Selective Regression Under Fairness Criteria

Abhin Shah, Yuheng Bu, Joshua Ka-Wing Lee, Subhro Das, Rameswar Panda, Prasanna Sattigeri, Gregory W. Wornell



Prediction with a reject-option

Prediction with a reject-option

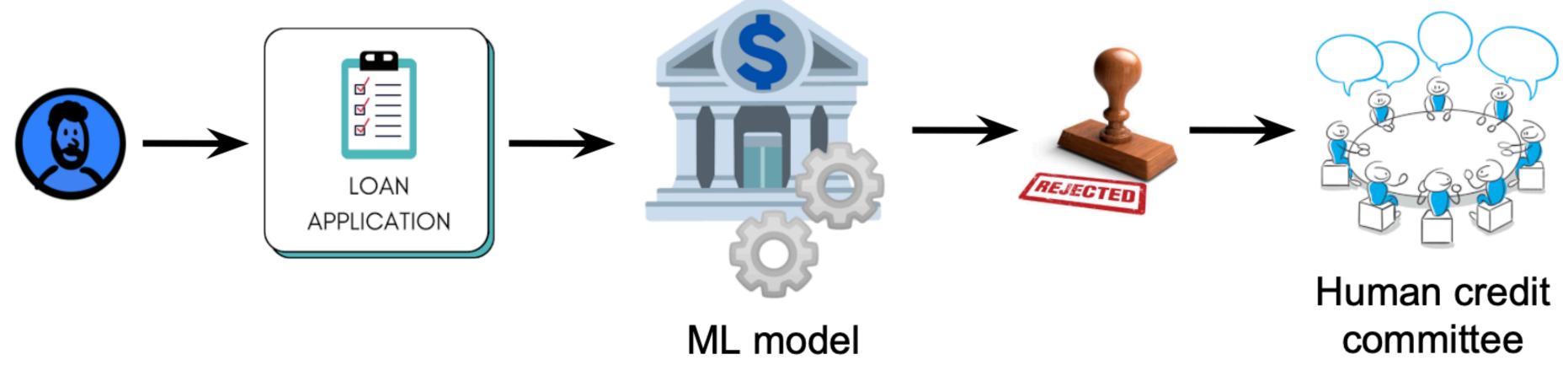
its predictions.

Selective Prediction

• A trustworthy machine learning system \rightarrow reliably communicate the uncertainty in

Prediction with a reject-option

its predictions.

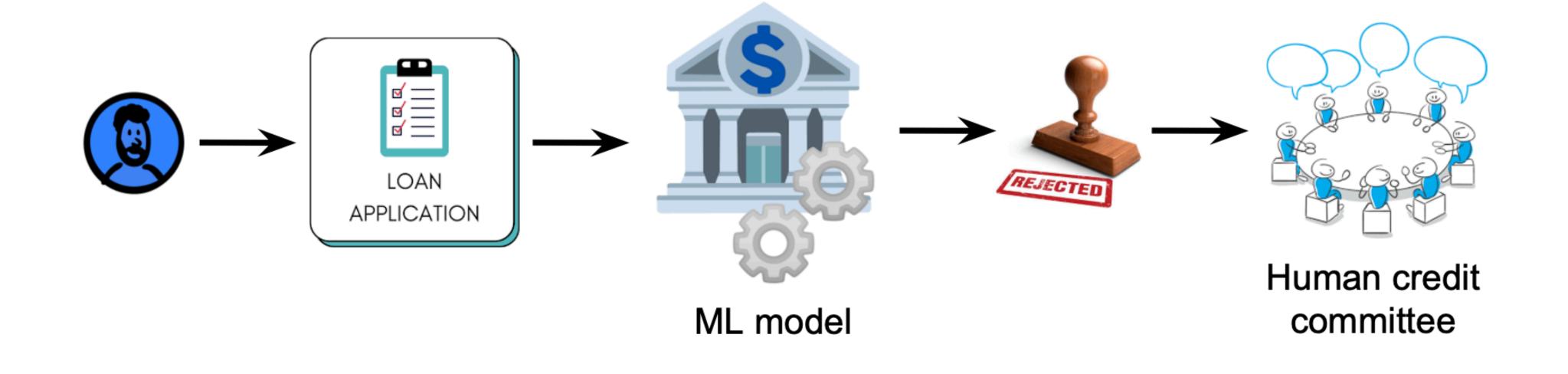


Selective Prediction

• A trustworthy machine learning system \rightarrow reliably communicate the uncertainty in

Prediction with a reject-option

- its predictions.
- potentially costly errors.

