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confidence is below a certain threshold. 
→

• With a good confidence measure  increasing the threshold results in a better 
performance.
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• Tradeoff  we have predictions for a fewer samples (i.e., low coverage).→

Prediction with reject-option
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Selective Classification
• Classifiers can have good average performance but may perform poorly on certain 

protected / sensitive groups [Jones et al. 2020].

• To mitigate such disparities, recent works [Lee et al., 2021; Schreuder & Chzhen, 2021] 
proposed methods for performing fair selective classification.

Prior Work
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Selective Regression

Regression  no direct method to learn from an existing regressor designed only to 
predict the conditional mean

→

Designing an Uncertainty measure

Classification  learned using the softmax output (of an existing classifier)→
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Biases in Selective Regression

• We show that selective regression, like selective classification, can decrease the 
performance of some protected groups when coverage is reduced.
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Fair Selective Regression

• Monotonic selective risk  requires the risk (i.e., MSE) of each subgroup to 
monotonically decrease with a decrease in coverage.

→

• Monotonic selective risk is met if a feature representation: 

1. satisfies the standard sufficiency criterion or 

2. is calibrated for mean and variance.

• Two algorithms: 

1. impose the sufficiency criterion by regularizing an upper bound of conditional 
mutual information. 

2. impose the calibration for mean and variance by regularizing a contrastive loss. 

Contributions
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