Privacy for Free: How does Dataset Condensation Help Privacy? Tian Dong^{1*}, Bo Zhao², Lingjuan Lyu³ - ¹ Shanghai Jiao Tong University - ² The University of Edinburgh - ³ Sony AI - *Work done during internship at Sony AI Sony Al # Privacy is important #### Personal data is generated everywhere **Smart Retail** Social Network **Smart City** **Smart Home** ## Regulations # Typical ML pipeline Machine learning (ML) pipeline # Potential privacy issues Machine learning pipeline # Privacy attacks Membership Inference Attack (MIA) (Shokri et al., S&P'17, etc.) Attribute Inference Attack (Melis et al., S&P'17, etc.) Model Inversion Attack (Fredrikson et al., CCS'15) # Privacy attacks Membership Inference Attack (MIA) (Shokri et al., S&P'17, etc.) Attribute Inference Attack (Melis et al., S&P'17, etc.) Model Inversion Attack (Fredrikson et al., CCS'15) ## Main idea and threat model **Idea**: Generate surrogate dataset S to protect privacy of raw dataset T #### Adversary's Goal: • Infer membership of raw data, i.e., whether $x \in \mathcal{T}$. #### Adversary's knowledge: - Data distribution of \mathcal{T} - No access to raw dataset - White-box access to - generated (privacy-preserving) dataset S - Models trained on generated data #### **Adversary's Capacity:** - Produce shadow generated data with same distribution as \mathcal{T} - Train shadow models on shadow generated data # Existing solutions and limitations #### Differential privacy (DP)-based generator - (ϵ, δ) -DP: for randomized algorithm $\mathcal{M}, (D, D')$ neighbor datasets $\mathbb{P}(\mathcal{M}(D) \in S) \leq e^{\epsilon} \mathbb{P}(\mathcal{M}(D') \in S) + \delta$ - DP-GAN (Xie et al., 2018) - GS-WGAN (Chen et al., 2020) - DP-MERF (Harder et al., 2021) - DP-Sinkhorn (Cao et al., 2021) Images generated via DP-Sinkhorn for gender classification (Cao et al., 2021) # Existing solutions and limitations #### **Limitations:** - Requiring sufficient computing power → generators are hard to train on edge devices (e.g., smart camera). - Introduced noises (e.g., by Gaussian mechanism) <u>lower the utility</u> <u>of generated data</u> → more generated data are needed for training - → <u>lower model training efficiency (i.e., sample-efficiency)</u>. # Existing solutions and limitations #### **Limitations:** • Requiring sufficient computing power → generators are hard to on How to generate privacy-preserving data for dataefficient model training? or somerated data - more semerated data are needed for training → <u>lower model training efficiency (i.e., data-efficiency)</u>. # Apply DC for privacy Our solution: Apply dataset condensation (DC) to synthesize surrogate data for privacy-preserving model training. The adversary on cloud can neither recover the raw data through visual comparison analysis nor infer raw data membership from DC-synthesized data. ## What is Dataset Condensation? **Objective**: distill knowledge from a large training set into a small (high-quality) synthetic set. #### Main approaches: - Dataset Distillation (Wang et al., 2018) - Gradient Matching (Zhao et al., 2021) - Differentiable Siamese Augmentation (**DSA**) (Zhao & Bilen, 2021b) - Kernel Inducing Point (KIP) (Nguyen et al., 2021a;b). - Distribution Matching (DM) (Zhao & Bilen, 2021a) - Matching Training Trajectories (Cazenavette et al., 2022) - Contrastive Signals (Lee et al., 2022) Dataset Condensation aims to generate a small set of synthetic images that can match the performance of a network trained on a large image dataset (Zhao et al., 2021). #### Motivation **Observation**: Data synthesized by Dataset Condensation (DC) are <u>visually different</u> from original data and