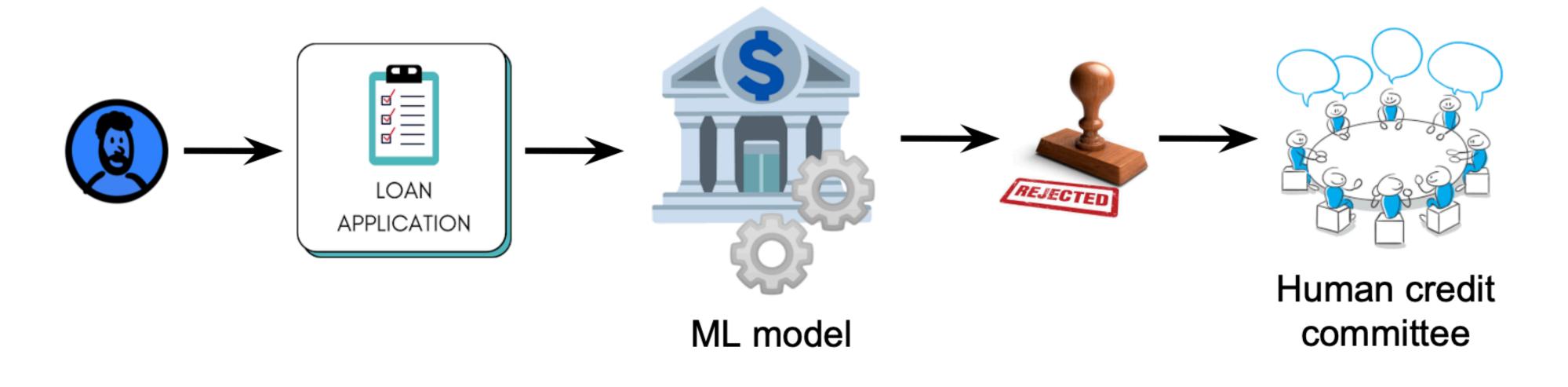


Selective Prediction

• A trustworthy machine learning system \rightarrow reliably communicate the uncertainty in

• If the uncertainty in a prediction is high \rightarrow the prediction can be rejected to avoid

- A trustworthy machine learning system \rightarrow reliably communicate the uncertainty in its predictions.
- If the uncertainty in a prediction is high \rightarrow the prediction can be rejected to avoid potentially costly errors.
- Selective prediction \rightarrow can abstain from making a decision

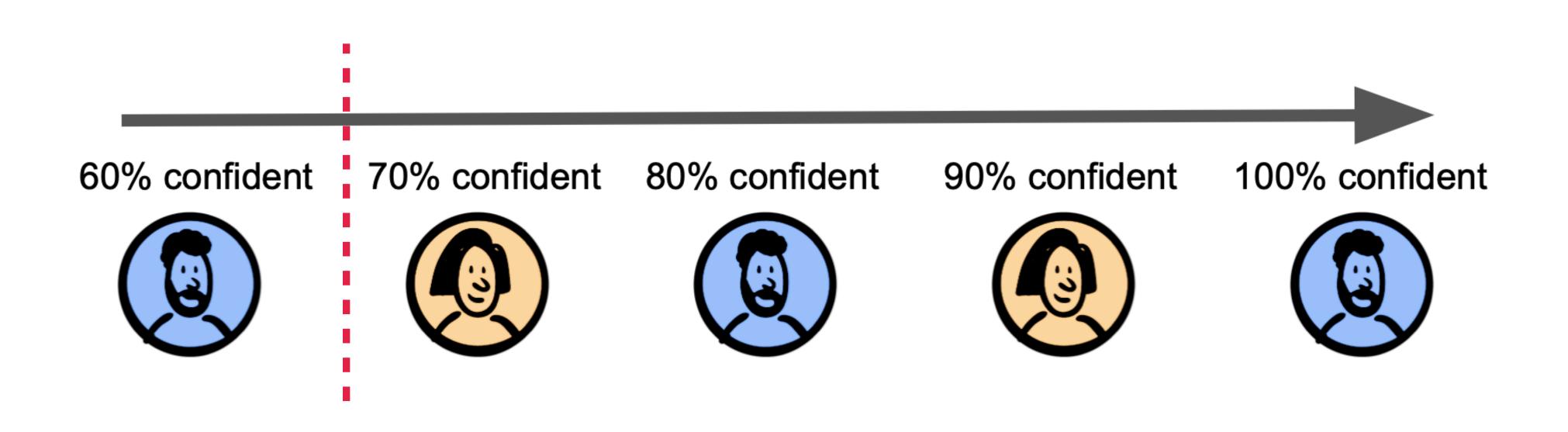


Prediction with a reject-option

Prediction with reject-option

Prediction with reject-option

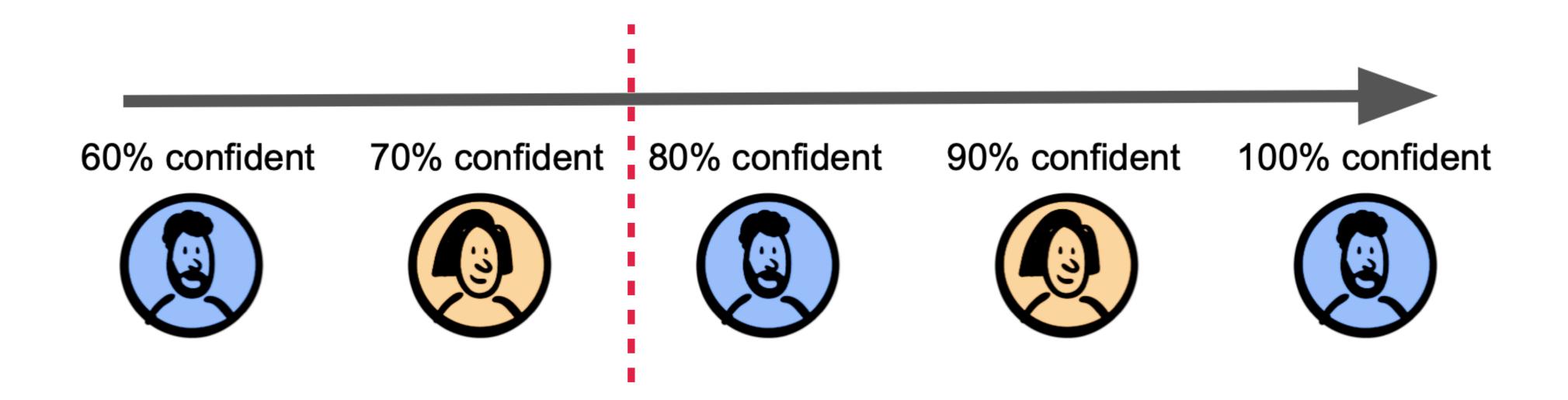
confidence is below a certain threshold.



