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Background

* Training Transformers is difficult and often unstable.

* Training Transformer requires adaptive methods (e.g., ADAM), unlike ResNets, which
can be trained by SGD.
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[Zhang et al.,19]

 What complicates Transformers training?



What Complicates Transformer Training?

More likely to get extremely large gradient

<

* [Zhang et al.,19]. Heavy-tailed gradient noise from both architecture (Attention) and
dataset (text).

—> Clipping and adaptive LR improves convergence by avoiding huge updates.

* However, heavy-tailed noise may not be the entire answer.

* [You et al., 20, Chen et al.,21]: ADAM consistently outperforms SGD even in large-
batch or full-batch setting in NLP, while the gap is much smaller in vision.

* Question: What are other possible issues? Can non-adaptive methods like SGD
enjoy fast and robust convergence?
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Our Hypothesis: k-homogeneity in Architecture

Definition: f(x) is k-homogeneous <= f(cx) = c*f(x),Vc > 0 (x=param, f(x)= output)
Lemma: fis k-homo <= V'fis (k — I)-homo.
Descent Lemma: Learning Rate(LR) < 2/smoothness == GD decreases loss L

Observation 1: £k > 3 = model f(x) has unbounded smoothness, so does loss L
—> success of LR (for GD) is sensitive to the initialization



Our Hypothesis: k-homogeneity in Architecture

* Observation 1: k > 3 = model f(x) has unbounded smoothness, so does loss L

—> success of LR # (for GD) is sensitive to the initialization

1d logistic regression with non-separable data

~J/

e Ex1: L : R —- R, convex with bounded smoothness, minimizer X* > (.

* There is a sufficiently small LR, that GD on L converges for all init

o Let X =x{.. X%, k> 2, L(X;,, ..., %) = L(X) = L has unbounded smoothness

- 2(X(0))*~!
» GD on L diverges if LR > —————— , x;(0) are the same and X(0) > X*.
| VL(X(0)) |



Our Hypothesis: k-homogeneity in Architecture

* Observation 2: Even fine-tuned LR cannot learn from unbalanced initialization efficiently.

|
« Ex 2: low-rank matrix factorization, L(A, B) = EHABT —Y H%, A,Be R™ andd > r.
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Our Hypothesis: k-homogeneity in Architecture
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ADAM solves the unbalanced weight issue, but costs 3x memory storing parameters.



Can non-adaptive methods like SGD
enjoy fast and robust convergence”
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Our Recipe
1. Design Scale Invariant Architecture
2. SGD + WD (no momentum, no warm-up)
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Outline

Our Hypothesis
* k-homogeneity in Architecture
Our Recipe
1. Design Scale Invariant Architecture =— Increase training stability
2. SGD + WD (no momentum, no warm-up)
3. A Novel Clipping Rule: Relative Global Clipping
Experiments
* Train Scale Invariant BERT with SGD
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Ingredient 1: Scale Invariant Architecture

Scale Invariant < 0-homo < f(x) = f(cx),Vc > 0

Thus 0-homo model output f ==0-homo loss function L—> (-2)-homo Hessian VL
Euler’s Theorem: Lisk-homo = (x, VL(x)) = kL(x)

* L is scale invariant (0-homo) — (x,VL(x)) =0 = |[x —nVLX)|| > ||x]|
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How scale invariance removes training instability:
Too large LR = Loss |, Norm |=— Hessian

—> Optimization resumes!

GD + Scale Invariance
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Ingredient 1: Scale Invariant Architecture

VGG and ResNets are (nearly) scale invariant, with BatchNorm or other normalization.
But Transformer is not, even with layernorm. (Attention!!)

We designed a scale invariant variant of BERT — SIBERT.
Key features (to make encoder scale invariant):

1. Scale Invariant Attention Score: p = sofmax(q) — p; = max(g;,0)/ Z.max(qi,())
l

2. Architecture Change(PostNorm— PreNorm)
3. Activation Change(GeLU— RelLU)
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Existing Analysis for SGD on Scale Invariant Loss

Scale Invariance <= L(cx) = L(x),Vc > 0

Lot X = HX_H p=sup 2 (V2L(X)).
X

Goal: Find parameteHe direction X with small gradient.

Thm[Arora, L & Lyu, 19]: For GD w. any fixed LR and init, min HVL()_c(t))H2 < O(T_l)
0<t<T
For SGD w. any fixed LR and init, min E||VL&®?))||? < O(T7°>)
0<t<T

But O( - ) hides poly dependence on scale initialization...

d 5 —> Optimization stucks!
| x| .

