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• Training Transformers is difficult and often unstable.
• Training Transformer requires adaptive methods (e.g., ADAM), unlike ResNets, which 

can be trained by SGD.
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Background

• What complicates Transformers training?

BERT ResNet

[Zhang et al.,19]



What Complicates Transformer Training?

• [Zhang et al.,19]: Heavy-tailed gradient noise from both architecture (Attention) and 
dataset (text).

 Clipping and adaptive LR improves convergence by avoiding huge updates. 
 

• However, heavy-tailed noise may not be the entire answer.
• [You et al., 20, Chen et al.,21]: ADAM consistently outperforms SGD even in large-

batch or full-batch setting in NLP, while the gap is much smaller in vision. 
 

• Question: What are other possible issues? Can non-adaptive methods like SGD 
enjoy fast and robust convergence?

⟹
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More likely to get extremely large gradient



Outline

Our Hypothesis
• k-homogeneity in Architecture

Our Recipe
1. Design Scale Invariant Architecture 

2. SGD + WD

3. A Novel Clipping Rule 

Experiments
• Train Scale Invariant BERT with SGD
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Our Hypothesis: k-homogeneity in Architecture

• Definition:  is k-homogeneous    (x=param, f(x)= output) 

• Lemma:    is k-homo   is ( )-homo. 

• Descent Lemma: Learning Rate(LR) GD decreases loss  

• Observation 1: model  has unbounded smoothness, so does loss  
                   success of LR (for GD) is sensitive to the initialization

f(x) ⟺ f(cx) = ckf(x), ∀c > 0

f ⟺ ∇lf k − l

< 2/smoothness ⟹ L

k ≥ 3 ⟹ f(x) L
⟹
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Our Hypothesis: k-homogeneity in Architecture

• Observation 1: model  has unbounded smoothness, so does loss   
 
                                       success of LR  (for GD) is sensitive to the initialization  
 
 

• Ex 1:  , convex with bounded smoothness, minimizer .

• There is a sufficiently small LR, that GD on  converges for all init

• Let ,    has unbounded smoothness 

• GD on  diverges if LR  ,  are the same and .

k ≥ 3 ⟹ f(x) L

⟹ η

L̃ : ℝ → ℝ X* > 0
L̃

X = x1…x2k, k ≥ 2 L(x1, , …, x2k) = L̃(X) ⟹ L

L ≥
2(X(0)) 1

k −1

|∇L̃(X(0)) |
xi(0) X(0) ≥ X*
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1d logistic regression with non-separable data



Our Hypothesis: k-homogeneity in Architecture

• Observation 2: Even fine-tuned LR cannot learn from unbalanced initialization efficiently. 
 

• Ex 2: low-rank matrix factorization, ,  and .

• For simplicity, assume , and 

L(A, B) =
1
2

∥AB⊤ − Y∥2
F A, B ∈ ℝd×r d > r

r = 1,d = 2 A(0) = (α
0), B(0) = (α−1

0 ), Y = (0.5 0.5
0.5 0.5)
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10k stepsoptimal loss when 
training B only

Diverge



Our Hypothesis: k-homogeneity in Architecture

• Ex 2:  , L(A, B) =
1
2

∥AB⊤ − Y∥2
F A(0) = (α

0), B(0) = (α−1

0 ), Y = (0.5 0.5
0.5 0.5)
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ADAM solves the unbalanced weight issue, but costs 3x memory storing parameters.

GD ADAM

α = 100



Can non-adaptive methods like SGD 
enjoy fast and robust convergence?
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Outline

Our Hypothesis
• k-homogeneity in Architecture

Our Recipe
1. Design Scale Invariant Architecture 

2. SGD + WD (no momentum, no warm-up)

3. A Novel Clipping Rule: Relative Global Clipping 

Experiments
• Train Scale Invariant BERT with SGD
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Outline

Our Hypothesis
• k-homogeneity in Architecture

Our Recipe
1. Design Scale Invariant Architecture  Increase training stability

2. SGD + WD (no momentum, no warm-up)

3. A Novel Clipping Rule: Relative Global Clipping 

Experiments
• Train Scale Invariant BERT with SGD

⟹
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Ingredient 1: Scale Invariant Architecture

• Scale Invariant  0-homo  

• Thus 0-homo model output  0-homo loss function  (-2)-homo Hessian 
• Euler’s Theorem:     is k-homo 

•  is scale invariant (0-homo) 
• How scale invariance removes training instability:
• Too large LR  Loss , Norm  Hessian   Optimization resumes!

⟺ ⟺ f(x) = f(cx), ∀c > 0
f ⟹ L⟹ ∇2L

L ⟹ ⟨x, ∇L(x)⟩ = kL(x)
L ⟹ ⟨x, ∇L(x)⟩ = 0 ⟹ ∥x − η∇L(x)∥ ≥ ∥x∥

⟹ ↑ ↑⟹ ↓ ⟹
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GD ADAM GD + Scale Invariance

L(A, B) =
1
2

AB⊤

∥AB⊤∥F
− Y

2

F

α = 100



Ingredient 1: Scale Invariant Architecture

• VGG and ResNets are (nearly) scale invariant, with BatchNorm or other normalization.
• But Transformer is not, even with layernorm. (Attention!!)  

• We designed a scale invariant variant of BERT — SIBERT. 
• Key features (to make encoder scale invariant):

1. Scale Invariant Attention Score: 

2. Architecture Change(PostNorm PreNorm)
3. Activation Change(GeLU  ReLU)

p = sofmax(q) → pi = max(qi,0)/∑i
max(qi,0)

→
→
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Existing Analysis for SGD on Scale Invariant Loss

• Scale Invariance 

• Let , . 

