Privacy for Free: How does Dataset
Condensation Help Privacy?

Tian Dong!”, Bo Zhao?, Lingjuan Lyu?®

1 Shanghai Jiao Tong University
2The University of Edinburgh
3Sony Al




Privacy Is important

Personal data Is generated everywhere Regulations
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Typical ML pipeline
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Potential privacy issues
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Privacy attacks

Membership Inference Attack (MIA) (Shokri et al., S&P’17, etc.)
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Main 1dea and threat model

Idea: Generate surrogate dataset S to protect privacy of raw dataset T

Adversary’s Goal: @
« Infer membership of raw data, |Defense| i
I.e., whether x € T, ==
Adversary’s knowledge: Generate |[F—~"]| Transmit Train .
- Data distribution of T » @, » : /\ » .
« No access to raw dataset [ ) [ ;N '
* White-box access to N e -
e generated (privacy-preserving) dataset S Raw generated Cloud Model
« Models trained on generated data dataset 7 dataset S server

Adversary’s Capacity:

* Produce shadow generated data with same
distribution as T

« Train shadow models on shadow generated
data



Existing solutions and limitations

Differential privacy (DP)-based generator

* (€,6)-DP: for randomized algorithm M, (D, D") neighbor datasets

P(M(D)€eS) <e P(M(D')eS)+6
—
. DP-GAN (Xie et al., 2018) CIOEIOEINIOF T

AE: SaERE : &

 GS-WGAN (Chen et al., 2020)
 DP-MERF (Harder et al., 2021)
* DP-Sinkhorn (Cao et al., 2021)

Images generated via DP-Sinkhorn for gender
classificaiton (Cao et al., 2021)



Existing solutions and limitations

Limitations:
* Requiring sufficient computing power — generators are hard to
train on edge devices (e.g., smart camera).

 Introduced noises (e.g., by Gaussian mechanism) lower the utility

of generated data — more generated data are needed for training

— lower model training efficiency (i.e., sample-efficiency).




Existing solutions and limitations

Limitations:

« Requiring sufficient computing power — generators are hard to on

How to generate privacy-preserving data for data-
efficient model training?
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— lower model training efficiency (i.e., data-efficiency).




Apply DC for privacy

Our solution: Apply dataset condensation (DC) to synthesize surrogate data for

privacy-preserving model training.

Privacy Barrier
Not accessible by adversary

T T T TTT T L T T
E CMML&/\ EIE S Train LU 1EH

=L ] @D z € T ?2—Acc ~ 50%
E Original DC E|E Synthetic '2!7' |

i \Elitajfi ) E|E dataset | Analyse mﬁcompar%—» Not similar
""" Pata older™ "N T g T T T

The adversary on cloud can neither recover the raw data through visual comparison
analysis nor infer raw data membership from DC-synthesized data.
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What I1s Dataset Condensation?

<= train test (a)
Objective: distill knowledge from a large training set -

Into a small (high-quality) synthetic set. Large training set v
Comparable

Main approaches: T

* Dataset Distillation (wang etal., 2018) i ’E 'E

« Gradient Matching (zhao etal., 2021) Smallsynthetic set

« Differentiable Siamese Augmentation (DSA) Dataset Condensation aims to
(Zhao & Bilen, 2021b) generate a small set of synthetic

. - - _ Images that can match the
Kernel Inducing Point (KIP) (Nguyen etal., 2021a;b). verformance of a network

 Distribution I\/Iatchlng (D M) (Zhao & Bilen, 2021a) trained on a large image dataset

* Matching Training Trajectories (Cazenavette et al., 2022) (zhao etal., 2021) .

« Contrastive Signals (Lee etal., 2022)
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Motivation

Observation: Data synthesized by Dataset Condensation (DC) are visually different

from original data and enable models to achieve high accuracy.

Synthe5|zed
Female




Main Results

Overview

* Theoretical findings
« Connection between raw and synthetic data
 Analysis on visual privacy and membership privacy

« Empirical validations
 Visual privacy analysis by image similarity comparison.

« Membership privacy analysis against loss-based and likelihood-based attack
LIRA (Carlini et al., 2022).

