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Transformers for Video Understanding

* Understanding temporal dynamics of video is an essential aspect of learning better video representations.
* Designing video-specific architectures has been a common theme in learning better video representations

* Recently, transformer-based architectural designs have been extensively explored for video tasks

Overview in architectural advances for video action recognition
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*source: [Zhu et al., 2020] A comprehensive study of deep video action recognition, arXiv

[Arnab & Dehghani et al., 2021] A Video Vision Transformer, ICCV 2021



Motivations

w‘@, * However, it is still questionable whether these architectural advances are enough to fully capture the
7 temporal dynamics in a video

* Video datasets often contain action classes can be recognized without any temporal information!

“A single frame is often informative enough to predict the label with good confidence” [sevilla-Lara et al., 2021]

g,

“Riding a bike” class in Kinetics [Key et al., 2017] dataset

A

[Key et al., 2017] The kinetics human action video dataset, 2017
[Sevilla-Lara et al., 2021] Only Time Can Tell: Discovering Temporal Data for Temporal Modeling, WACV 2021



Motivations

&9~ * However, it is still questionable whether these architectural advances are enough to fully capture the
“\ﬁ temporal dynamics in a video

* Temporal classes isciiaraetal, 202110 Temporal information is essential to discriminate the label

“moving something and something away from each other” class in Something-Something-v2 dataset [Goyal et al., 2017]

* Discriminating moving objects away from or closer to each other classes requires temporal understanding

e Static classes iseiataraetal, 20217 Temporal information is redundant to discriminate the label

[Goyal et al., 2017] The "something something” video database for learning and evaluating visual common sense, ECCV 2017
[Sevilla-Lara et al., 2021] Only Time Can Tell: Discovering Temporal Data for Temporal Modeling, WACV 2021



Motivations: Observations

* Video Transformers are still biased to learn spatial dynamics rather than temporal ones
Video Transformers often predict a video action correctly even when input video frames are randomly shuffled
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Motivations: Observations

* Video Transformers are still biased to learn spatial dynamics rather than temporal ones
* Video Transformers also fail to capture the temporal order of video frames as their layers go deeper
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Motivations: Observations

* Video Transformers are still biased to learn spatial dynamics rather than temporal ones
* Video Transformers also fail to capture the temporal order of video frames as their layers go deeper
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How to improve the quality of learned video representations via better temporal modeling? /\ﬁ




TIME: Overview

* Goal: How to lean better temporal dynamics?
1. Debiasing the spurious correlation learned from spatial dynamics
2. Enhancing the correlation toward temporal dynamics
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TIME: Frame-level Self-supervision

* Goal: How to lean better temporal dynamics?
1. Debiasing the spurious correlation learned from spatial dynamics
2. Enhancing the correlation toward temporal dynamics
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TIME: Frame-level Self-supervision

* Goal: How to lean better temporal dynamics?
1. Debiasing the spurious correlation learned from spatial dynamics

2. Enhancing the correlation toward temporal dynamics
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TIME: Frame-level Self-supervision

* Goal: How to lean better temporal dynamics?
1. Debiasing the spurious correlation learned from spatial dynamics
2. Enhancing the correlation toward temporal dynamics
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TIME: Token-level Self-supervision

* Goal: How to lean better temporal dynamics?

1. Debiasing the spurious correlation learned from spatial dynamics

2. Enhancing the correlation toward temporal dynamics 1 2 3
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*source: [Farneback, 2003] Two-Frame Motion Estimation Based on Polynomial Expansion, SCIA 2003



Experimental Results

* Model architecture: TimeSformer (sertasius et al., 2021], Motionformer (patrick et al., 2021 and X-ViT [sulat et al., 2021]
e All models are fine-tuned on the SSv2 dataset [Goyal et al,, 2017] from the ImageNet-1k pretrained weights

* Our method consistently improves all the backbone architectures with a large margin
* Our method could overcome failure modes in the Video Transformers

Model Top-1 Top-5
TimeSformer (Bertasius et al., 2021)  62.1 86.4
TimeSformer + TIME 63.7 87.8
Motionformer (Patrick et al., 2021) 63.8 88.5
Motionformer + TIME 64.7 89.3
X-ViT (Bulat et al., 2021) 60.1 85.2
X-ViT + TIME 63.5 88.1

*source: [Bertasius et al., 2021] Is space-time attention all you need for video understanding, ICML 2021
[Patrick et al., 2021] Keeping Your Eye on the Ball: Trajectory Attention in Video Transformers, NeurlPS 2021
[Bulat et al., 2021] Space-time Mixing Attention for Video Transformer, NeurlPS 2021



Ablation Study: Temporal vs. Static

* Model architecture: TimeSformer (sertasius et al., 2021], Motionformer (patrick et al., 2021 and X-ViT [sulat et al., 2021]
e All models are fine-tuned on the SSv2 dataset [Goyal et al,, 2017] from the ImageNet-1k pretrained weights

 The performances of Shuffled on the Static subset are often close to the Original ones (i.e., poor Gap)
 Static classes would allow video models to predict class labels without understanding temporal information

SSv2 dataset Temporal subset Static subset
Method Original T Shuffled | Gap 1 Original T Shuffled | Gap?1 Original T Shuffled | Gap T
TimeSformer 62.1 41.3 20.8 84.9 57.0 27.9 34.1 84.1 0.0
TimeSformer + TIME 63.7 25.3 38.4 90.2 22.1 68.1 86.9 69.3 17.6

*source: [Bertasius et al., 2021] Is space-time attention all you need for video understanding, ICML 2021
[Patrick et al., 2021] Keeping Your Eye on the Ball: Trajectory Attention in Video Transformers, NeurlPS 2021
[Bulat et al., 2021] Space-time Mixing Attention for Video Transformer, NeurlPS 2021



Ablation Study: Image Domain

* Qur approach can be extended to the image domain for alleviating background bias by replacing
e Learning temporal order of frames with spatial order of patches

* Debiasing spatial dynamics with image backgrounds

* Our method enhances the model generalization and robustness to background shifts

e Backgrounds Challenge [xiao et al., 2021] on ImageNet-9 dataset

Dataset Baseline | Baseline + £5"  Baseline + £9°*®  Baseline + £LT™E
Original 1 77.3 82.0 (+4.7) 79.0 (+1.7) 83.3 (+6.0)
Only-FG + 50.3 542 (+3.9) 527 (+2.4) 58.9 (+8.6)
Mixed-Same T 68.6 72.5(43.9) 69.7 (+1.1) 74.0 (+5.4)
Mixed-Rand + 437 48.4 (+4.7) 45.1 (+1.4) 51.0 (+7.3)
Mixed-Next 7  39.9 43.6 (+3.7) 40.6 (+0.7) 46.4 (+6.5)
BG-Gap | 248 24.1 (—0.7) 24.6 (—0.2) 23.0 (—1.8)

Only-FG Mixed-Same

Examples of background shifts
[Xiao et al., 2021]

*source: [Xiao et al., 2021] Noise or signal: The role of image backgrounds in object recognition, ICLR 2021



Summary

* Our work highlights the importance of debiasing the spurious correlation of visual transformer models with
respect to the temporal or spatial dynamics

 We believe our work could inspire researchers to rethink the under-explored, yet important problem and
provide a new research direction for improving video understanding

Thank you for your attention ©




