}_{c,c' \sim \rho}[u_{c}^{T} u_{c'} | c \neq c'] \ge -\frac{1}{C-1}$ Simplex ETF achieves the $-\frac{1}{C-1}$ lower bound.

Experiments

CIFAR 10/100 – Balanced datasets

Cosine Similarity $(u, v) = \frac{u^{T}v}{\|u\|_{2}\|v\|_{2}}$

- Main conclusion: More negative examples need not be harmful in contrastive learning.
 - Also supported by results of [Bao et al (2021), Nozawa and Sato (2021)]. Show upper and lower bounds of form

$$\mathcal{L}_{sup}(f) \in \left[\mathcal{L}_{NCE}^{(k)}(f) - \Delta_L, \mathcal{L}_{NCE}^{(k)}(f) + \Delta_U\right]$$

where $\Delta_U - \Delta_L = \alpha + 2 \log \left(1 + \frac{1}{k}\right)$ where α does not depend on k. (Don't give structural characterization we do and do not imply monotonicity for balanced

classes)

- Main conclusion: More negative examples need not be harmful in contrastive learning.
 - Also supported by results of [Bao et al (2021), Nozawa and Sato (2021)]. Show upper and lower bounds of form

$$\mathcal{L}_{sup}(f) \in \left[\mathcal{L}_{NCE}^{(k)}(f) - \Delta_L, \mathcal{L}_{NCE}^{(k)}(f) + \Delta_U\right]$$

where $\Delta_U - \Delta_L = \alpha + 2 \log \left(1 + \frac{1}{k}\right)$ where α does not depend on k. (Don't give structural characterization we do and do not imply monotonicity for balanced

classes)

Open directions:

- **Conjecture**: Show downstream supervised loss is non-decreasing with increasing number of negatives k even for unbalanced class distributions.
- More Realistic Models
 - Realistic Augmentation Distributions no class knowledge, minimal overlap
 - Inductive bias of encoder paper in this ICML by Saunshi et al (2022)
 - Multiple downstream tasks

- Main conclusion: More negative examples need not be harmful in contrastive learning.
 - Also supported by results of [Bao et al (2021), Nozawa and Sato (2021)]. Show upper and lower bounds of form

$$\mathcal{L}_{sup}(f) \in \left[\mathcal{L}_{NCE}^{(k)}(f) - \Delta_L, \mathcal{L}_{NCE}^{(k)}(f) + \Delta_U\right]$$

where $\Delta_U - \Delta_L = \alpha + 2 \log \left(1 + \frac{1}{k}\right)$ where α does not depend on k. (Don't give structural characterization we do and do not imply monotonicity for balanced

classes)

Open directions:

• **Conjecture**: Show downstream supervised loss is non-decreasing with increasing number of negatives k even for unbalanced class distributions.

Thank you!

- More Realistic Models
 - Realistic Augmentation Distributions no class knowledge, minimal overlap
 - Inductive bias of encoder paper in this ICML by Saunshi et al (2022)
 - Multiple downstream tasks