
Batched Dueling Bandits

Arpit Agarwal 1 Rohan Ghuge 2 Viswanath Nagarajan 2

1Data Science Institute, Columbia University.

2Department of Industrial and Operations Engineering, University of Michigan.

July 18, 2022

1 / 24

Motivation I: Web-Search Ranking

2 / 24

Motivation I: Web-Search Ranking

2 / 24

Motivation I: Web-Search Ranking

2 / 24

Motivation I: Web-Search Ranking

2 / 24

Motivation II: Movie Recommendation

3 / 24

Motivation II: Movie Recommendation

3 / 24

Dueling Bandits

▶ K arms

▶ time horizon T
▶ in trial t ∈ [T]:

select pair (it , jt)
observe noisy comparison

▶ noisy comparison:

Pr(i beats j) = Pi,j

comparisons are independent
Pi,j =

1
2 + ϵ(i , j): measure of distinguishability

▶ assume i∗ = best arm; ϵ(i∗, i) ≥ 0 for all i

Goal: perform noisy comparisons that have low regret wrt i∗

4 / 24

Dueling Bandits

▶ K arms

▶ time horizon T

▶ in trial t ∈ [T]:

select pair (it , jt)
observe noisy comparison

▶ noisy comparison:

Pr(i beats j) = Pi,j

comparisons are independent
Pi,j =

1
2 + ϵ(i , j): measure of distinguishability

▶ assume i∗ = best arm; ϵ(i∗, i) ≥ 0 for all i

Goal: perform noisy comparisons that have low regret wrt i∗

4 / 24

Dueling Bandits

▶ K arms

▶ time horizon T
▶ in trial t ∈ [T]:

select pair (it , jt)

observe noisy comparison

▶ noisy comparison:

Pr(i beats j) = Pi,j

comparisons are independent
Pi,j =

1
2 + ϵ(i , j): measure of distinguishability

▶ assume i∗ = best arm; ϵ(i∗, i) ≥ 0 for all i

Goal: perform noisy comparisons that have low regret wrt i∗

4 / 24

Dueling Bandits

▶ K arms

▶ time horizon T
▶ in trial t ∈ [T]:

select pair (it , jt)
observe noisy comparison

▶ noisy comparison:

Pr(i beats j) = Pi,j

comparisons are independent
Pi,j =

1
2 + ϵ(i , j): measure of distinguishability

▶ assume i∗ = best arm; ϵ(i∗, i) ≥ 0 for all i

Goal: perform noisy comparisons that have low regret wrt i∗

4 / 24

Dueling Bandits

▶ K arms

▶ time horizon T
▶ in trial t ∈ [T]:

select pair (it , jt)
observe noisy comparison

▶ noisy comparison:

Pr(i beats j) = Pi,j

comparisons are independent

Pi,j =
1
2 + ϵ(i , j): measure of distinguishability

▶ assume i∗ = best arm; ϵ(i∗, i) ≥ 0 for all i

Goal: perform noisy comparisons that have low regret wrt i∗

4 / 24

Dueling Bandits

▶ K arms

▶ time horizon T
▶ in trial t ∈ [T]:

select pair (it , jt)
observe noisy comparison

▶ noisy comparison:

Pr(i beats j) = Pi,j

comparisons are independent
Pi,j =

1
2 + ϵ(i , j): measure of distinguishability

▶ assume i∗ = best arm; ϵ(i∗, i) ≥ 0 for all i

Goal: perform noisy comparisons that have low regret wrt i∗

4 / 24

Dueling Bandits

▶ K arms

▶ time horizon T
▶ in trial t ∈ [T]:

select pair (it , jt)
observe noisy comparison

▶ noisy comparison:

Pr(i beats j) = Pi,j

comparisons are independent
Pi,j =

1
2 + ϵ(i , j): measure of distinguishability

▶ assume i∗ = best arm; ϵ(i∗, i) ≥ 0 for all i

Goal: perform noisy comparisons that have low regret wrt i∗

4 / 24

Dueling Bandits

▶ K arms

▶ time horizon T
▶ in trial t ∈ [T]:

select pair (it , jt)
observe noisy comparison

▶ noisy comparison:

