Fast Population-Based
Reinforcement Learning on a
Single Machine

Arthur Flajolet, Claire Bizon Monroc, Karim Beguir, Thomas Pierrot

Presenter: Guillaume Richard

ICML 2022 >InstaDeep™

Special thanks to Thomas Hirtz for streamlining the implementation

Population-based Reinforcement Learning

Recent work has shown that training multiple RL agents concurrently can be beneficial:

e for hyperparameter tuning [1, 2, 3],

e to generate diverse behaviors for efficient exploration [4, 5] or fast adaptation in damage-recovery applications [6].
Even simply training the same agent many times in independent runs is crucial to be able to draw conclusions [7].

However, training a population of agents:

e is much slower than training a single one if the agents are trained sequentially on a single hardware accelerator,
e requires a lot of resources if a full hardware accelerator is dedicated to each agent.

Observation: in many practical cases, the neural networks used to parametrize the agents are small enough that training a single
agent does not fully leverage the vectorization capabilities of modern hardware accelerators.

Idea: vectorize “training-related” computations over the population similarly to what is done for the batch size.

1: Jaderberg et al. (2017) - Population-based training of neural networks. arXiv:1711.09846.
2: Vinyals et al. (2019) - Grandmaster level in starcraft Il using multi-agent reinforcement learning. Nature, 575 (7782):350—354.
3: Jaderberg et al. (2019) - Human-level performance in 3d multiplayer games with population-based reinforcement learning. Science, 364(6443):859-865.
4: Pierrot et al. (2022) - Diversity policy gradient for sample efficient quality-diversity optimization. arXiv:2006.08505.
5: Pourchot, A. and Sigaud, O (2019) - CEM-RL: Combining evolutionary and gradient-based methods for policy search. ICLR 2019.
6: Eysenbach et al. (2019) - Diversity is all you need: Learning skills without a reward function. ICLR 2019.
7: Agarwal et al. (2021) - Deep reinforcement learning at the edge of the statistical precipice. NeurlPS 2021.
i‘, InstaDeep™

Population-based RL Training on a Single GPU

We first study a simplistic setting:

e asingle hardware accelerator is available,
e the agents are trained independently from one another,
e training data is available without delay.

We compare multiple implementations of a population-wide update step based on the runtime per step:

e sequential,
e parallel,
e vectorized,

for three standard off-policy RL algorithms:

e Twin Delayed Deep Deterministic Policy Gradient (TD3) with fully-connected neural networks on a MuJoCo
locomotion environment,

e Soft Actor Critic (SAC) with fully-connected neural networks on a MuJoCo locomotion environment,

e Deep Q-Learning (DQN) with convolutional neural networks on an Atari 2600 environment,

using two automatic differentiation frameworks:

e PyTorch,
e JAX with Just-In-Time compilation.

L InstaDeep™

Implementations of a Population-wide Update Step

Sequential implementation: Iterate over all agents and carry out one update step each time.

all agents = [MyAgent() for _ in range(population size)]
training batch iterator = MyDataset()

while True:
for agent in all agents:
training batch = next(training batch iterator)
agent.update step(training batch)

Advantages Disadvantages
e ftrivial to implement e inefficient if training a single agent does not fully
e trivial to extend to more complex settings where utilize the accelerator

some losses / parameters are shared across agents
e |ow memory usage

i;‘ InstaDeep™

Implementations of a Population-wide Update Step

Parallel implementation: Spawn one process per agent and share the accelerator across processes.

from multiprocessing import Process

def

all
for _

train one agent():

agent = MyAgent()

training batch iterator = MyDataset()

while True:
training batch = next(training batch iterator)
agent.update step(training batch)

processes = []

in range(population size):

process = Process(target=train_one agent)
process.start()

all processes.append(process)

Advantages

trivial to implement but training data will need to
flow between processes

(potentially) more efficient use of the GPU
parallelization capabilities than the sequential
approach

Disadvantages

memory fragmentation
still unable to fully leverage the GPU parallelization
capabilities
requires efficient inter-process communication
tools in more complex settings where some losses
/ parameters are shared across agents

i;' InstaDeep™

Implementations of a Population-wide Update Step

Vectorized implementation: Concatenate neural network weights as well as training data across the population
and write vectorized versions of the neural networks / losses in PyTorch (or use the vmap primitive in JAX).

import torch

class VectorizedLinearLayer(torch.nn.Module):
"""Vectorized version of torch.nn.Linear."""

def init (self, population_size: int, in_features: int, out features: int):
super(). init ()

self. population size = population size
self. weight = torch.nn.Parameter(torch.empty(population size, in_features, out features), requires grad=True)
self. bias = torch.nn.Parameter(torch.empty(population_size, 1, out features), requires grad=True)

Initialization of the weights

def forward(self, x: torch.Tensor) -> torch.Tensor:
assert x.shape[0] == self. population size
return x.matmul(self. weight) + self. bias

Advantages Disadvantages

e can fully leverage GPU parallelization capabilities

e casy to extend to more complex settings where
some losses / parameters are shared across
agents

e efficient memory utilization compared to the
parallel implementation

e easy to implement with automated vectorization
frameworks (such as JAX)

e higher memory utilization compared to the
sequential approach

e sometimes require to vectorize “by hand” to get the
best results

tlnstaDeep”

Implementations of a Population-wide Update Step

Speedup factor of the population-wide update step w.r.t. the sequential implementation in PyTorch

