

PLATINUM: Semi-Supervised Model Agnostic Meta-Learning using Submodular Mutual Information

Changbin Li*, Suraj Kothawade*, Feng Chen, Rishabh Iyer

July 2022, Baltimore MD

Semi-supervised Few-shot Learning

Submodular Functions

$$f(A \cup v) - f(A) \ge f(B \cup v) - f(B)$$
, if $A \subseteq B$

f = # of distinct colors of balls in the urn.

How to select subsets from unlabeled data to augment each task?

Submodular Mutual Information (SMI)

Figure Given a set of data points $V = \{1, \dots, n\}$, and sets $A, Q \subseteq V$, the Submodular Mutual Information $I_F(A; Q) = F(A) + F(Q) - F(A \cup Q)$, where the information of a **set** of points is F(A) and F is a submodular function.

Submodular Mutual Information (SMI)

Figure Given a set of data points $V = \{1, \dots, n\}$, and sets $A, Q \subseteq V$, the Submodular Mutual Information $I_F(A; Q) = F(A) + F(Q) - F(A \cup Q)$, where the information of a **set** of points is F(A) and F is a submodular function.

Name	$I_F(A;Q)$
Graph Cut MI (GCMI)	$2\sum_{i\in A}\sum_{j\in Q}s_{ij}$
Facility Location MI (FLMI)	$\sum_{i \in Q} \max_{j \in A} s_{ij} + \eta \sum_{i \in A} \max_{j \in Q} s_{ij}$

Overview of PLATINUM

- Use Submodular Mutual Information (SMI) for semi-supervision.
- Augment both Support and Query sets in Inner and Outer loop of MAML.
- Support and Query sets are augmented using per-class instantiations of SMI.

Overview of PLATINUM

Experimental Setting

Datasets

minilmageNet, tieredImageNet, CIFAR-FS

Semi-supervised few-shot classification (Ren et al., 2018)

- 5-way 1-shot (5-shot)
- backbones: 4-layer CONV (for all approaches)
- Two scenarios
 - There exist OOD examples in unlabeled set
 - There's no OOD examples in unlabeled set
- Smaller ρ (1%, 10%, 20%, ...), $\rho = \frac{Count(labeled\ examples\ per\ class)}{Count(Total\ examples\ per\ class)}$ ($\rho = 40\%$ for minilmageNet, 10% for tieredImageNet in Ren et al., 2018)

Experiments

PLATINUM (ours)

- SMI functions: GCMI, FLMI
- On the top of first-order MAML

Meta-learning based baselines:

- Extended prototypical network (Ren et al., 2018)
- TPN-semi (Liu et al., 2019)
- LST (Li et al., 2019)
- MAML: only supervised setting is considered.

Note: we did not consider transfer-learning based approaches for fair comparison.

5-way classification accuracy

- minilmageNet
- $\rho = 1\%$

- tiredImageNet
- $\rho = 1\%$

	1-s	hot	5-s	hot
Methods	w/o OOD	w/ OOD	w/o OOD	w/ OOD
Soft k-Means (Ren et al., 2018)	24.61±0.64	23.57 ± 0.63	38.20±1.64	$38.07{\scriptstyle\pm1.53}$
Soft k-Means+Cluster (Ren et al., 2018)	15.76 ± 0.59	9.77 ± 0.51	33.65±1.53	30.47 ± 1.42
Masked Soft k-Means (Ren et al., 2018)	25.48 ± 0.67	25.03 ± 0.68	39.33±1.55	38.48 ± 1.74
TPN-semi (Liu et al., 2019)	40.25 ± 0.92	26.70 ± 0.98	46.27±1.67	36.81 ± 0.87
LST(small) (Li et al., 2019)	37.65 ± 0.78	37.82 ± 0.91	61.50±0.92	57.67 ± 0.85
LST(large) (Li et al., 2019)	41.36±0.98	$39.32{\scriptstyle\pm0.95}$	61.51±0.98	$59.24{\scriptstyle\pm0.95}$
MAML [†] (Finn et al., 2017)	35.26 ± 0.85	35.26 ± 0.85	60.22±0.83	60.20 ± 0.83
VAT (Miyato et al., 2018)	36.55 ± 0.86	34.03 ± 0.84	61.60±0.83	61.24 ± 0.88
PL (Lee et al., 2013)	37.71 ± 0.94	$35.16{\scriptstyle\pm0.85}$	60.64 ± 0.92	60.31 ± 0.87
GCMI (ours)	41.94±0.96	42.57 ±0.93	63.62±0.95	63.54 ±0.94
FLMI (ours)	42.27 ±0.95	41.53 ± 0.97	63.80 ±0.92	63.44 ± 0.99