Pr(i beats j) = Pi,j

comparisons are independent
Pi,j =

1
2 + ϵ(i , j): measure of distinguishability

▶ assume i∗ = best arm; ϵ(i∗, i) ≥ 0 for all i

Goal: perform noisy comparisons that have low regret wrt i∗

4 / 24

Regret: Motivation

want to maximize user satisfaction

5 / 24

Regret: Motivation

5 / 24

Regret: Motivation

5 / 24

Regret: Motivation

5 / 24

Regret: Motivation

5 / 24

Regret: Motivation

may help in learning; users may be unsatisfied

5 / 24

Regret: Motivation

5 / 24

Regret: Motivation

5 / 24

Regret: Motivation

5 / 24

Regret: Motivation

5 / 24

Regret: Motivation

5 / 24

Regret: Motivation

simultaneously learn and keep users satisfied

5 / 24

Regret

▶ let i∗ = best arm

▶ in trial t:

- (it , jt) selected

- r(t) = ϵit + ϵjt : measures sub-optimality against i∗

notation: ϵj = ϵ(i∗, j)

- total regret R(T) =
∑

t r(t)

Perform noisy comparisons with low regret wrt i∗

6 / 24

Regret

▶ let i∗ = best arm
▶ in trial t:

- (it , jt) selected

- r(t) = ϵit + ϵjt : measures sub-optimality against i∗

notation: ϵj = ϵ(i∗, j)

- total regret R(T) =
∑

t r(t)

Perform noisy comparisons with low regret wrt i∗

6 / 24

Regret

▶ let i∗ = best arm
▶ in trial t:

- (it , jt) selected

- r(t) = ϵit + ϵjt

: measures sub-optimality against i∗

notation: ϵj = ϵ(i∗, j)

- total regret R(T) =
∑

t r(t)

Perform noisy comparisons with low regret wrt i∗

6 / 24

Regret

▶ let i∗ = best arm
▶ in trial t:

- (it , jt) selected

- r(t) = ϵit + ϵjt : measures sub-optimality against i∗

notation: ϵj = ϵ(i∗, j)

- total regret R(T) =
∑

t r(t)

Perform noisy comparisons with low regret wrt i∗

6 / 24

Regret

▶ let i∗ = best arm
▶ in trial t:

- (it , jt) selected

- r(t) = ϵit + ϵjt : measures sub-optimality against i∗

notation: ϵj = ϵ(i∗, j)

- total regret R(T) =
∑

t r(t)

Perform noisy comparisons with low regret wrt i∗

6 / 24

Regret

▶ let i∗ = best arm
▶ in trial t:

- (it , jt) selected

- r(t) = ϵit + ϵjt : measures sub-optimality against i∗

notation: ϵj = ϵ(i∗, j)

- total regret R(T) =
∑

t r(t)

Perform noisy comparisons with low regret wrt i∗

6 / 24

Full Adaptivity

▶ policy updates one at a time

▶ can use prior observations to make selection

▶ may be infeasible in large systems

▶ requires large computational resources

7 / 24

Full Adaptivity

▶ policy updates one at a time

▶ can use prior observations to make selection

▶ may be infeasible in large systems

▶ requires large computational resources

7 / 24

Full Adaptivity

▶ policy updates one at a time

▶ can use prior observations to make selection

▶ may be infeasible in large systems

▶ requires large computational resources

7 / 24

Full Adaptivity

▶ policy updates one at a time

▶ can use prior observations to make selection

▶ may be infeasible in large systems

▶ requires large computational resources

7 / 24

Full Adaptivity

▶ policy updates one at a time

▶ can use prior observations to make selection

▶ may be infeasible in large systems

▶ requires large computational resources

7 / 24

Limited Adaptivity: Batching

▶ learner makes multiple comparisons in parallel

▶ receives all feedback simultaneously

▶ adaptively selects next batch

Given number of batches B, perform B batches of noisy com-
parisons with low regret wrt i∗

