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Privacy is important 

RegulationsPersonal data is generated everywhere 

Smart CitySmart Retail

Social Network Smart Home
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Typical ML pipeline

Dataset construction

 Process  Transmit  Train

Cloud server Model

 Deploy

Machine learning (ML) pipeline

Collection
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Potential privacy issues

Dataset construction

 Transmit  Train

Cloud server Model

 Deploy

Machine learning pipeline

 Process

Collection
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Privacy attacks

Model Inversion Attack (Fredrikson et al., CCS’15)

Membership Inference Attack (MIA) (Shokri et al., S&P’17, etc.)

Attribute Inference Attack (Melis et al., S&P’17, etc.)

Model  𝑓
Train Reconstruct

Gender 

classifier

Train Query
Race = ?

Model 𝑓
Train Query

𝐷 ∈ 𝐷



6

Privacy attacks

Model Inversion Attack (Fredrikson et al., CCS’15)

Membership Inference Attack (MIA) (Shokri et al., S&P’17, etc.)

Attribute Inference Attack (Melis et al., S&P’17, etc.)

Model  𝑓
Train Reconstruct

Gender 

classifier

Train Query
Race = ?

Model 𝑓
Train Query

𝐷 ∈ 𝐷



7

Main idea and threat model

Raw 

dataset 𝒯

Transmit Train

Cloud 

server
Modelgenerated 

dataset 𝒮

Generate

Defense
Adversary’s Goal:
• Infer membership of raw data, 

i.e., whether 𝑥 ∈ 𝒯.

Adversary’s knowledge:
• Data distribution of 𝒯

• No access to raw dataset

• White-box access to

• generated (privacy-preserving) dataset 𝒮
• Models trained on generated data

Adversary’s Capacity:
• Produce shadow generated data with same 

distribution as 𝒯
• Train shadow models on shadow generated 

data

Idea: Generate surrogate dataset 𝒮 to protect privacy of raw dataset 𝒯
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Existing solutions and limitations

• 𝜖, 𝛿 -DP: for randomized algorithm ℳ, (𝐷,𝐷′) neighbor datasets

• DP-GAN (Xie et al., 2018)

• GS-WGAN (Chen et al., 2020)

• DP-MERF (Harder et al., 2021)

• DP-Sinkhorn (Cao et al., 2021)

ℙ ℳ 𝐷 ∈ 𝑆 ≤ 𝑒𝜖ℙ ℳ 𝐷′ ∈ 𝑆 + 𝛿

Differential privacy (DP)-based generator

Images generated via DP-Sinkhorn for gender 

classificaiton (Cao et al., 2021)



9

Existing solutions and limitations

Limitations:

• Requiring sufficient computing power → generators are hard to 

train on edge devices (e.g., smart camera).

• Introduced noises (e.g., by Gaussian mechanism) lower the utility

of generated data → more generated data are needed for training 

→ lower model training efficiency (i.e., sample-efficiency).
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Existing solutions and limitations

Limitations:

• Requiring sufficient computing power → generators are hard to on 

edge devices (e.g., smart camera).

• Introduced noises (e.g., by Gaussian mechanism) lower the utility

of generated data → more generated data are needed for training 

→ lower model training efficiency (i.e., data-efficiency).

How to generate privacy-preserving data for data-

efficient model training?
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The adversary on cloud can neither recover the raw data through visual comparison 

analysis nor infer raw data membership from DC-synthesized data.

Apply DC for privacy

Our solution: Apply dataset condensation (DC) to synthesize surrogate data for 

privacy-preserving model training.
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What is Dataset Condensation?

Objective: distill knowledge from a large training set
into a small (high-quality) synthetic set.

Main approaches:
• Dataset Distillation (Wang et al., 2018)

• Gradient Matching (Zhao et al., 2021)

• Differentiable Siamese Augmentation (DSA)
(Zhao & Bilen, 2021b)

• Kernel Inducing Point (KIP) (Nguyen et al., 2021a;b).

• Distribution Matching (DM) (Zhao & Bilen, 2021a)

• Matching Training Trajectories (Cazenavette et al., 2022)

• Contrastive Signals (Lee et al., 2022)

Dataset Condensation aims to 

generate a small set of synthetic 

images that can match the 

performance of a network 

trained on a large image dataset 

(Zhao et al., 2021) .
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Motivation

Observation: Data synthesized by Dataset Condensation (DC) are visually different

from original data and enable models to achieve high accuracy.

Original SynthesizedOriginal Synthesized

Female Male
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Overview
• Theoretical findings

• Connection between raw and synthetic data

• Analysis on visual privacy and membership privacy

• Empirical validations

• Visual privacy analysis by image similarity comparison.

• Membership privacy analysis against loss-based and likelihood-based attack 

LiRA (Carlini et al., 2022).

• Utility and sample-efficiency comparison between DC and data generators 

(cGAN and differentially private generators)

Main Results
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Theoretical findings:

• Connect raw data with synthetic data (Proposition 4.3):

• Barycenters of synthetic dataset 𝒮 and raw dataset 𝒯
coincide after condensation.

