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Selective Prediction

Prediction with a reject-option
e A trustworthy machine learning system — reliably communicate the uncertainty in
its predictions.

« If the uncertainty in a prediction is high — the prediction can be rejected to avoid
potentially costly errors.
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Selective Prediction

Prediction with a reject-option

e A trustworthy machine learning system — reliably communicate the uncertainty in
its predictions.

« If the uncertainty in a prediction is high — the prediction can be rejected to avoid
potentially costly errors.

» Selective prediction — can abstain from making a decision
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* If we have confidence measure for each prediction — abstain from decision making if our
confidence is below a certain threshold.
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Selective Prediction

Prediction with reject-option

* If we have confidence measure for each prediction — abstain from decision making if our
confidence is below a certain threshold.

* With a good confidence measure — increasing the threshold results in a better
performance.

* Tradeoff — we have predictions for a fewer samples (i.e., low coverage).
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Selective Classification

Prior Work

 Classifiers can have good average performance but may perform poorly on certain
protected / sensitive groups [Jones et al. 2020].
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Selective Classification

Prior Work

 Classifiers can have good average performance but may perform poorly on certain
protected / sensitive groups [Jones et al. 2020].
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* To mitigate such disparities, recent works [Lee et al., 2021; Schreuder & Chzhen, 2021]
proposed methods for performing fair selective classification.
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Selective Regression

Designing an Uncertainty measure

Classification — learned using the softmax output (of an existing classifier)

Regression — no direct method to learn from an existing regressor designed only to
predict the conditional mean
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Biases in Selective Regression

Contributions

* We show that selective regression, like selective classification, can decrease the
performance of some protected groups when coverage is reduced.
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Fair Selective Regression

Contributions

* Monotonic selective risk — requires the risk (i.e., MSE) of each subgroup to
monotonically decrease with a decrease in coverage.

* Monotonic selective risk is met if a feature representation:
1. satisfies the standard sufficiency criterion or
2. is calibrated for mean and variance.

* Two algorithms:

1. impose the sufficiency criterion by regularizing an upper bound of conditional
mutual information.

2. impose the calibration for mean and variance by regularizing a contrastive loss.
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