	1-s	hot	5-s	hot
Methods	w/o OOD	w/ OOD	w/o OOD	w/ OOD
Soft k-Means (Ren et al., 2018)	27.53±0.74	$27.04{\scriptstyle\pm0.76}$	44.63±1.19	44.78 ± 1.05
Soft k-Means+Cluster (Ren et al., 2018)	30.48 ± 0.84	31.30 ± 0.86	46.93±1.18	49.33 ± 1.17
Masked Soft k-Means (Ren et al., 2018)	33.85±0.84	32.99 ± 0.87	47.63±1.12	47.35 ± 1.08
TPN-semi (Liu et al., 2019)	44.13±1.04	31.83 ± 1.09	58.53±1.57	$56.92{\scriptstyle\pm1.67}$
LST(<i>small</i>) (Li et al., 2019)	42.86 ± 0.86	42.33 ± 0.95	59.55 ± 0.92	58.82 ± 0.93
LST(<i>large</i>) (Li et al., 2019)	44.34±0.97	44.59 ± 0.99	61.45±0.90	$60.75{\scriptstyle\pm0.93}$
MAML [†] (Finn et al., 2017)	41.96±0.84	$41.96{\scriptstyle\pm0.84}$	61.30±0.85	61.30 ± 0.85
VAT (Miyato et al., 2018)	41.52 ± 0.82	41.51 ± 0.79	59.98±0.83	60.01 ± 0.87
PL (Lee et al., 2013)	41.22±0.89	$40.87{\scriptstyle\pm0.83}$	61.70±0.77	$60.57{\scriptstyle\pm0.87}$
GCMI (ours)	45.49±0.91	45.55 ± 0.90	63.67±0.83	62.59 ±0.85
FLMI (ours)	45.63 ±0.86	46.19 ±0.94	63.75 ±0.87	62.19 ± 0.91

5-way classification accuracy

- minilmageNet
- $\rho = 40\%$, exactly the same setting as previous works.

	1-shot		5-shot	
Methods	w/o OOD	w/ OOD	w/o OOD	w/ OOD
Soft k-Means (Ren et al., 2018)	50.09±0.45	$48.70{\scriptstyle\pm0.32}$	64.59±0.28	63.55 ± 0.28
Soft k-Means Cluster (Ren et al., 2018)	49.03±0.24	48.86 ± 0.32	63.08±0.18	61.27 ± 0.24
Masked Soft k-Means (Ren et al., 2018)	50.41±0.31	49.04 ± 0.31	64.39 ± 0.24	62.96 ± 0.14
TPN-semi (Liu et al., 2019)	52.78 ±0.27	50.43 ± 0.84	66.42 ± 0.21	64.95 ± 0.73
GCMI (large, ours)	51.35 ±0.93	50.85 ±0.89	66.65 ±0.75	66.66 ±0.74
FLMI (large, ours)	51.06±0.96	$49.83{\scriptstyle\pm0.91}$	67.34 ±0.72	66.20 \pm 0.73

Ablation

Different number of OOD classes

Comparison under different number of OOD classes in the Unlabeled Set for 5-shot case on *mini*lmageNet

w/ vs. w/o outer selection

Left: 1-shot, Right: 5-shot. Both of them are on *mini*lmageNet.

Ablation

Other Backbones?

The accuracy (%) of 5-way 5-shot experiment

- on minilmageNet
- Pretrained ResNet-12
- $\rho = 40\%$ (the same ratio from Ren et al., 2018 and Li et al., 2019)

MAML	LST (Li et al., 2019)	GCMI (large, ours)
$75.21{\scriptstyle\pm0.65}$	78.70±0.80	79.44±0.76

Conclusion

- PLATINUM: A novel semi-supervised model-agnostic meta-learning framework.
- It leverages submodular mutual information functions as per-class acquisition functions to select more data from unlabeled data in the inner and outer loop of meta-learning.
- Meta-learning based semi-supervised few-shot learning experiments validates the effectiveness of embedding semi-supervision on the top of first-order MAML, especially for small ratio of labeled to unlabeled samples.

Thank You

For more details, do visit our poster.