• Visual privacy of synthetic data for different initializations 

(Proposition 4.4):

• Real data: initialization data can be leaked

• Random: No membership information can be leaked

• Membership privacy for models trained on synthetic data 

(Proposition 4.10):

The existence of one sample in raw dataset has limited impact 

(𝑂(
𝒮

𝒯
)) on models trained on synthetic data (idea of DP).

Main Results

Empirical verification of Proposition 4.3.

Empirical verification of Proposition 4.4.
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Visual privacy:
Find the top 3 most similar images via comparison (𝐿2 norm & LPIPS).

Takeaway: The adversary 

cannot recover raw data from 

synthetic data by visual 

comparison.

Compression ratio 

(ratio of images per class): 

𝑟𝑖𝑝𝑐 =
𝒮

𝒯

Main Results
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Takeaway: Data used for DC images 

can still be leaked because of high 

similarity between synthetic data 

and raw data.

Main Results

Membership privacy (Loss-based MIA, DC with real data initialization)

Advantage (%) = 2 × (
𝑥ڂ 𝑥|𝑥∈𝒯𝑖𝑛𝑖𝑡,𝑙 𝑥 <𝜏 + 𝑥ڂ 𝑥|𝑥∈𝒯𝑖𝑛𝑖𝑡

𝐶 ,𝑙 𝑥 ≥𝜏

𝒯𝑖𝑛𝑖𝑡 + 𝒯𝑖𝑛𝑖𝑡
𝐶 − 50% ), where 𝒯𝑖𝑛𝑖𝑡 ⊂ 𝒯 is used for initialization.

𝒯𝑖𝑛𝑖𝑡
𝐶 ⊂ 𝒯 ∖ 𝒯𝑖𝑛𝑖𝑡 and 𝒯𝑖𝑛𝑖𝑡 = 𝒯𝑖𝑛𝑖𝑡

𝐶 .
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cGAN model can still 

leak privacy (Chen et 

al., 2020). Not private!

Main Results

Membership privacy (Loss-based MIA, DC with random initialization)

Takeaway: The advantage of loss-

based MIA is close to 0, indicating 

the attack cannot effectively infer 

data membership privacy.

Advantage (%) = 2 × (
𝑥ڂ 𝑥|𝑥∈𝒯𝑚𝑒𝑚,𝑙 𝑥 <𝜏 + 𝑥ڂ 𝑥|𝑥∈𝒯𝑚𝑒𝑚

𝐶 ,𝑙 𝑥 ≥𝜏

𝒯𝑚𝑒𝑚 + 𝒯𝑚𝑒𝑚
𝐶 − 50% ), where 𝒯𝑚𝑒𝑚 =

𝒯𝑚𝑒𝑚
𝐶 , 𝒯𝑚𝑒𝑚 ∩ 𝒯𝑚𝑒𝑚

𝐶 = ∅ and 𝒯𝑚𝑒𝑚 ∪ 𝒯𝑚𝑒𝑚
𝐶 = 𝒯
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Main Results

Membership privacy (Likelihood-based MIA, DC with random initialization)

Likelihood-based MIA (LiRA) 
(Carlini et al., 2022):

Thresholding the likelihood Λ:

Takeaway: LiRA cannot effectively 

infer membership privacy for 

models trained on synthetic data.
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Takeaway: DM-synthesized data enable 

models to achieve higher accuracy than 

private & non-private generators.

Main Results

Utility comparison between DM and differentially private data generator 
on FashionMNIST

Note: The empirical budget Ƹ𝜖 and 𝜖 are provided not for comparison 

but only to show robustness against MIA.
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Main Results

Sample-efficiency comparison between DM, DSA and cGAN (Baseline):
The amount of generated data (measured by 𝑟𝑖𝑝𝑐) needed to achieve certain accuracy.

Test accuracy 

for 𝑟𝑖𝑝𝑐 = 0.01. 

Test accuracy of models trained on cGAN-generated data for different 𝑟𝑖𝑝𝑐. 
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Example: On FashionMNIST, cGAN

needs to generate data with 𝒓𝒊𝒑𝒄 = 𝟎. 𝟎𝟐

to achieve the same test accuracy (0.85) 

as DM method with 𝒓𝒊𝒑𝒄 = 𝟎. 𝟎𝟏

=> 2 times efficiency improvement

Main Results

Sample-efficiency comparison between DM, DSA and cGAN (Baseline):
The amount of generated data (measured by 𝑟𝑖𝑝𝑐) needed to achieve certain accuracy.

Test accuracy 

for 𝑟𝑖𝑝𝑐 = 0.01. 

Test accuracy of models trained on cGAN-generated data for different 𝑟𝑖𝑝𝑐. 

Takeaway: To achieve the same 

accuracy, DC needs (at least 2 times) 

fewer samples, thus is more sample-

efficient.



23

Takeaway: DM and DSA outperform the other methods in generating high-quality data.

Main Results

Utility comparison between DM, DSA, KIP and cGAN (Baseline) under 𝑟𝑖𝑝𝑐 = 0.01.
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Summary

• We identify the privacy benefit of DC and propose to use DC for
efficient and privacy-preserving data generation in machine learning
pipeline.

• We theoretically analyze why DC can help protect visual and
membership privacy.

• We empirically validate the privacy benefit brought by DC with two
MIAs (loss-based and likelihood-based) on three image datasets.

• We envision this work as a milestone for data-efficient and privacy-
preserving machine learning.