• If we have confidence measure for each prediction \rightarrow abstain from decision making if our

Prediction with reject-option

- confidence is below a certain threshold.
- With a good confidence measure \rightarrow increasing the threshold results in a better performance.

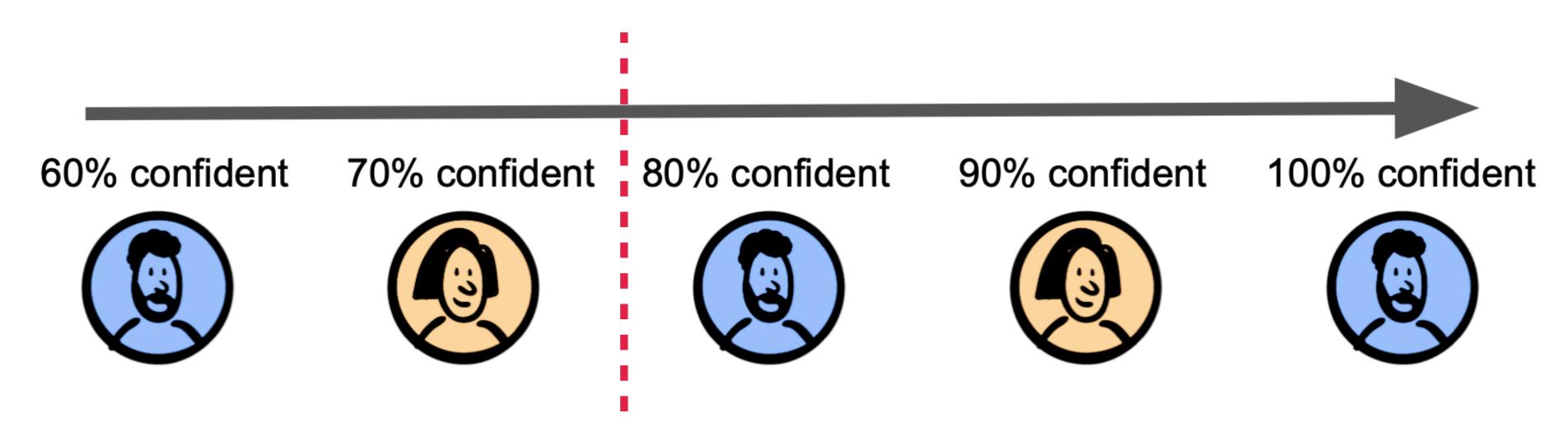


Selective Prediction

• If we have confidence measure for each prediction \rightarrow abstain from decision making if our

