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Population-based Reinforcement Learning

Recent work has shown that training multiple RL agents concurrently can be beneficial:

e for hyperparameter tuning [1, 2, 3],

e to generate diverse behaviors for efficient exploration [4, 5] or fast adaptation in damage-recovery applications [6].
Even simply training the same agent many times in independent runs is crucial to be able to draw conclusions [7].

However, training a population of agents:

e is much slower than training a single one if the agents are trained sequentially on a single hardware accelerator,
e requires a lot of resources if a full hardware accelerator is dedicated to each agent.

Observation: in many practical cases, the neural networks used to parametrize the agents are small enough that training a single
agent does not fully leverage the vectorization capabilities of modern hardware accelerators.

Idea: vectorize “training-related” computations over the population similarly to what is done for the batch size.

1: Jaderberg et al. (2017) - Population-based training of neural networks. arXiv:1711.09846.
2: Vinyals et al. (2019) - Grandmaster level in starcraft Il using multi-agent reinforcement learning. Nature, 575 (7782):350—354.
3: Jaderberg et al. (2019) - Human-level performance in 3d multiplayer games with population-based reinforcement learning. Science, 364(6443):859-865.
4: Pierrot et al. (2022) - Diversity policy gradient for sample efficient quality-diversity optimization. arXiv:2006.08505.
5: Pourchot, A. and Sigaud, O (2019) - CEM-RL: Combining evolutionary and gradient-based methods for policy search. ICLR 2019.
6: Eysenbach et al. (2019) - Diversity is all you need: Learning skills without a reward function. ICLR 2019.
7: Agarwal et al. (2021) - Deep reinforcement learning at the edge of the statistical precipice. NeurlPS 2021.
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Population-based RL Training on a Single GPU

We first study a simplistic setting:

e asingle hardware accelerator is available,
e the agents are trained independently from one another,
e training data is available without delay.

We compare multiple implementations of a population-wide update step based on the runtime per step:

e sequential,
e parallel,
e vectorized,

for three standard off-policy RL algorithms:

e Twin Delayed Deep Deterministic Policy Gradient (TD3) with fully-connected neural networks on a MuJoCo
locomotion environment,

e Soft Actor Critic (SAC) with fully-connected neural networks on a MuJoCo locomotion environment,

e Deep Q-Learning (DQN) with convolutional neural networks on an Atari 2600 environment,

using two automatic differentiation frameworks:

e PyTorch,
e JAX with Just-In-Time compilation.
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Implementations of a Population-wide Update Step

Sequential implementation: Iterate over all agents and carry out one update step each time.

all agents = [MyAgent() for _ in range(population size)]
training batch iterator = MyDataset()

while True:
for agent in all agents:
training batch = next(training batch iterator)
agent.update step(training batch)

Advantages Disadvantages
e ftrivial to implement e inefficient if training a single agent does not fully
e trivial to extend to more complex settings where utilize the accelerator

some losses / parameters are shared across agents
e |ow memory usage
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Implementations of a Population-wide Update Step

Parallel implementation: Spawn one process per agent and share the accelerator across processes.

from multiprocessing import Process

def

all
for _

train one agent():

agent = MyAgent()

training batch iterator = MyDataset()

while True:
training batch = next(training batch iterator)
agent.update step(training batch)

processes = []

in range(population size):

process = Process(target=train_one agent)
process.start()

all processes.append(process)

Advantages

trivial to implement but training data will need to
flow between processes

(potentially) more efficient use of the GPU
parallelization capabilities than the sequential
approach

Disadvantages

memory fragmentation
still unable to fully leverage the GPU parallelization
capabilities
requires efficient inter-process communication
tools in more complex settings where some losses
/ parameters are shared across agents
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Implementations of a Population-wide Update Step

Vectorized implementation: Concatenate neural network weights as well as training data across the population
and write vectorized versions of the neural networks / losses in PyTorch (or use the vmap primitive in JAX).

import torch

class VectorizedLinearLayer(torch.nn.Module):
"""Vectorized version of torch.nn.Linear."""

def init (self, population_size: int, in_features: int, out features: int):
super(). init ()

self. population size = population size
self. weight = torch.nn.Parameter(torch.empty(population size, in_features, out features), requires grad=True)
self. bias = torch.nn.Parameter(torch.empty(population_size, 1, out features), requires grad=True)

# Initialization of the weights

def forward(self, x: torch.Tensor) -> torch.Tensor:
assert x.shape[0] == self. population size
return x.matmul(self. weight) + self. bias

Advantages Disadvantages

e can fully leverage GPU parallelization capabilities

e casy to extend to more complex settings where
some losses / parameters are shared across
agents

e efficient memory utilization compared to the
parallel implementation

e easy to implement with automated vectorization
frameworks (such as JAX)

e higher memory utilization compared to the
sequential approach

e sometimes require to vectorize “by hand” to get the
best results
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Implementations of a Population-wide Update Step

Speedup factor of the population-wide update step w.r.t. the sequential implementation in PyTorch
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Vectorized implementations can be up to two orders of magnitude faster than sequential ones for population sizes up to 80.
Parallel implementations can be much faster than sequential ones but memory fragmentation severely limits the population size.
Compiling the static graph of computations can readily yield significant speedups (up to 14x in our experiments).
Vectorizing computations does not help on CPUs.
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Case Studies

We revisit three population-based RL studies from previous works:

e Hyperparameter tuning with Population-Based Training (PBT) [1].

e Off-policy RL mixed with the Cross Entropy Method (CEM-RL) [2], where some of the neural network weights
are shared across the population.

e Diversity via Determinants (DvD) [3], where the loss includes a term that involves the neural network weights
of all agents in the population.

using:

e vectorized update steps implemented in JAX,
e simple tools based on the built-in multiprocessing python library for efficient data collection.

Specifically, we compare the total reward achieved as a function of the total walltime elapsed since the start of
the experiment (which includes the overhead due to data collection and environment interactions) when:

e training a population of agents using the vectorized approach with JAX,
e training a single agent with PyTorch.

1: Jaderberg et al. (2017) - Population-based training of neural networks. arXiv:1711.09846.
2: Pourchot, A. and Sigaud, O (2019) - CEM-RL: Combining evolutionary and gradient-based methods for policy search. ICLR 2019.
3: Parker-Holder et al. (2020) - Effective diversity in population based reinforcement learning. NeurlPS 2020.
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Case Study: Hyperparameter Tuning of SAC and TD3 with PBT
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Performance (in terms of mean episode returns) achieved as a function of total time elapsed since the beginning of the training run
for various implementations and Gym locomotion environments. All experiments are run on a single machine with 4 T4
accelerators and 40 CPU cores.
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Thank you!
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