8 / 24

Limited Adaptivity: Batching

▶ learner makes multiple comparisons in parallel

▶ receives all feedback simultaneously

▶ adaptively selects next batch

Given number of batches B, perform B batches of noisy com-
parisons with low regret wrt i∗

8 / 24

Limited Adaptivity: Batching

▶ learner makes multiple comparisons in parallel

▶ receives all feedback simultaneously

▶ adaptively selects next batch

Given number of batches B, perform B batches of noisy com-
parisons with low regret wrt i∗

8 / 24

Limited Adaptivity: Batching

▶ learner makes multiple comparisons in parallel

▶ receives all feedback simultaneously

▶ adaptively selects next batch

Given number of batches B, perform B batches of noisy com-
parisons with low regret wrt i∗

8 / 24

Limited Adaptivity: Batching

▶ learner makes multiple comparisons in parallel

▶ receives all feedback simultaneously

▶ adaptively selects next batch

Given number of batches B, perform B batches of noisy com-
parisons with low regret wrt i∗

8 / 24

Main Results: Informal

▶ Trade-off b/w # batches and regret under two well-studied
pairwise comparison models:

(1) SST + STI
(2) Condorcet

▶ O(BT 1/B log(T)) regret in O(B) rounds

- O(log2(T)) regret in O(log(T)) rounds
Ignoring dependence on K

▶ Lower bound: Ω(T 1/B) in B rounds

9 / 24

Main Results: Informal

▶ Trade-off b/w # batches and regret under two well-studied
pairwise comparison models:

(1) SST + STI
(2) Condorcet

▶ O(BT 1/B log(T)) regret in O(B) rounds

- O(log2(T)) regret in O(log(T)) rounds
Ignoring dependence on K

▶ Lower bound: Ω(T 1/B) in B rounds

9 / 24

Main Results: Informal

▶ Trade-off b/w # batches and regret under two well-studied
pairwise comparison models:

(1) SST + STI
(2) Condorcet

▶ O(BT 1/B log(T)) regret in O(B) rounds

- O(log2(T)) regret in O(log(T)) rounds
Ignoring dependence on K

▶ Lower bound: Ω(T 1/B) in B rounds

9 / 24

Pairwise Comparison Models
▶ ϵ(i , j) = Pi ,j − 1/2

▶ Condorcet: ∃ i∗ such that ϵ(i∗, i) ≥ 0 for i ̸= i∗

- there exists a best arm

▶ SST + STI: ∃ ordering ≻ such that for i ≻ j ≻ k :

- ϵ(i , k) ≥ max{ϵ(i , j), ϵ(j , k)} (Strong Stoch. Transitivity)

- ϵ(i , k) ≤ ϵ(i , j) + ϵ(j , k) (Stoch. Triangle Inequality)

▶ Condorcet setting is more general

▶ Extensive amount of work on sequential algs: Yue et al.
(2012), Yue and Joachims (2011), Zoghi et al. (2014),
Komiyama et al. (2015)

10 / 24

Pairwise Comparison Models
▶ ϵ(i , j) = Pi ,j − 1/2

▶ Condorcet: ∃ i∗ such that ϵ(i∗, i) ≥ 0 for i ̸= i∗

- there exists a best arm

▶ SST + STI: ∃ ordering ≻ such that for i ≻ j ≻ k :

- ϵ(i , k) ≥ max{ϵ(i , j), ϵ(j , k)} (Strong Stoch. Transitivity)

- ϵ(i , k) ≤ ϵ(i , j) + ϵ(j , k) (Stoch. Triangle Inequality)

▶ Condorcet setting is more general

▶ Extensive amount of work on sequential algs: Yue et al.
(2012), Yue and Joachims (2011), Zoghi et al. (2014),
Komiyama et al. (2015)