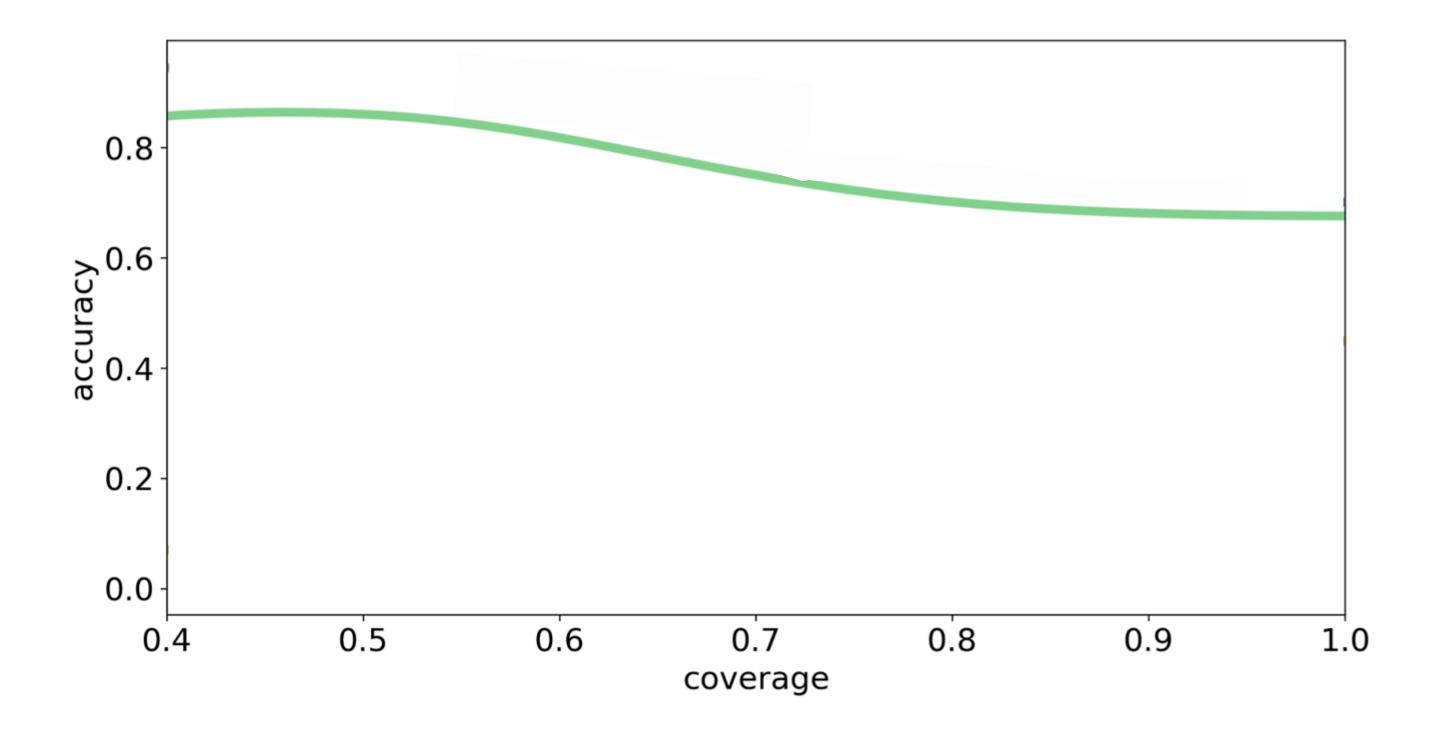
Prediction with reject-option

- confidence is below a certain threshold.
- With a good confidence measure \rightarrow increasing the threshold results in a better performance.
- Tradeoff \rightarrow we have predictions for a fewer samples (i.e., low coverage).



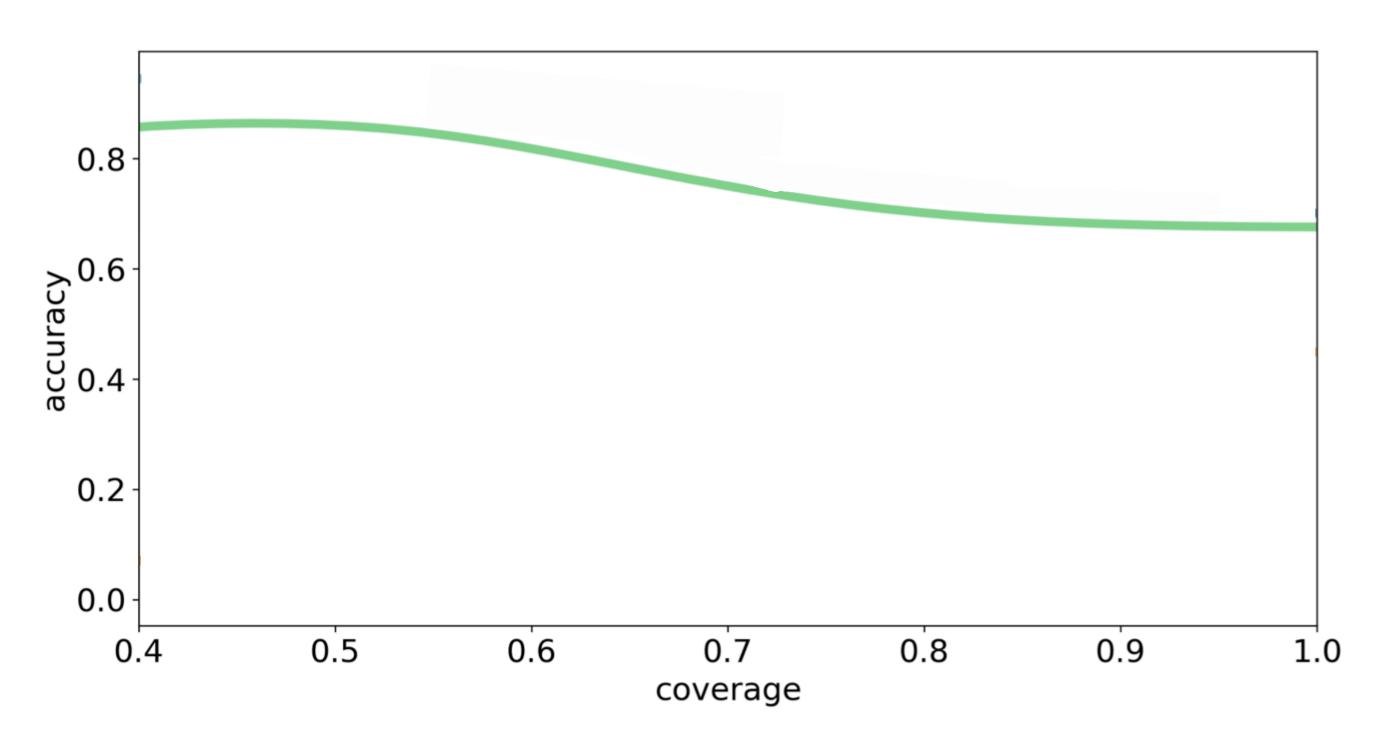
• If we have confidence measure for each prediction \rightarrow abstain from decision making if our

Selective Classification Prior Work



Selective Classification

protected / sensitive groups [Jones et al. 2020].