 Utility and sample-efficiency comparison between DC and data generators
(cGAN and differentially private generators)



Main Results

Theoretical findings:

0.02
Initialization
—— real data
—=-- random

Distance

«  Connect raw data with synthetic data (Proposition 4.3):
*  Barycenters of synthetic dataset S and raw dataset T’ 0w ae we oo
coincide after condensation. Empirical verification of Proposition 4.3.
«  Visual privacy of synthetic data for different initializations e S e
(Proposition 4.4): ' o e

« Real data: initialization data can be leaked
« Random: No membership information can be leaked

*  Membership privacy for models trained on synthetic data
(Proposition 4.10):
The existence of one sample in raw dataset has limited impact

(0 (%)) on models trained on synthetic data (idea of DP).

Empirical verification of Proposition 4.4.
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Main Results

Visual privacy:

Find the top 3 most similar images via comparison (L, norm & LPIPS).

Synthetic

Compression ratio <%
(ratio of images per class):
sl
e =7

F ipe = 0.002 e = 0.01 Pipe = 0.02
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Top 3 Similar Data (LPIPS)

Takeaway: The adversary
cannot recover raw data from
synthetic data by visual
comparison.
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Main Results

Membership privacy (Loss-based MIA, DC with real data initialization)

C

| Ul | X E€Tinie, L () <T}+| Un{ x| X €Ty 1 L () 27

Advantage (%) =2 X (

|Tinit|+|Ti

C _ C
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and raw data.

Takeaway: Data used for DC images
can still be leaked because of high
similarity between synthetic data

C
n
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— 50% ), where 7;,,;; € T is used for initializatior

Method Tipc ~ FashionMNST CIFAR-10 CelebA
Real 0.002 46.67£16.33 72.00 +=24.00 100.00 £ 0.00
(baseline, 0.01 21.00 £ 3.67 92.80 £5.31  84.00 £5.06
non-private)  0.02 17.33 £2.91 82.60 £5.59  77.00 £6.71
0.002  78.17+3.20 49.80 £5.83  37.00 = 12.69
DM 0.01 83.67 + 2.77 64.20 =4.77  47.00 £ 19.52
0.02 83.00 £ 2.56 68.20 £7.35 53.00 = 14.18
DSA 0.002  74.40 &+ 2.65 55.40 £8.20  30.50 = 8.16
0.01 81.60 £+ 2.27 56.60 £2.95  28.00 = 3.74
KIP 0.002  67.83 +£4.54 42.40 =4.80  23.00 £ 11.87
(woZCA) 0.01 70.00 + 2.47 51.40 £5.73  25.00 £ 15.65
KIP 0.002  67.67 £ 4.42 50.40 £5.35  23.00 = 15.52
(w/ ZCA) 0.01 64.00 = 4.23 48.40 £6.62 17.00 £ 18.47
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Main Results

Membership privacy (Loss-based MIA, DC with random initialization)

|U (x| XETmem L () <TH+|Ux{x | xET G em L (x) 27} _

Advantage (%) =2 X (

|Tmem|+|Tn€em|

|Tn€em|1 Tmem N Tngem = @ and Jmem U Trgem =T

CGAN model can still
leak privacy (Chen et
al., 2020). Not private!

/

Takeaway: The advantage of loss-
based MIAis close to 0, indicating
the attack cannot effectively infer
data membership privacy.

50% ), where | T, om | =

Methods Tipe  FashionMNST CIFAR-10 CelebA
¢GAN 0.002 0.29 + 0.89 —044+1.88 —0.57+0.97
(baseline, 0.01 0.18 £1.21 —0.58 =2.09 —0.81£0.95
non-private)  0.02 0.04 = 0.70 —0.77+£1.59 —0.4741.22
0.002  —0.34 +0.42 0.31+1.93 —0.66 +1.44
DM 0.01 —0.29 + 0.48 1.06 = 1.20 —0.56 £+ 1.52
0.02 0.18 =0.53 0.72 £0.70 —0.67 = 1.18
DSA 0.002 0.09 = 0.51 0.39 =1.04 —0.394+1.90
0.01 0.52 +£0.55 1.27+1.71 —1.16 =0.90
KIP 0.002 —1.13 £1.84 0.25 =£1.20 —0.56 = 1.07
(w/o zca) 0.01 —0.95 £+ 0.96 0.25+1.80 —1.51+0.69
KIP 0.002 —0.56 £+ 2.02 —0.64+1.86 —1.06+1.10
(w/ zca) 0.01 -1.69+1.96 —0.22+£1.27 —1.80x1.91
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Main Results