10 / 24

Pairwise Comparison Models
▶ ϵ(i , j) = Pi ,j − 1/2

▶ Condorcet: ∃ i∗ such that ϵ(i∗, i) ≥ 0 for i ̸= i∗

- there exists a best arm

▶ SST + STI: ∃ ordering ≻ such that for i ≻ j ≻ k :

- ϵ(i , k) ≥ max{ϵ(i , j), ϵ(j , k)} (Strong Stoch. Transitivity)

- ϵ(i , k) ≤ ϵ(i , j) + ϵ(j , k) (Stoch. Triangle Inequality)

▶ Condorcet setting is more general

▶ Extensive amount of work on sequential algs: Yue et al.
(2012), Yue and Joachims (2011), Zoghi et al. (2014),
Komiyama et al. (2015)

10 / 24

Pairwise Comparison Models
▶ ϵ(i , j) = Pi ,j − 1/2

▶ Condorcet: ∃ i∗ such that ϵ(i∗, i) ≥ 0 for i ̸= i∗

- there exists a best arm

▶ SST + STI: ∃ ordering ≻ such that for i ≻ j ≻ k :

- ϵ(i , k) ≥ max{ϵ(i , j), ϵ(j , k)} (Strong Stoch. Transitivity)

- ϵ(i , k) ≤ ϵ(i , j) + ϵ(j , k) (Stoch. Triangle Inequality)

▶ Condorcet setting is more general

▶ Extensive amount of work on sequential algs: Yue et al.
(2012), Yue and Joachims (2011), Zoghi et al. (2014),
Komiyama et al. (2015)

10 / 24

Pairwise Comparison Models
▶ ϵ(i , j) = Pi ,j − 1/2

▶ Condorcet: ∃ i∗ such that ϵ(i∗, i) ≥ 0 for i ̸= i∗

- there exists a best arm

▶ SST + STI: ∃ ordering ≻ such that for i ≻ j ≻ k :

- ϵ(i , k) ≥ max{ϵ(i , j), ϵ(j , k)} (Strong Stoch. Transitivity)

- ϵ(i , k) ≤ ϵ(i , j) + ϵ(j , k) (Stoch. Triangle Inequality)

▶ Condorcet setting is more general

▶ Extensive amount of work on sequential algs: Yue et al.
(2012), Yue and Joachims (2011), Zoghi et al. (2014),
Komiyama et al. (2015)

10 / 24

Pairwise Comparison Models
▶ ϵ(i , j) = Pi ,j − 1/2

▶ Condorcet: ∃ i∗ such that ϵ(i∗, i) ≥ 0 for i ̸= i∗

- there exists a best arm

▶ SST + STI: ∃ ordering ≻ such that for i ≻ j ≻ k :

- ϵ(i , k) ≥ max{ϵ(i , j), ϵ(j , k)} (Strong Stoch. Transitivity)

- ϵ(i , k) ≤ ϵ(i , j) + ϵ(j , k) (Stoch. Triangle Inequality)

▶ Condorcet setting is more general

▶ Extensive amount of work on sequential algs: Yue et al.
(2012), Yue and Joachims (2011), Zoghi et al. (2014),
Komiyama et al. (2015)

10 / 24

Main Results

Theorem 1

There is an algorithm for batched dueling bandits that uses
at most B rounds, and if the instance admits a Condorcet
winner, the expected regret is bounded by

E[R(T)] ≤ 3KT 1/B log
(
6TK 2B

) ∑
j :ϵj>0

1

ϵj
.

▶ simplified: O
(
KT 1/B log(T)

∑
j
1
ϵj

)
▶ worst-case: O

(
K2T 1/B log(T)

ϵmin

)
; ϵmin = minj :ϵj>0 ϵj

▶ lower bound result: Ω
(
KT 1/B

B2ϵmin

)

11 / 24

Main Results

Theorem 1

There is an algorithm for batched dueling bandits that uses
at most B rounds, and if the instance admits a Condorcet
winner, the expected regret is bounded by

E[R(T)] ≤ 3KT 1/B log
(
6TK 2B

) ∑
j :ϵj>0

1

ϵj
.