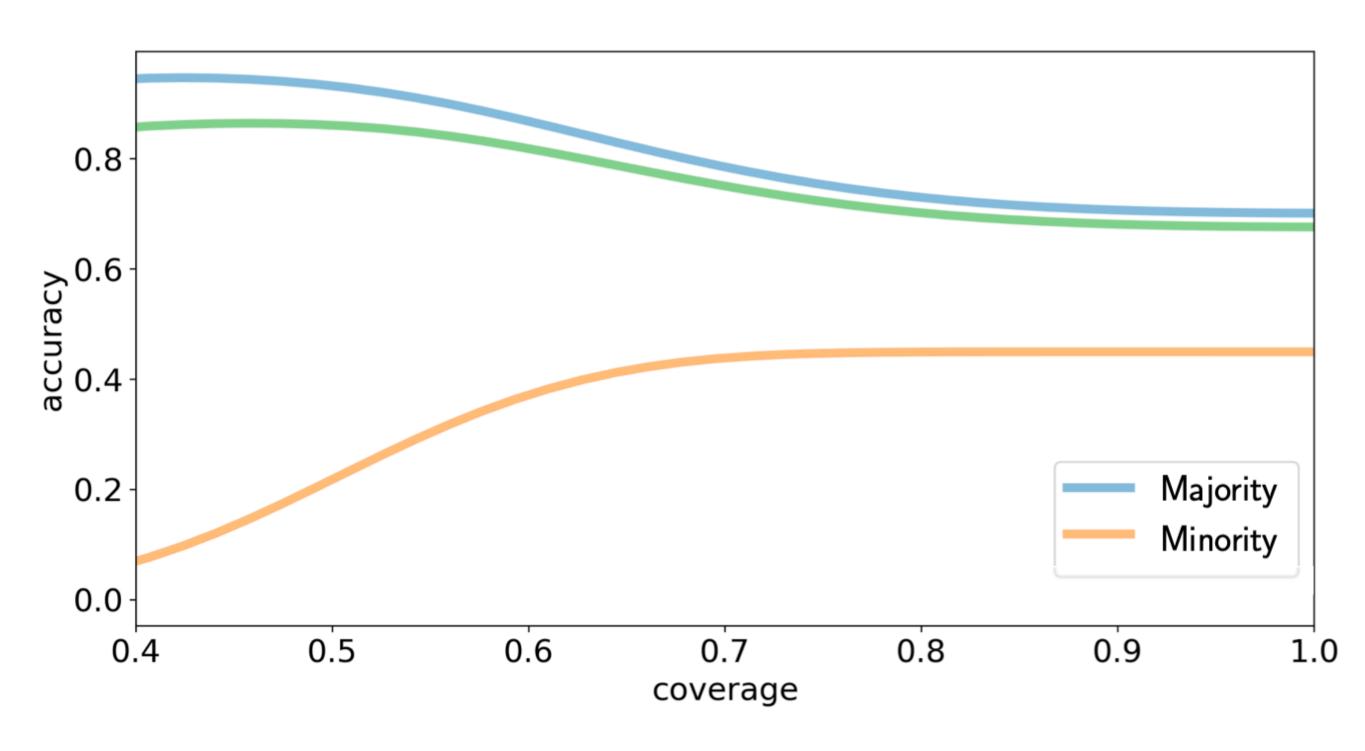


Prior Work

• Classifiers can have good average performance but may perform poorly on certain

Selective Classification

protected / sensitive groups [Jones et al. 2020].