Too large norm =— small ‘effective LR’
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Our Hypothesis
* k-homogeneity in Architecture

Our Recipe
1. Design Scale Invariant Architecture — Increase Training stability

2. SGD + WD (no momentum, no warm-up) — Increase training efficiency under
rescaling of loss and initialization

3. A Novel Clipping Rule: Relative Global Clipping

Experiments
e Train Scale Invariant BERT with SGD
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Ingredient 2: SGD + WD

* Use Weight Decay to shrink weight per step and accelerate when stucking

x(t+ 1) = —nd)x(t) —nVL(x(®))
N

Weight Decay(WD)
* Orincrease LR multiplicatively per step, like 7, = 17 - 1.001" .

* Two methods are mathematically equivalent with 77, = 7 - (1 — )™, [L&Arora,21]

16



Convergence Results for GD + WD on Scale Invariant Loss

* GD+WD: x(t+ 1) = (1 — np)x(t) — n VL(x(1))

1
. Thm(GD+WD): Fornd < 0.5, 7;) S 5
J

In

1x(0)]|3
"

, We have

min “VL()_C(t))“% < 0(/1;7) | mtin HVL()_C(I))HQ — O(T—l)

t=0,...,T,
e Proof sketch:

1. || X(D)]|, = OGK/pn). (balance of 2 forces: GD— norm |, WD — norm |)

2. Descent Lemma + standard analysis:

L(x(1)) = L(x(z + 1)) 2 7 (1 -

2pn

VL 2
|\x(t)\|§) |V L(x(2))]]5
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Convergence Results for SGD +WD

e SGD+WD: x(t+ 1) = —ni)x(r) — ﬂVLyt(x(t)) y, — data/batch at step t

» Assumption: 62 < [ ||VL, X)||* < 5°.

o4
. Thm(SGD+WD): For An S —(In —)_ where M = sup,  [[VL,(X)]||, w.p. I =59,

M4
o2 24 4 5
VI, <t<T-1, —? < —l|lx®], < 4o
n
|
where T} = 70 (111\77/1\ + |ln n/Hx(())H§| ) and min ||V L(x(2))||* = O(T~">)
;/] [

2 |VLE@)II3 < O

h = ((T T\ )\/ 14 +\F)
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Our Hypothesis
* k-homogeneity in Architecture
Our Recipe
1. Design Scale Invariant Architecture — Increase Training stability

2. SGD + WD (no momentum, no warm-up) — Increase training efficiency under
rescaling of loss and initialization

3. Relative Global Clipping = Reduce spikes in training loss and param norm
Experiments
* Train Scale Invariant BERT with SGD
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Ingredient 3: Global Relative Clipping

* Analysis of SGD+WD only works for sufficiently small #A4.
* Gradient norm is heavy-tailed =— norm and loss oscillates.

* Goal: clip only when necessary so that stochastic gradient is almost unbiased.
— Clipping should not be triggered when ||V L,(X)|| = o for all x, y

o A2 —nA)
PR and || VL,(x(0)ll, = \ —Ix(®)l,.

— Nz —
[x(@)]15 \ ;

H
« Thm(Informal): Global Relative Clipping =— better norm convergence.

2CA
Global Relative Clipping: Clip grad norm to\ —|[x(®)|],. (C>1, Default =2)
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* k-homogeneity in Architecture
Our Recipe
1. Design Scale Invariant Architecture
2. SGD + WD
3. A Novel Clipping Rule
Experiments
* Train Scale Invariant BERT with SGD
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Performance of SIBERT

* Dataset: Wiki+Books. Model: Base size BERT.
* We use Global Relative Clipping (C=2) and WD for SGD on SIBERT .

Downstream Task

B BERT
7 SIBERT
O MNLI SQuAD1 SQuAD?2
®) Acc F1 F1
= 1.6 1.5 1.5
= BERT + ADAM 844  90.3 78.8
= Q SIBERT + SGD  82.6 89.3 76.8

A +2xtraining  83.3  90.3 80.0

SGD Adam larger is better
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Robustness of SIBERT to Scalings
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SGD+WD performs
consistently for different
initialization scales.

Clipping removes spikes in
train curve and yields better
convergence.

(occur for only ~1% steps)

Without WD, the
performance of SGD can
be significantly affected by
scaling of initialization.
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Conclusion

* We hypothesis the training instability of Transformers is related to homogeneity
structure in the network.

* Our recipe for fast and robust training via hon-adaptive methods
1. Design scale invariant architecture (BERT —SIBERT )

2. SGD + WD
3. Relative Global Clipping

Thank You!
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