▶ simplified: O
(
KT 1/B log(T)

∑
j
1
ϵj

)
▶ worst-case: O

(
K2T 1/B log(T)

ϵmin

)
; ϵmin = minj :ϵj>0 ϵj

▶ lower bound result: Ω
(
KT 1/B

B2ϵmin

)
11 / 24

Main Results

Theorem 2

There is an algorithm for batched dueling bandits that uses
at most B + 1 batches, and if the instance satisfies the SST
and STI assumptions, the expected regret is bounded by

E[R(T)] =
∑
j :ϵj>0

O

(√
KT 1/B log(T)

ϵj

)
.

▶ worst-case: O
(
K1.5T 1/B log(T)

ϵmin

)

12 / 24

Main Results

Theorem 2

There is an algorithm for batched dueling bandits that uses
at most B + 1 batches, and if the instance satisfies the SST
and STI assumptions, the expected regret is bounded by

E[R(T)] =
∑
j :ϵj>0

O

(√
KT 1/B log(T)

ϵj

)
.

▶ worst-case: O
(
K1.5T 1/B log(T)

ϵmin

)

12 / 24

Main Results

Theorem 3

There is an algorithm for batched dueling bandits that uses
at most 2B + 1 batches, and if the instance satisfies the SST
and STI assumptions, the expected regret is bounded by

E[R(T)] = O

(
KBT 1/B log(T)

ϵmin

)
.

▶ better dependence on K ; additional dependence on B

13 / 24

Main Results

Theorem 3

There is an algorithm for batched dueling bandits that uses
at most 2B + 1 batches, and if the instance satisfies the SST
and STI assumptions, the expected regret is bounded by

E[R(T)] = O

(
KBT 1/B log(T)

ϵmin

)
.

▶ better dependence on K

; additional dependence on B

13 / 24

Main Results

Theorem 3

There is an algorithm for batched dueling bandits that uses
at most 2B + 1 batches, and if the instance satisfies the SST
and STI assumptions, the expected regret is bounded by

E[R(T)] = O

(
KBT 1/B log(T)

ϵmin

)
.

▶ better dependence on K ; additional dependence on B

13 / 24

Comparison to Sequential Algs

Notation: ϵj = ϵ(i∗, j), ϵmin = minj :ϵj>0 ϵj

Setting
Fully Adaptive Our Algorithms

(prior work) Regret Rounds

Condorcet O
(
K logT

ϵmin

)
+ O

(
K2

ϵmin

)
O
(
K2T 1/B log(T)

ϵmin

)
B

SST + STI O
(
K log(T)

ϵmin

)
O
(
KBT 1/B log(T)

ϵmin

)
2B + 1

14 / 24

Comparison to Sequential Algs

Notation: ϵj = ϵ(i∗, j), ϵmin = minj :ϵj>0 ϵj

Setting
Fully Adaptive Our Algorithms

(prior work) Regret Rounds

Condorcet O
(
K logT

ϵmin

)
+ O

(
K2

ϵmin

)
O
(
K2 log(T)

ϵmin

)
log(T)

SST + STI O
(
K log(T)

ϵmin

)
O
(
K log2(T)

ϵmin

)
2 log(T) + 1

14 / 24

Intuition

15 / 24

Intuition

few comparisons suffice to decide better option

15 / 24

Intuition

15 / 24

Intuition

may require many comparisons to decide better option

15 / 24

Algorithm

Existence of Condorcet winner; i.e. best arm

In batch r ∈ [B]:
▶ compare all surviving pairs cr = T r/B times
▶ so we don’t waste comparisons on sub-optimal arms
▶ eliminate sub-optimal arms before moving to next batch

Elimination criteria:

▶ set precision γr =
√
log
(
1
δ

)
/2cr ; δ ≈ T−4

▶ delete j if P̂i,j > 1/2 + γr

P̂i,j =
times i wins over j

times i and j compared in round r

16 / 24

Algorithm

Existence of Condorcet winner; i.e. best arm

In batch r ∈ [B]:
▶ compare all surviving pairs cr = T r/B times

▶ so we don’t waste comparisons on sub-optimal arms
▶ eliminate sub-optimal arms before moving to next batch