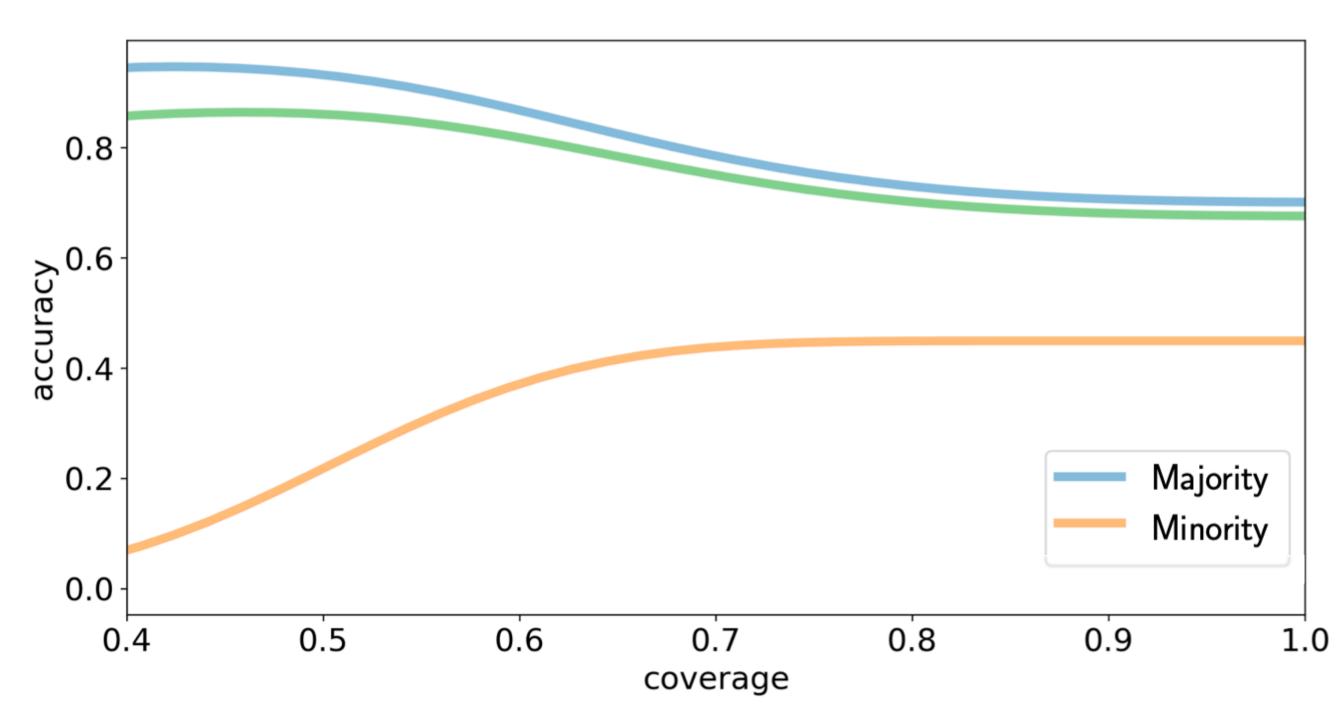


Prior Work

• Classifiers can have good average performance but may perform poorly on certain

Selective Classification

protected / sensitive groups [Jones et al. 2020].



proposed methods for performing fair selective classification.

Prior Work

• Classifiers can have good average performance but may perform poorly on certain

• To mitigate such disparities, recent works [Lee et al., 2021; Schreuder & Chzhen, 2021]

Designing an Uncertainty measure

Selective Regression Designing an Uncertainty measure

Classification \rightarrow learned using the softmax output (of an existing classifier)

Selective Regression **Designing an Uncertainty measure**

Classification \rightarrow learned using the softmax output (of an existing classifier)

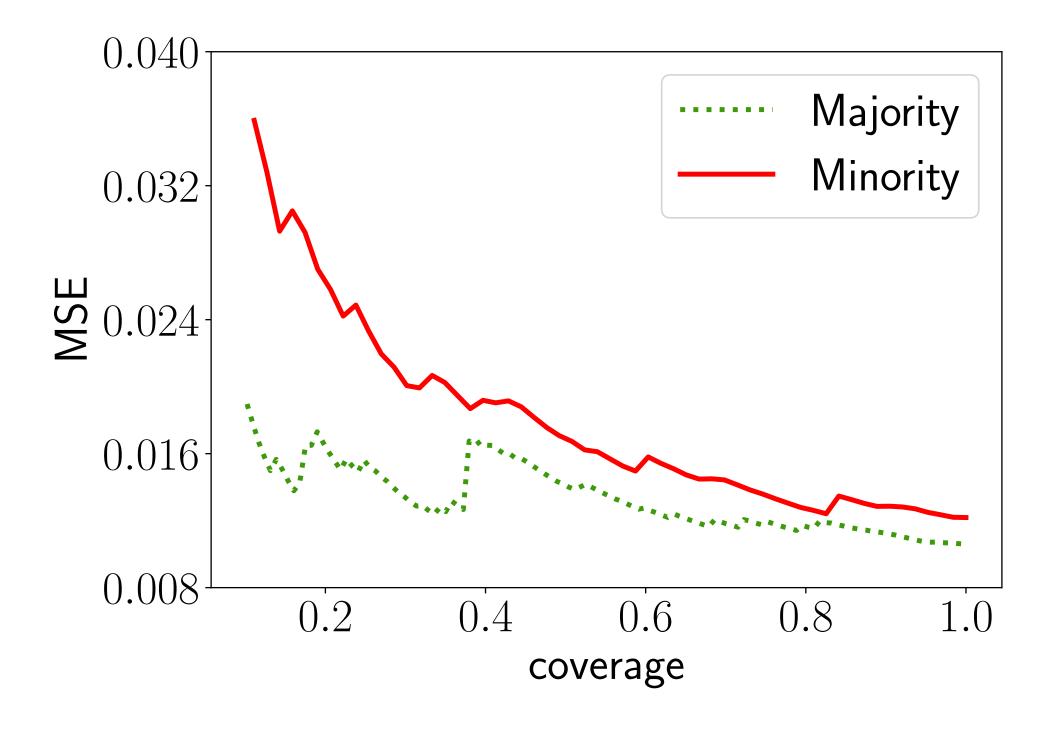
predict the conditional mean

- Regression \rightarrow no direct method to learn from an existing regressor designed only to

Biases in Selective Regression Contributions

Biases in Selective Regression Contributions

• We show that selective regression, like selective classification, can decrease the performance of some protected groups when coverage is reduced.



Insurance dataset

• Monotonic selective risk \rightarrow requires the risk (i.e., MSE) of each subgroup to monotonically decrease with a decrease in coverage.

- Monotonic selective risk \rightarrow requires the risk (i.e., MSE) of each subgroup to monotonically decrease with a decrease in coverage.
- Monotonic selective risk is met if a feature representation:

- Monotonic selective risk \rightarrow requires the risk (i.e., MSE) of each subgroup to monotonically decrease with a decrease in coverage.
- Monotonic selective risk is met if a feature representation:
 - 1. satisfies the standard sufficiency criterion or

- Monotonic selective risk \rightarrow requires the risk (i.e., MSE) of each subgroup to monotonically decrease with a decrease in coverage.
- Monotonic selective risk is met if a feature representation:
 - 1. satisfies the standard sufficiency criterion or
 - 2. is calibrated for mean and variance.