CPU K80 T4 V100 Al100
s 12 3 175
16 0
8 T s 5 . 150
g s g g g €
o 125
gas" & = e R K e &
Yoo a / & a Q 100
- =] 315 3 3
"N D12 K S B a0 T 5
T @ @ @ @ @ Een
E v v v 10 @ @
- Q 4 Q Q Q 5o
o 3 n 10 (7] (7] [TP7Y wn
g z s s 2 -
o8 0 ° o
25 s0 75 100 125 150 175 200 3 10 s0 60 ¢ 10 20 6 70 40
Population size Population size Population size
1.30 6 14
£, . 3 “ %0
8 g - . i .
@l g2] S 2 2
]] o O 20 PR
£g &L &4 & & &
E250 5 g’ 5 5
"V D B3 B g 20 B 40
105 k1] a6 a k1]
e g g g g
8 g v Lo [P [(2P [P
E 05 5
0.90 ! o o
25 50 75 100 125 150 175 200 ¢ 5 1o 15 2 25 30 35 40 o 10 20 30 a0 50 60 0 10 20 30 40 s0 6 70 8
Population size Population size Population size Population size
10 k 175 45 14
20
o _ 150 40 12
Iy os - . i i e
Tawl L S S 8]
PR — [T o TR g 15
Sg8 & e e '
za q“ G100 41” a8 a
-0 5 =1 =] 3 -]
° O 015 o 25 ° o 10
Z2E vos) @ @ 6 @
ERS 2 & 20 & 4
azan w050) w o [T 1
02 N 15 — L, —
25 5 f,,—gﬂ
= e e S A H 10 o
2 a I3 s 10 25 50 75 100 125 150 175 200 6 5 1 15 2 25 30 35 40 3 10 20 0 40 s0 60 6 10 20 30 40 so 6 70 8
Population size Population size Population size Population size Population size
meees Torch (Vectorized) === |ax (Vectorized) Torch (Sequential) ===]Jax (Sequential) === Torch (Parallel) === Jax (Parallel)

Vectorized implementations can be up to two orders of magnitude faster than sequential ones for population sizes up to 80.
Parallel implementations can be much faster than sequential ones but memory fragmentation severely limits the population size.
Compiling the static graph of computations can readily yield significant speedups (up to 14x in our experiments).
Vectorizing computations does not help on CPUs.

i) InstaDeep™

Case Studies

We revisit three population-based RL studies from previous works:

e Hyperparameter tuning with Population-Based Training (PBT) [1].

e Off-policy RL mixed with the Cross Entropy Method (CEM-RL) [2], where some of the neural network weights
are shared across the population.

e Diversity via Determinants (DvD) [3], where the loss includes a term that involves the neural network weights
of all agents in the population.

using:

e vectorized update steps implemented in JAX,
e simple tools based on the built-in multiprocessing python library for efficient data collection.

Specifically, we compare the total reward achieved as a function of the total walltime elapsed since the start of
the experiment (which includes the overhead due to data collection and environment interactions) when:

e training a population of agents using the vectorized approach with JAX,
e training a single agent with PyTorch.

1: Jaderberg et al. (2017) - Population-based training of neural networks. arXiv:1711.09846.
2: Pourchot, A. and Sigaud, O (2019) - CEM-RL: Combining evolutionary and gradient-based methods for policy search. ICLR 2019.
3: Parker-Holder et al. (2020) - Effective diversity in population based reinforcement learning. NeurlPS 2020.

L InstaDeep™

Case Study: Hyperparameter Tuning of SAC and TD3 with PBT

10000

8000

Episode return (TD3)

Episode return (SAC)

14000 4

12000 1

17500 4

15000

12500 4

10000 4

7500 4

5000 4

2500 4

HalfCheetah-v2 Swimmer-v3 Walker2d-v2 Humanoid-v2 Hopper-v2
7000
4000 \
350
6000 l_/\/“_/\ . /\/ . A e~
300 \/ /
5000
3000 /‘\/_/\/\x/\/
— 5000 f,//\r
4000 2500
200 4000
2000
150 3000 3000
1500
1004 = 2000 2000
//) 1000
50 1000
7 1000 500 {
|
T T T T 0 T T T T o T T T 1] 0 T T T T 04 T T T
0 5000 10000 15000 0 2000 4000 6000 0 5000 10000 15000 0 5000 10000 15000 5000 10000 15000
Runtime (in seconds) Runtime (in seconds) Runtime (in seconds) Runtime (in seconds) Runtime (in seconds)
7000 4000
6000 Ny 4
000 3500
5000 -
3000 =
5000 T e P
4000 2500
4000
6ok 2000
3000
1500
2000
2000 1000
1000 3000 -~
0 0 0
0 5000 10000 15000 0 2000 4000 6000 0 5000 10000 15000 0 5000 10000 15000 5000 10000 15000

Runtime (in seconds)

Runtime (in seconds)

PBT (80 agents)
Our implementation

Single agent (Max over 80 seeds)
Torch Implementation

Runtime (in seconds)

Runtime (in seconds)

Single agent (Avg over 80 seeds)

Torch Implementation

Runtime (in seconds)

Performance (in terms of mean episode returns) achieved as a function of total time elapsed since the beginning of the training run
for various implementations and Gym locomotion environments. All experiments are run on a single machine with 4 T4
accelerators and 40 CPU cores.

i)flnstaDeep"“

Fast Population-Based
Reinforcement Learning on a
Single Machine

Thank you!

>InstaDeep™

eee

https://github.com/instadeepai/fastpbrl
https://arxiv.org/abs/2206.08888
mailto:a.flajolet@instadeep.com
mailto:t.pierrot@instadeep.com