• Goal: Find parameter  direction  with small gradient. 

• Thm[Arora, L & Lyu, 19]: For GD w. any fixed LR and init,   

                                   For SGD w. any fixed LR and init,  

•  But  hides poly dependence on scale initialization…

• Too large norm  small ‘effective LR’ ,   Optimization stucks!

⟺ L(cx) ≡ L(x), ∀c > 0

x =
x

∥x∥
ρ = sup

x
λmax(∇2L(x))

x x

min
0≤t≤T

∥∇L(x(t))∥2 ≤ O(T−1)
min

0≤t≤T
𝔼∥∇L(x(t))∥2 ≤ Õ(T−0.5)

O( ⋅ )

⟹
η

|x |2 ⟹
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Outline

Our Hypothesis
• k-homogeneity in Architecture

Our Recipe
1. Design Scale Invariant Architecture   Increase Training stability 

2. SGD + WD (no momentum, no warm-up)   Increase training efficiency under 

rescaling of loss and initialization

3. A Novel Clipping Rule: Relative Global Clipping 

Experiments
• Train Scale Invariant BERT with SGD

⟹
⟹
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Ingredient 2: SGD + WD

• Use Weight Decay to shrink weight per step and accelerate when stucking  
 
                                       
 

• Or increase LR multiplicatively per step, like  . 
 

• Two methods are mathematically equivalent with . [L&Arora,21]

x(t + 1) = (1 − ηλ)x(t) − η∇L(x(t))

ηt = η ⋅ 1.001t

ηt = η ⋅ (1 − ηλ)−2t
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Weight Decay(WD)



Convergence Results for GD + WD on Scale Invariant Loss

• GD+WD:                    

• Thm(GD+WD): For , , we have

• Proof sketch:
1. .    (balance of 2 forces: GD  norm , WD  norm )

2. Descent Lemma + standard analysis:

x(t + 1) = (1 − ηλ)x(t) − η∇L(x(t))

ηλ ≤ 0.5 T0 ≲
1

2ηλ
ln

∥x(0)∥2
2

η
min

t=0,…,T0

∥∇L(x(t))∥2
2 ≤ O(λη) .

∥x(t)∥2 → Θ( ρη) → ↑ → ↓

L(x(t)) − L(x(t + 1)) ≥ η (1 −
2ρη

∥x(t)∥2
2 ) ∥∇L(x(t))∥2

2.
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min
t

∥∇L(x(t))∥2 = O(T−1)



Convergence Results for SGD +WD

• SGD+WD:                    

• Assumption: 

• Thm(SGD+WD):  For , where , w.p. ,

where , and 

x(t + 1) = (1 − ηλ)x(t) − η∇Lγt
(x(t))

σ2 ≤ 𝔼γ∥∇Lγ(x)∥2 ≤ σ2 .

λη ≲
σ4

M4
(ln

T
δ2

)−1 M = supx,γ ∥∇Lγ(x)∥ 1 − 5δ

∀T1 ≤ t ≤ T − 1,
σ2

2
≤

2λ
η

∥x(t)∥4
2 ≤ 4σ2

T1 =
1
ηλ

O (ln|ηλ| + ln η/∥x(0)∥2
2 )

1
T − T1

T−1

∑
t=T1

∥∇L(x(t))∥2
2 ≤ Õ ( 1

(T − T1) ηλ
+ ηλ)
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 — data/batch at step tγt

min
t

∥∇L(x(t))∥2 = O(T−0.5)



Outline

Our Hypothesis
• k-homogeneity in Architecture

Our Recipe
1. Design Scale Invariant Architecture   Increase Training stability 

2. SGD + WD (no momentum, no warm-up)   Increase training efficiency under 

rescaling of loss and initialization

3. Relative Global Clipping  Reduce spikes in training loss and param norm

Experiments
• Train Scale Invariant BERT with SGD

⟹
⟹

⟹
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Ingredient 3: Global Relative Clipping 

• Analysis of SGD+WD only works for sufficiently small .
• Gradient norm is heavy-tailed  norm and loss oscillates.  
• Goal: clip only when necessary so that stochastic gradient is almost unbiased.

 Clipping should not be triggered when  for all 

  , and 

• Global Relative Clipping: Clip grad norm to .  (C>1, Default =2)

• Thm(Informal): Global Relative Clipping  better norm convergence. 

ηλ
⟹

⟹ ∥∇Lγ(x)∥ ≡ σ x, γ

⟹ ∥x(t)∥2
2 →

2η
λ(2 − ηλ)

σ ∥∇Lγ(x(t))∥2 =
λ(2 − ηλ)

η
∥x(t)∥2.

2Cλ
η

∥x(t)∥2

⟹
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Outline

Our Hypothesis
• k-homogeneity in Architecture

Our Recipe
1. Design Scale Invariant Architecture 

2. SGD + WD

3. A Novel Clipping Rule 

Experiments
• Train Scale Invariant BERT with SGD

21



Performance of SIBERT

• Dataset: Wiki+Books. Model: Base size BERT.
• We use Global Relative Clipping (C=2) and WD for SGD on SIBERT .
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Robustness of SIBERT to Scalings

SGD+WD performs 
consistently for different 
initialization scales. 

Without WD, the 
performance of SGD can 
be significantly affected by 
scaling of initialization.
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Clipping removes spikes in 
train curve and yields better 
convergence.  
(occur for only ~1% steps)



Conclusion

• We hypothesis the training instability of Transformers is related to homogeneity 
structure in the network.  
 

• Our recipe for fast and robust training via non-adaptive methods
1. Design scale invariant architecture (BERT SIBERT )
2. SGD + WD
3. Relative Global Clipping

→
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Thank You !