- Monotonic selective risk \rightarrow requires the risk (i.e., MSE) of each subgroup to monotonically decrease with a decrease in coverage.
- Monotonic selective risk is met if a feature representation:
 - 1. satisfies the standard sufficiency criterion or
 - 2. is calibrated for mean and variance.
- Two algorithms:

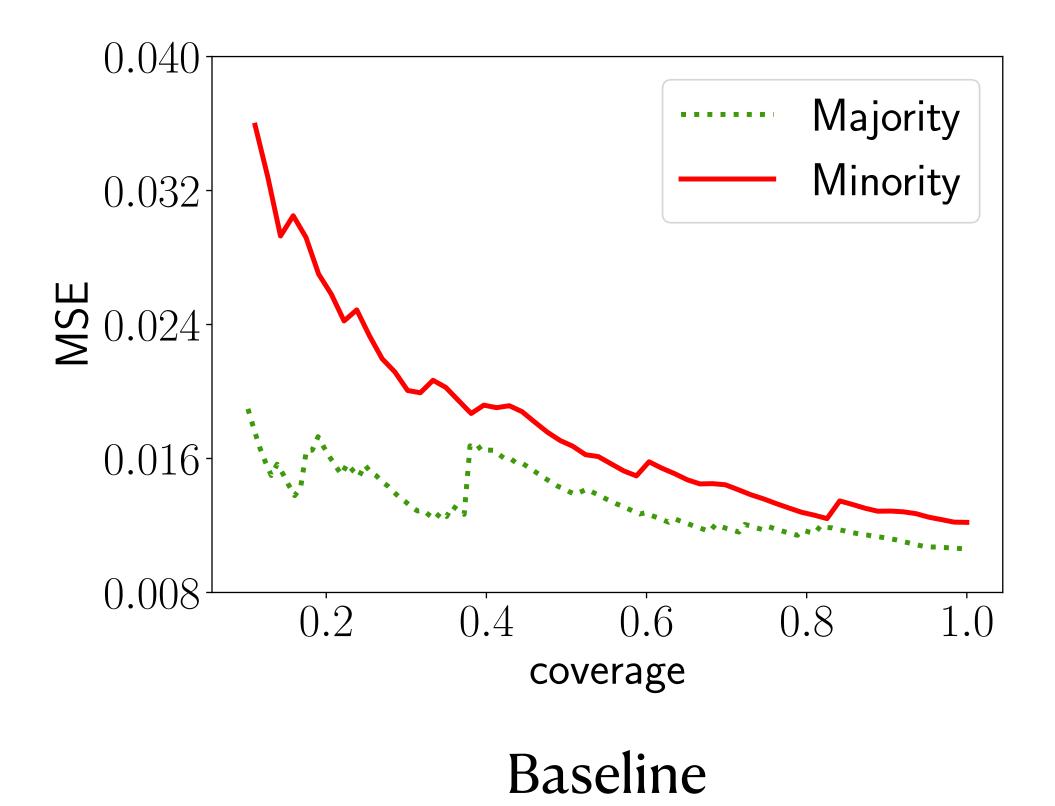
- Monotonic selective risk \rightarrow requires the risk (i.e., MSE) of each subgroup to monotonically decrease with a decrease in coverage.
- Monotonic selective risk is met if a feature representation:
 - 1. satisfies the standard sufficiency criterion or
 - 2. is calibrated for mean and variance.
- Two algorithms:
 - 1. impose the sufficiency criterion by re mutual information.

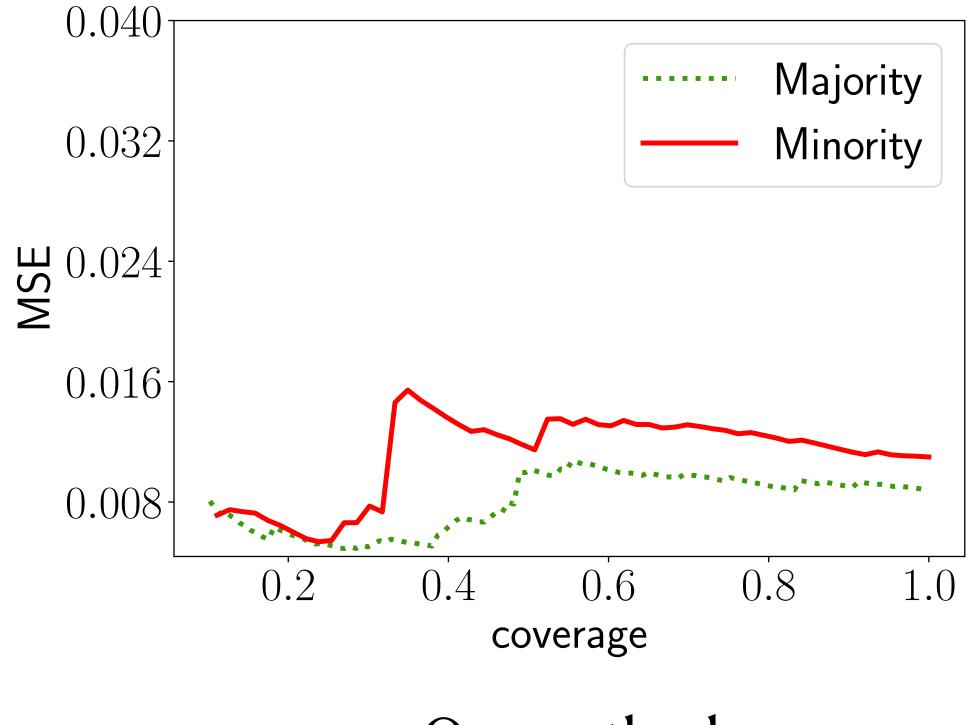
impose the sufficiency criterion by regularizing an upper bound of conditional

- Monotonic selective risk \rightarrow requires the risk (i.e., MSE) of each subgroup to monotonically decrease with a decrease in coverage.
- Monotonic selective risk is met if a feature representation:
 - 1. satisfies the standard sufficiency criterion or
 - 2. is calibrated for mean and variance.
- Two algorithms:
 - 1. impose the sufficiency criterion by regularizing an upper bound of conditional mutual information.
 - 2. impose the calibration for mean and variance by regularizing a contrastive loss.