enable models to achieve <u>high accuracy</u>. #### **Overview** - Theoretical findings - Connection between raw and synthetic data - Analysis on visual privacy and membership privacy #### Empirical validations - Visual privacy analysis by image similarity comparison. - Membership privacy analysis against loss-based and likelihood-based attack LiRA (Carlini et al., 2022). - Utility and sample-efficiency comparison between DC and data generators (cGAN and differentially private generators) #### **Theoretical findings:** - Connect raw data with synthetic data (Proposition 4.3): - Barycenters of synthetic dataset S and raw dataset T coincide after condensation. - **Visual privacy of synthetic data** for different initializations (Proposition 4.4): - Real data: initialization data can be leaked - Random: No membership information can be leaked - Membership privacy for models trained on synthetic data (Proposition 4.10): The existence of one sample in raw dataset has limited impact $(O(\frac{|S|}{|T|}))$ on models trained on synthetic data (idea of DP). #### Empirical verification of Proposition 4.3. Empirical verification of Proposition 4.4. #### **Visual privacy**: Find the top 3 most similar images via comparison (L_2 norm & LPIPS). Compression ratio (ratio of images per class): $$r_{ipc} = \frac{|\mathcal{S}}{|\mathcal{T}|}$$ Takeaway: The adversary cannot recover raw data from synthetic data by visual comparison. #### Membership privacy (Loss-based MIA, DC with real data initialization) Advantage (%) = $$2 \times \left(\frac{|\bigcup_{x}\{x|x \in \mathcal{T}_{init}, l(x) < \tau\}| + |\bigcup_{x}\{x|x \in \mathcal{T}_{init}^{C}, l(x) \geq \tau\}|}{|\mathcal{T}_{init}| + |\mathcal{T}_{init}^{C}|} - 50\%\right)$$, where $\mathcal{T}_{init} \subset \mathcal{T}$ is used for initialization $\mathcal{T}_{init}^{C} \subset \mathcal{T} \setminus \mathcal{T}_{init}$ and $|\mathcal{T}_{init}| = |\mathcal{T}_{init}^{C}|$. Takeaway: Data used for DC images can still be leaked because of high similarity between synthetic data and raw data. | Method | r_{ipc} | FashionMNST | CIFAR-10 | CelebA | |--------------|-----------|-------------------|-------------------|-------------------| | Real | 0.002 | 46.67 ± 16.33 | 72.00 ± 24.00 | 100.00 ± 0.00 | | (baseline, | 0.01 | 21.00 ± 3.67 | 92.80 ± 5.31 | 84.00 ± 5.06 | | non-private) | 0.02 | 17.33 ± 2.91 | 82.60 ± 5.59 | 77.00 ± 6.71 | | DM | 0.002 | 78.17 ± 3.20 | 49.80 ± 5.83 | 37.00 ± 12.69 | | | 0.01 | 83.67 ± 2.77 | 64.20 ± 4.77 | 47.00 ± 19.52 | | | 0.02 | 83.00 ± 2.56 | 68.20 ± 7.35 | 53.00 ± 14.18 | | DSA | 0.002 | 74.40 ± 2.65 | 55.40 ± 8.20 | 30.50 ± 8.16 | | DSA | 0.01 | 81.60 ± 2.27 | 56.60 ± 2.95 | 28.00 ± 3.74 | | KIP | 0.002 | 67.83 ± 4.54 | 42.40 ± 4.80 | 23.00 ± 11.87 | | (w/o ZCA) | 0.01 | 70.00 ± 2.47 | 51.40 ± 5.73 | 25.00 ± 15.65 | | KIP | 0.002 | 67.67 ± 4.42 | 50.40 ± 5.35 | 23.00 ± 15.52 | | (w/ZCA) | 0.01 | 64.00 ± 4.23 | 48.40 ± 6.62 | 17.00 ± 18.47 | | | | | | | #### Membership privacy (Loss-based MIA, DC with random initialization) Advantage (%) = $$2 \times \left(\frac{|\bigcup_{x}\{x|x \in \mathcal{T}_{mem}, l(x) < \tau\}| + \left|\bigcup_{x}\{x|x \in \mathcal{T}_{mem}^{C}, l(x) \ge \tau\}\right|}{|\mathcal{T}_{mem}| + |\mathcal{T}_{mem}^{C}|} - 50\%\right)$$, where $|\mathcal{T}_{mem}| = |\mathcal{T}_{mem}^{C}|$, $|\mathcal{T}_{mem}^{C}|$, $|\mathcal{T}_{mem}^{C}|$, $|\mathcal{T}_{mem}^{C}|$ and cGAN model can still leak privacy (Chen et al., 2020). Not private! Takeaway: The advantage of loss-based MIA is close to 0, indicating the attack cannot effectively infer data membership privacy. | Methods | r_{ipc} | FashionMNST | CIFAR-10 | CelebA | |--------------|-----------|------------------|------------------|------------------| | cGAN | 0.002 | 0.29 ± 0.89 | -0.44 ± 1.88 | -0.57 ± 0.97 | | (baseline, | 0.01 | 0.18 ± 1.21 | -0.58 ± 2.09 | -0.81 ± 0.95 | | non-private) | 0.02 | 0.04 ± 0.70 | -0.77 ± 1.59 | -0.47 ± 1.22 | | DM | 0.002 | -0.34 ± 0.42 | 0.31 ± 1.93 | -0.66 ± 1.44 | | | 0.01 | -0.29 ± 0.48 | 1.06 ± 1.20 | -0.56 ± 1.52 | | | 0.02 | 0.18 ± 0.53 | 0.72 ± 0.70 | -0.67 ± 1.18 | | DSA | 0.002 | 0.09 ± 0.51 | 0.39 ± 1.04 | -0.39 ± 1.90 | | | 0.01 | 0.52 ± 0.55 | 1.27 ± 1.71 | -1.16 ± 0.90 | | KIP | 0.002 | -1.13 ± 1.84 | 0.25 ± 1.20 | -0.56 ± 1.07 | | (w/o zca) | 0.01 | -0.95 ± 0.96 | 0.25 ± 1.80 | -1.51 ± 0.69 | | KIP | 0.002 | -0.56 ± 2.02 | -0.64 ± 1.86 | -1.06 ± 1.10 | | (w/ zca) | 0.01 | -1.69 ± 1.96 | -0.22 ± 1.27 | -1.80 ± 1.91 | #### Membership privacy (Likelihood-based MIA, DC with random initialization) Likelihood-based MIA (LiRA) (Carlini et al., 2022): Thresholding the likelihood Λ : $$\Lambda = \frac{p(\text{conf}_{obs}|\mathcal{N}(\boldsymbol{\mu}_{in}, \boldsymbol{\sigma}_{in}^2))}{p(\text{conf}_{obs}|\mathcal{N}(\boldsymbol{\mu}_{out}, \boldsymbol{\sigma}_{out}^2))}$$ Takeaway: LiRA cannot effectively infer membership privacy for models trained on synthetic data. **Utility comparison** between DM and differentially private data generator on FashionMNIST Takeaway: DM-synthesized data enable models to achieve higher accuracy than private & non-private generators. | Method | DP Budget | r_{ipc} | | | |---------------|-------------------------|------------------|------------------|------------------| | Method | | 0.002 | 0.01 | 0.02 | | GS-WGAN | $\epsilon = 10$ | 53.53 ± 0.42 | 51.85 ± 0.54 | 50.10 ± 0.32 | | DP-MERF | $\epsilon = 10$ | 52.18 ± 0.37 | 52.88 ± 0.75 | 50.73 ± 0.66 | | | $\epsilon = 2$ | 60.41 ± 0.78 | 55.14 ± 0.61 | 56.39 ± 0.45 | | DP-Sinkhorn | $\epsilon = 10$ | - | - | 70.9^* | | KIP (w/o zca) | $\hat{\epsilon} = 1.25$ | 73.70 ± 1.13 | 68.11 ± 1.33 | - | | KIP (w/ zca) | $\hat{\epsilon} = 2.07$ | 74.37 ± 0.96 | 70.03 ± 0.84 | - | | DM | $\hat{\epsilon} = 2.30$ | 80.59 ± 0.62 | 85.10 ± 0.51 | 86.13 ± 0.34 | ^{*} Results reported in the paper (Cao et al., 2021) ($r_{ipc} = 1$). **Note:** The empirical budget $\hat{\epsilon}$ and ϵ are provided not for comparison but only to show robustness against MIA. **Sample-efficiency comparison** between DM, DSA and cGAN (Baseline): The amount of generated data (measured by r_{ipc}) needed to achieve certain accuracy. Test accuracy of models trained on cGAN-generated data for different r_{ipc} . **Sample-efficiency comparison** between DM, DSA and cGAN (Baseline): The amount of generated data (measured by r_{ipc}) needed to achieve certain accuracy. Example: On FashionMNIST, cGAN needs to generate data with $r_{ipc}=0.02$ to achieve the same test accuracy (0.85) as DM method with $r_{ipc}=0.01$ => 2 times efficiency improvement Takeaway: To achieve the same accuracy, DC needs (at least 2 times) fewer samples, thus is more sample-efficient. Utility comparison between DM, DSA, KIP and cGAN (Baseline) under $r_{ipc} = 0.01$. Takeaway: DM and DSA outperform the other methods in generating high-quality data. # Summary - We identify the privacy benefit of DC and propose to use DC for efficient and privacy-preserving data generation in machine learning pipeline. - We theoretically analyze why DC can help protect visual and membership privacy. - We empirically validate the privacy benefit brought by DC with two MIAs (loss-based and likelihood-based) on three image datasets. - We envision this work as a milestone for data-efficient and privacy-preserving machine learning.