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Towards Understanding Sharpness-Aware Minimization

1. m-sharpness matters in m-SAM
m-SAM: min Z max Z £i(w+90)

6.0%
5.8%
5.5%
v 5.2%
[e]
=
g 3:0%
4
v 4.8%
4.5%
4.2%

4.0%

Maksym Andriushchenko (EPFL), Nicolas Flammarion (EPFL)

|w] S|, <
weR s [ ”2—/71.

€S

train,

ResNet-18 on CIFAR-10

. //

L L}
o
e, ° Weight perturbations
\. / None (ERM)
N —e-= Random
n-SAM

—-o— 128-SAM

1072 1072 10° 101 10?2

Perturbation radius used for training

! The PAC-Bayes generalization
bound doesn’t explain this

2. The implicit bias of 1-SAM vs. n- 3. m-SAM has some interesting
SAM and ERM can be well under- effects: running ERM —» SAM
stood for diagonal linear networks  gradually improves generalization

Diagonal linear network ResNet-18 on CIFAR-10
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. Simple models can be ! The same also happens for
surprisingly predictive diagonal linear networks



Background: Sharpness-Aware Minimization

* Sharpness-Aware Minimization (SAM) [Foret et al., ICLR’21]:
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Visual description of the SAM algorithm

* Foret etal., ICLR’21 motivate SAM by

minimization of sharpness* Wikt
t
min max — E li(w+ 6) m : yy SAM
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: . . .. —NVL(w
* SAM consistently improves generalization Wadv NVL(Waqy)

in the state-of-the-art settings (!) and has
only 2x computational overhead

Source: Sharpness-Aware Minimization for Efficiently Improving Generalization, ICLR’21 1



Which components of SAM are crucial?
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Worst-case weight perturbations, with a small m (aka m-sharpness) are key!
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Understanding m-SAM on simple models

We will use diagonal linear networks f(x) = (x,u (© v) for sparse regression that
shows different generalization depending on the initialization scale and SGD noise

1-SAM for f(x) generalizes significantly better than ERM and n-SAM!
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We are also able to capture it theoretically: 1-SAM promotes sparsity in
terms of the linear predictor u () v (and much more than n-SAM)



m-SAM for 2-layer ReLU networks: sparsity bias

For non-linear networks, we can observe some interesting properties empirically
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Using SAM for 2-layer ReLU networks on simple 1D regression also
leads to a sparsifying effect but in terms of the ReLU kinks



m-SAM for deep networks: interesting properties

A curious property of SAM: if we finetune an ERM model with SAM
on the same dataset, we get a significant generalization improvement
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And it’s not so mysterious: the same is observed
also for diagonal linear networks (see the paper)!



Additional results in the paper

* We provide a convergence proof for SAM
with constant inner step sizes

* For deep networks, we show that SAM
with both constant and gradient-
normalized inner step sizes has a similar
behavior (zero training error and same
generalization)

* Finally, convergence of SAM to global
minima observed in practice can also have
a negative impact — e.g., SAM overfits
similarly to ERM when trained on noisy
labelled datasets

Theorem 2. Assume (Al) and (A2) for the iterates (4).
Then for any number of iterations T > 0, batch size b,
and step sizes ; = f%ﬁ and p; = T%% we have:
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In addition, under (A3), with step sizes y;
min{%, %} and py = /v /B:
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Thanks for your attention!

Happy to answer your questions (in-person or virtually) :)

Paper: https://arxiv.org/abs/2206.06232
Code: https://github.com/tml-epfl/understanding-sam
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