Empirical Results Insurance dataset

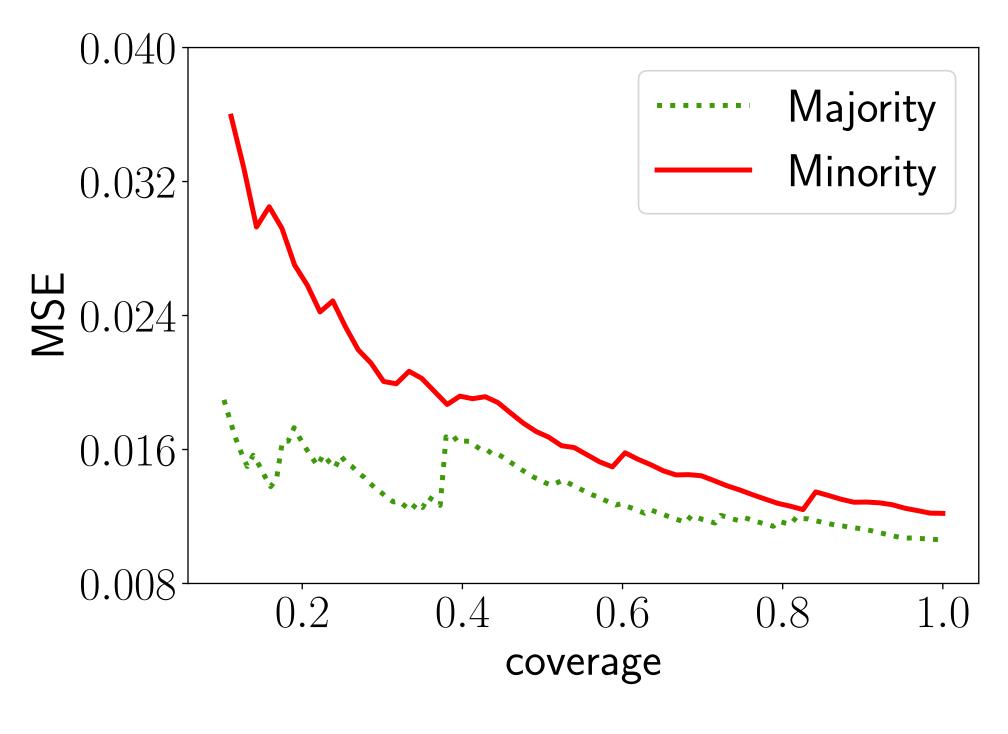
Empirical Results Insurance dataset



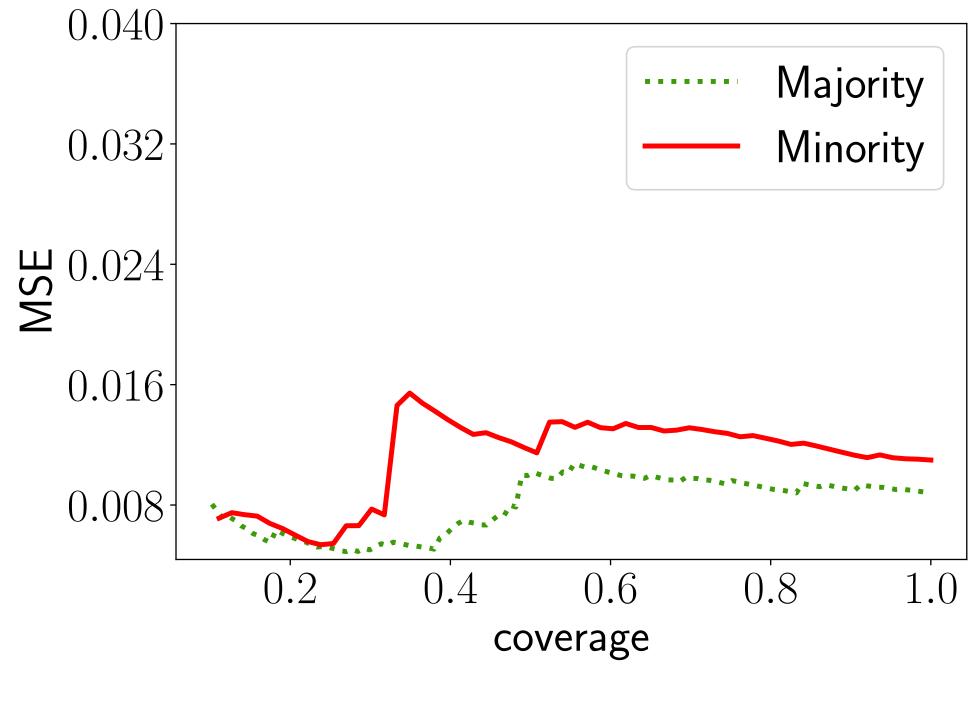


Our method

Empirical Results Insurance dataset



Baseline



Our method

Poster #1108