Elimination criteria:

▶ set precision γr =
√
log
(
1
δ

)
/2cr ; δ ≈ T−4

▶ delete j if P̂i,j > 1/2 + γr

P̂i,j =
times i wins over j

times i and j compared in round r

16 / 24

Algorithm

Existence of Condorcet winner; i.e. best arm

In batch r ∈ [B]:
▶ compare all surviving pairs cr = T r/B times
▶ so we don’t waste comparisons on sub-optimal arms

▶ eliminate sub-optimal arms before moving to next batch

Elimination criteria:

▶ set precision γr =
√
log
(
1
δ

)
/2cr ; δ ≈ T−4

▶ delete j if P̂i,j > 1/2 + γr

P̂i,j =
times i wins over j

times i and j compared in round r

16 / 24

Algorithm

Existence of Condorcet winner; i.e. best arm

In batch r ∈ [B]:
▶ compare all surviving pairs cr = T r/B times
▶ so we don’t waste comparisons on sub-optimal arms
▶ eliminate sub-optimal arms before moving to next batch

Elimination criteria:

▶ set precision γr =
√
log
(
1
δ

)
/2cr ; δ ≈ T−4

▶ delete j if P̂i,j > 1/2 + γr

P̂i,j =
times i wins over j

times i and j compared in round r

16 / 24

Algorithm

Existence of Condorcet winner; i.e. best arm

In batch r ∈ [B]:
▶ compare all surviving pairs cr = T r/B times
▶ so we don’t waste comparisons on sub-optimal arms
▶ eliminate sub-optimal arms before moving to next batch

Elimination criteria:

▶ set precision γr =
√
log
(
1
δ

)
/2cr ; δ ≈ T−4

▶ delete j if P̂i,j > 1/2 + γr

P̂i,j =
times i wins over j

times i and j compared in round r

16 / 24

Algorithm

Existence of Condorcet winner; i.e. best arm

In batch r ∈ [B]:
▶ compare all surviving pairs cr = T r/B times
▶ so we don’t waste comparisons on sub-optimal arms
▶ eliminate sub-optimal arms before moving to next batch

Elimination criteria:

▶ set precision γr =
√
log
(
1
δ

)
/2cr ; δ ≈ T−4

▶ delete j if P̂i,j > 1/2 + γr

P̂i,j =
times i wins over j

times i and j compared in round r

16 / 24

Regret Analysis I

▶ Correct estimate if |Pi ,j − P̂i ,j | ≤ γr : denoted Pi ,j ≈r P̂i ,j

▶ By Hoeffding: every estimate is correct in every batch with
high probability

17 / 24

Regret Analysis I

▶ Correct estimate if |Pi ,j − P̂i ,j | ≤ γr : denoted Pi ,j ≈r P̂i ,j

▶ By Hoeffding: every estimate is correct in every batch with
high probability

17 / 24

Regret Analysis II

Assumptions: Condorcet winner + Pi ,j ≈r P̂i ,j

Notation: ϵj = ϵ(i∗, j)

▶ Recall: if P̂i ,j > 1/2 + γr , delete j

▶ i∗ never deleted: else Pi ,i∗ ≤ P̂i ,j − γr < 1/2, contradiction

- can use i∗ as an anchor to eliminate others

▶ Suppose j not deleted in batch r : Pi∗,j ≤ 1/2 + 2γr

ϵj ≤ 2γr = 2
√

log(1/δ)
2cr

⇒ cr ≤ 2 log(1/δ)
ϵ2j

▶ Let r be the last such batch; then

- # comparisons of j and i∗ ≤
∑r+1

τ=1 cτ ≤ 2T 1/B · 2 log(1/δ)
ϵ2j

- total comparisons for j ≤ K · 2T 1/B · 2 log(1/δ)
ϵ2j

= Tj

- total regret contribution: ϵj · Tj

▶ Summing over all j gives the Condorcet guarantee!

