
Fast Population-Based
Reinforcement Learning on a
Single Machine

Arthur Flajolet, Claire Bizon Monroc, Karim Beguir, Thomas Pierrot

Special thanks to Thomas Hirtz for streamlining the implementation

ICML 2022

Presenter: Guillaume Richard

2

Population-based Reinforcement Learning
Recent work has shown that training multiple RL agents concurrently can be beneficial:

● for hyperparameter tuning [1, 2, 3],

● to generate diverse behaviors for efficient exploration [4, 5] or fast adaptation in damage-recovery applications [6].

Even simply training the same agent many times in independent runs is crucial to be able to draw conclusions [7].

However, training a population of agents:

● is much slower than training a single one if the agents are trained sequentially on a single hardware accelerator,
● requires a lot of resources if a full hardware accelerator is dedicated to each agent.

Observation: in many practical cases, the neural networks used to parametrize the agents are small enough that training a single
agent does not fully leverage the vectorization capabilities of modern hardware accelerators.

Idea: vectorize “training-related” computations over the population similarly to what is done for the batch size.

1: Jaderberg et al. (2017) - Population-based training of neural networks. arXiv:1711.09846.
2: Vinyals et al. (2019) - Grandmaster level in starcraft II using multi-agent reinforcement learning. Nature, 575 (7782):350–354.
3: Jaderberg et al. (2019) - Human-level performance in 3d multiplayer games with population-based reinforcement learning. Science, 364(6443):859–865.
4: Pierrot et al. (2022) - Diversity policy gradient for sample efficient quality-diversity optimization. arXiv:2006.08505.
5: Pourchot, A. and Sigaud, O (2019) - CEM-RL: Combining evolutionary and gradient-based methods for policy search. ICLR 2019.
6: Eysenbach et al. (2019) - Diversity is all you need: Learning skills without a reward function. ICLR 2019.
7: Agarwal et al. (2021) - Deep reinforcement learning at the edge of the statistical precipice. NeurIPS 2021.

3

Population-based RL Training on a Single GPU

We first study a simplistic setting:

● a single hardware accelerator is available,
● the agents are trained independently from one another,
● training data is available without delay.

We compare multiple implementations of a population-wide update step based on the runtime per step:

● sequential,
● parallel,
● vectorized,

for three standard off-policy RL algorithms:

● Twin Delayed Deep Deterministic Policy Gradient (TD3) with fully-connected neural networks on a MuJoCo
locomotion environment,

● Soft Actor Critic (SAC) with fully-connected neural networks on a MuJoCo locomotion environment,
● Deep Q-Learning (DQN) with convolutional neural networks on an Atari 2600 environment,

using two automatic differentiation frameworks:

● PyTorch,
● JAX with Just-In-Time compilation.

4

Implementations of a Population-wide Update Step
Sequential implementation: Iterate over all agents and carry out one update step each time.

Advantages Disadvantages

● trivial to implement
● trivial to extend to more complex settings where

some losses / parameters are shared across agents
● low memory usage

● inefficient if training a single agent does not fully
utilize the accelerator

5

Implementations of a Population-wide Update Step
Parallel implementation: Spawn one process per agent and share the accelerator across processes.

Advantages Disadvantages

● trivial to implement but training data will need to
flow between processes

● (potentially) more efficient use of the GPU
parallelization capabilities than the sequential
approach

● memory fragmentation
● still unable to fully leverage the GPU parallelization

capabilities
● requires efficient inter-process communication

tools in more complex settings where some losses
/ parameters are shared across agents

6

Implementations of a Population-wide Update Step
Vectorized implementation: Concatenate neural network weights as well as training data across the population
and write vectorized versions of the neural networks / losses in PyTorch (or use the vmap primitive in JAX).

Advantages Disadvantages
● can fully leverage GPU parallelization capabilities
● easy to extend to more complex settings where

some losses / parameters are shared across
agents

● efficient memory utilization compared to the
parallel implementation

● easy to implement with automated vectorization
frameworks (such as JAX)

● higher memory utilization compared to the
sequential approach

● sometimes require to vectorize “by hand” to get the
best results

7

Implementations of a Population-wide Update Step
Speedup factor of the population-wide update step w.r.t. the sequential implementation in PyTorch

● Vectorized implementations can be up to two orders of magnitude faster than sequential ones for population sizes up to 80.
● Parallel implementations can be much faster than sequential ones but memory fragmentation severely limits the population size.
● Compiling the static graph of computations can readily yield significant speedups (up to 14x in our experiments).
● Vectorizing computations does not help on CPUs.

8

Case Studies
We revisit three population-based RL studies from previous works:

● Hyperparameter tuning with Population-Based Training (PBT) [1].
● Off-policy RL mixed with the Cross Entropy Method (CEM-RL) [2], where some of the neural network weights

are shared across the population.
● Diversity via Determinants (DvD) [3], where the loss includes a term that involves the neural network weights

of all agents in the population.

using:

● vectorized update steps implemented in JAX,
● simple tools based on the built-in multiprocessing python library for efficient data collection.

Specifically, we compare the total reward achieved as a function of the total walltime elapsed since the start of
the experiment (which includes the overhead due to data collection and environment interactions) when:

● training a population of agents using the vectorized approach with JAX,
● training a single agent with PyTorch.

1: Jaderberg et al. (2017) - Population-based training of neural networks. arXiv:1711.09846.
2: Pourchot, A. and Sigaud, O (2019) - CEM-RL: Combining evolutionary and gradient-based methods for policy search. ICLR 2019.
3: Parker-Holder et al. (2020) - Effective diversity in population based reinforcement learning. NeurIPS 2020.

9

Case Study: Hyperparameter Tuning of SAC and TD3 with PBT

Performance (in terms of mean episode returns) achieved as a function of total time elapsed since the beginning of the training run
for various implementations and Gym locomotion environments. All experiments are run on a single machine with 4 T4
accelerators and 40 CPU cores.

Thank you!

© Copyright 2022 InstaDeep.com. All Rights Reserved.

Code: https://github.com/instadeepai/fastpbrl

Paper: https://arxiv.org/abs/2206.08888

Contact: a.flajolet@instadeep.com and t.pierrot@instadeep.com

Fast Population-Based
Reinforcement Learning on a
Single Machine

https://github.com/instadeepai/fastpbrl
https://arxiv.org/abs/2206.08888
mailto:a.flajolet@instadeep.com
mailto:t.pierrot@instadeep.com