Membership privacy (Likelihood-based MIA, DC with random initialization)

CIFAR-10

Fipe
—— 0.002

Likelihood-based MIA (LIRA)
(Carlini et al., 2022):

Thresholding the likelihood A:

0 0 ;
. : 10> 1073 10! 10> 1073 101 107> 1073 107t
A P(Coﬂfobs |N (Hw.em g fn)) R False Positive Rate False Positive Rate | False Positive Rate :
— 2
p(COHfObS ‘N(“G’U,t? Jout)) KPS
L FashionMNIST i CiFAR-10 o CelebA
i g o
;2 10°1 & 107! & 107!
. . O R o . [ ,
Takeaway: LiRA cannot effectively 2107 wewos 3 107 20 wethod |
. . . 0 -3 — w/o zca 7] -3 — w/o zca )] -3 — w/o zca .
infer membership privacy for & wee £ 10 e £ 10 Wi |
. . '8 1074 — 10~ — 1074 S
models trained on synthetic data. s Tom B om B e
00 10 100 s 10 107 s 100 10
: False Positive Rate False Positive Rate False Positive Rate !
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Main Results

Utility comparison between DM and differentially private data generator

on FashionMNIST

Fipe

Takeaway: DM-synthesized data enable
models to achieve higher accuracy than
private & non-private generators.

Method DP Budget 0,002 0.01 0.02
GS-WGAN e =10 53.53 +0.42 51.854+0.54 50.10 £+ 0.32
DPMERF T3 (Ui io7s sausoen 5650404

DP-Sinkhorn e =10 - 70.9*
KIP (w/o zca) € =1.25 73.70 +1.13 68.11 +£1.33
KIP (w/ zca) €e=207 T74374+096 T70.03+0.84

DM €e=230 80.59+0.62 85.10+0.51 86.13+0.34

* Results reported in the paper (Cao et al., 2021) (ripe. = 1).

Note: The empirical budget € and € are provided not for comparison
but only to show robustness against MIA.
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Main Results

Sample-efficiency comparison between DM, DSA and cGAN (Baseline):
The amount of generated data (measured by 7;,,.) needed to achieve certain accuracy.

FashionMNIST CIFAR-10

Test accuracy
for ;. = 0.01.

0.10 0.12 0.14 0.020 0.025 0.030 0.035 0.040
ripc ripc rf’pc
Test accuracy of models trained on cGAN-generated data for different r;,..
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Main Results

Sample-efficiency comparison between DM, DSA and cGAN (Baseline):
The amount of generated data (measured by 7;,,.) needed to achieve certain accuracy.

FashionMNIST CIFAR-10
O 088 g Test accuracy
(C
= 0.87 for ;. = 0.01.
::Lj 0.86
I S it
0.10 0.12 0.14 0.020 0.025 0.030 0.035 0.040
ripc rf’pc

Test accuracy of models trained on cGAN-generated data for different r;,..

Example: On FashionMNIST, cGAN
needs to generate data with r;,, = 0.02

to achieve the same test accuracy (0.85)
as DM method with r;,. = 0.01

=> 2 times efficiency improvement

Takeaway: To achieve the same
accuracy, DC needs (at least 2 times)
fewer samples, thus is more sample-
efficient.
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Main Results

Utility comparison between DM, DSA, KIP and cGAN (Baseline) under 7;,. = 0.01.

FashionMNIST
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Takeaway: DM and DSA outperform the other methods in generating high-quality data.
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Summary

We identify the privacy benefit of DC and propose to use DC for
efficient and privacy-preserving data generation in machine learning
pipeline.

We theoretically analyze why DC can help protect visual and
membership privacy.

We empirically validate the privacy benefit brought by DC with two
MIAs (loss-based and likelihood-based) on three image datasets.

We envision this work as a milestone for data-efficient and privacy-
preserving machine learning.
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