PLATINUM: Semi-Supervised Model Agnostic Meta-Learning using Submodular Mutual Information Changbin Li*, Suraj Kothawade*, Feng Chen, Rishabh Iyer July 2022, Baltimore MD ## **Semi-supervised Few-shot Learning** #### **Submodular Functions** $$f(A \cup v) - f(A) \ge f(B \cup v) - f(B)$$, if $A \subseteq B$ f = # of distinct colors of balls in the urn. ## How to select subsets from unlabeled data to augment each task? ## Submodular Mutual Information (SMI) Figure Given a set of data points $V = \{1, \dots, n\}$, and sets $A, Q \subseteq V$, the Submodular Mutual Information $I_F(A; Q) = F(A) + F(Q) - F(A \cup Q)$, where the information of a **set** of points is F(A) and F is a submodular function. ## Submodular Mutual Information (SMI) Figure Given a set of data points $V = \{1, \dots, n\}$, and sets $A, Q \subseteq V$, the Submodular Mutual Information $I_F(A; Q) = F(A) + F(Q) - F(A \cup Q)$, where the information of a **set** of points is F(A) and F is a submodular function. | Name | $I_F(A;Q)$ | |-----------------------------|--| | Graph Cut MI (GCMI) | $2\sum_{i\in A}\sum_{j\in Q}s_{ij}$ | | Facility Location MI (FLMI) | $\sum_{i \in Q} \max_{j \in A} s_{ij} + \eta \sum_{i \in A} \max_{j \in Q} s_{ij}$ | #### **Overview of PLATINUM** - Use Submodular Mutual Information (SMI) for semi-supervision. - Augment both Support and Query sets in Inner and Outer loop of MAML. - Support and Query sets are augmented using per-class instantiations of SMI. #### **Overview of PLATINUM** ## **Experimental Setting** #### **Datasets** minilmageNet, tieredImageNet, CIFAR-FS Semi-supervised few-shot classification (Ren et al., 2018) - 5-way 1-shot (5-shot) - backbones: 4-layer CONV (for all approaches) - Two scenarios - There exist OOD examples in unlabeled set - There's no OOD examples in unlabeled set - Smaller ρ (1%, 10%, 20%, ...), $\rho = \frac{Count(labeled\ examples\ per\ class)}{Count(Total\ examples\ per\ class)}$ ($\rho = 40\%$ for minilmageNet, 10% for tieredImageNet in Ren et al., 2018) ### **Experiments** #### PLATINUM (ours) - SMI functions: GCMI, FLMI - On the top of first-order MAML #### Meta-learning based baselines: - Extended prototypical network (Ren et al., 2018) - TPN-semi (Liu et al., 2019) - LST (Li et al., 2019) - MAML: only supervised setting is considered. Note: we did not consider transfer-learning based approaches for fair comparison. #### 5-way classification accuracy - minilmageNet - $\rho = 1\%$ - tiredImageNet - $\rho = 1\%$ | | 1-s | hot | 5-s | hot | |---|--------------------|------------------------------|--------------------|------------------------------| | Methods | w/o OOD | w/ OOD | w/o OOD | w/ OOD | | Soft k-Means (Ren et al., 2018) | 24.61±0.64 | 23.57 ± 0.63 | 38.20±1.64 | $38.07{\scriptstyle\pm1.53}$ | | Soft k-Means+Cluster (Ren et al., 2018) | 15.76 ± 0.59 | 9.77 ± 0.51 | 33.65±1.53 | 30.47 ± 1.42 | | Masked Soft k-Means (Ren et al., 2018) | 25.48 ± 0.67 | 25.03 ± 0.68 | 39.33±1.55 | 38.48 ± 1.74 | | TPN-semi (Liu et al., 2019) | 40.25 ± 0.92 | 26.70 ± 0.98 | 46.27±1.67 | 36.81 ± 0.87 | | LST(small) (Li et al., 2019) | 37.65 ± 0.78 | 37.82 ± 0.91 | 61.50±0.92 | 57.67 ± 0.85 | | LST(large) (Li et al., 2019) | 41.36±0.98 | $39.32{\scriptstyle\pm0.95}$ | 61.51±0.98 | $59.24{\scriptstyle\pm0.95}$ | | MAML [†] (Finn et al., 2017) | 35.26 ± 0.85 | 35.26 ± 0.85 | 60.22±0.83 | 60.20 ± 0.83 | | VAT (Miyato et al., 2018) | 36.55 ± 0.86 | 34.03 ± 0.84 | 61.60±0.83 | 61.24 ± 0.88 | | PL (Lee et al., 2013) | 37.71 ± 0.94 | $35.16{\scriptstyle\pm0.85}$ | 60.64 ± 0.92 | 60.31 ± 0.87 | | GCMI (ours) | 41.94±0.96 | 42.57 ±0.93 | 63.62±0.95 | 63.54 ±0.94 | | FLMI (ours) | 42.27 ±0.95 | 41.53 ± 0.97 | 63.80 ±0.92 | 63.44 ± 0.99 | | | 1-s | hot | 5-s | hot | |---|--------------------|------------------------------|--------------------|------------------------------| | Methods | w/o OOD | w/ OOD | w/o OOD | w/ OOD | | Soft k-Means (Ren et al., 2018) | 27.53±0.74 | $27.04{\scriptstyle\pm0.76}$ | 44.63±1.19 | 44.78 ± 1.05 | | Soft k-Means+Cluster (Ren et al., 2018) | 30.48 ± 0.84 | 31.30 ± 0.86 | 46.93±1.18 | 49.33 ± 1.17 | | Masked Soft k-Means (Ren et al., 2018) | 33.85±0.84 | 32.99 ± 0.87 | 47.63±1.12 | 47.35 ± 1.08 | | TPN-semi (Liu et al., 2019) | 44.13±1.04 | 31.83 ± 1.09 | 58.53±1.57 | $56.92{\scriptstyle\pm1.67}$ | | LST(<i>small</i>) (Li et al., 2019) | 42.86 ± 0.86 | 42.33 ± 0.95 | 59.55 ± 0.92 | 58.82 ± 0.93 | | LST(<i>large</i>) (Li et al., 2019) | 44.34±0.97 | 44.59 ± 0.99 | 61.45±0.90 | $60.75{\scriptstyle\pm0.93}$ | | MAML [†] (Finn et al., 2017) | 41.96±0.84 | $41.96{\scriptstyle\pm0.84}$ | 61.30±0.85 | 61.30 ± 0.85 | | VAT (Miyato et al., 2018) | 41.52 ± 0.82 | 41.51 ± 0.79 | 59.98±0.83 | 60.01 ± 0.87 | | PL (Lee et al., 2013) | 41.22±0.89 | $40.87{\scriptstyle\pm0.83}$ | 61.70±0.77 | $60.57{\scriptstyle\pm0.87}$ | | GCMI (ours) | 45.49±0.91 | 45.55 ± 0.90 | 63.67±0.83 | 62.59 ±0.85 | | FLMI (ours) | 45.63 ±0.86 | 46.19 ±0.94 | 63.75 ±0.87 | 62.19 ± 0.91 | #### 5-way classification accuracy - minilmageNet - $\rho = 40\%$, exactly the same setting as previous works. | | 1-shot | | 5-shot | | |---|--------------------|------------------------------|--------------------|-------------------------| | Methods | w/o OOD | w/ OOD | w/o OOD | w/ OOD | | Soft k-Means (Ren et al., 2018) | 50.09±0.45 | $48.70{\scriptstyle\pm0.32}$ | 64.59±0.28 | 63.55 ± 0.28 | | Soft k-Means Cluster (Ren et al., 2018) | 49.03±0.24 | 48.86 ± 0.32 | 63.08±0.18 | 61.27 ± 0.24 | | Masked Soft k-Means (Ren et al., 2018) | 50.41±0.31 | 49.04 ± 0.31 | 64.39 ± 0.24 | 62.96 ± 0.14 | | TPN-semi (Liu et al., 2019) | 52.78 ±0.27 | 50.43 ± 0.84 | 66.42 ± 0.21 | 64.95 ± 0.73 | | GCMI (large, ours) | 51.35 ±0.93 | 50.85 ±0.89 | 66.65 ±0.75 | 66.66 ±0.74 | | FLMI (large, ours) | 51.06±0.96 | $49.83{\scriptstyle\pm0.91}$ | 67.34 ±0.72 | 66.20 \pm 0.73 | #### **Ablation** #### Different number of OOD classes Comparison under different number of OOD classes in the Unlabeled Set for 5-shot case on *mini*lmageNet w/ vs. w/o outer selection Left: 1-shot, Right: 5-shot. Both of them are on *mini*lmageNet. #### **Ablation** Other Backbones? The accuracy (%) of 5-way 5-shot experiment - on minilmageNet - Pretrained ResNet-12 - $\rho = 40\%$ (the same ratio from Ren et al., 2018 and Li et al., 2019) | MAML | LST (Li et al., 2019) | GCMI (large, ours) | |------------------------------|-----------------------|--------------------| | $75.21{\scriptstyle\pm0.65}$ | 78.70±0.80 | 79.44±0.76 | #### Conclusion - PLATINUM: A novel semi-supervised model-agnostic meta-learning framework. - It leverages submodular mutual information functions as per-class acquisition functions to select more data from unlabeled data in the inner and outer loop of meta-learning. - Meta-learning based semi-supervised few-shot learning experiments validates the effectiveness of embedding semi-supervision on the top of first-order MAML, especially for small ratio of labeled to unlabeled samples. ## Thank You For more details, do visit our poster.