18 / 24

Regret Analysis II

Assumptions: Condorcet winner + Pi ,j ≈r P̂i ,j

Notation: ϵj = ϵ(i∗, j)

▶ Recall: if P̂i ,j > 1/2 + γr , delete j

▶ i∗ never deleted: else Pi ,i∗ ≤ P̂i ,j − γr < 1/2, contradiction

- can use i∗ as an anchor to eliminate others

▶ Suppose j not deleted in batch r : Pi∗,j ≤ 1/2 + 2γr

ϵj ≤ 2γr = 2
√

log(1/δ)
2cr

⇒ cr ≤ 2 log(1/δ)
ϵ2j

▶ Let r be the last such batch; then

- # comparisons of j and i∗ ≤
∑r+1

τ=1 cτ ≤ 2T 1/B · 2 log(1/δ)
ϵ2j

- total comparisons for j ≤ K · 2T 1/B · 2 log(1/δ)
ϵ2j

= Tj

- total regret contribution: ϵj · Tj

▶ Summing over all j gives the Condorcet guarantee!

18 / 24

Regret Analysis II

Assumptions: Condorcet winner + Pi ,j ≈r P̂i ,j

Notation: ϵj = ϵ(i∗, j)

▶ Recall: if P̂i ,j > 1/2 + γr , delete j

▶ i∗ never deleted

: else Pi ,i∗ ≤ P̂i ,j − γr < 1/2, contradiction

- can use i∗ as an anchor to eliminate others

▶ Suppose j not deleted in batch r : Pi∗,j ≤ 1/2 + 2γr

ϵj ≤ 2γr = 2
√

log(1/δ)
2cr

⇒ cr ≤ 2 log(1/δ)
ϵ2j

▶ Let r be the last such batch; then

- # comparisons of j and i∗ ≤
∑r+1

τ=1 cτ ≤ 2T 1/B · 2 log(1/δ)
ϵ2j

- total comparisons for j ≤ K · 2T 1/B · 2 log(1/δ)
ϵ2j

= Tj

- total regret contribution: ϵj · Tj

▶ Summing over all j gives the Condorcet guarantee!

18 / 24

Regret Analysis II

Assumptions: Condorcet winner + Pi ,j ≈r P̂i ,j

Notation: ϵj = ϵ(i∗, j)

▶ Recall: if P̂i ,j > 1/2 + γr , delete j

▶ i∗ never deleted: else Pi ,i∗ ≤ P̂i ,j − γr < 1/2, contradiction

- can use i∗ as an anchor to eliminate others

▶ Suppose j not deleted in batch r : Pi∗,j ≤ 1/2 + 2γr

ϵj ≤ 2γr = 2
√

log(1/δ)
2cr

⇒ cr ≤ 2 log(1/δ)
ϵ2j

▶ Let r be the last such batch; then

- # comparisons of j and i∗ ≤
∑r+1

τ=1 cτ ≤ 2T 1/B · 2 log(1/δ)
ϵ2j

- total comparisons for j ≤ K · 2T 1/B · 2 log(1/δ)
ϵ2j

= Tj

- total regret contribution: ϵj · Tj

▶ Summing over all j gives the Condorcet guarantee!

18 / 24

Regret Analysis II

Assumptions: Condorcet winner + Pi ,j ≈r P̂i ,j

Notation: ϵj = ϵ(i∗, j)

▶ Recall: if P̂i ,j > 1/2 + γr , delete j

▶ i∗ never deleted: else Pi ,i∗ ≤ P̂i ,j − γr < 1/2, contradiction

- can use i∗ as an anchor to eliminate others

▶ Suppose j not deleted in batch r : Pi∗,j ≤ 1/2 + 2γr

ϵj ≤ 2γr = 2
√

log(1/δ)
2cr

⇒ cr ≤ 2 log(1/δ)
ϵ2j

▶ Let r be the last such batch; then

- # comparisons of j and i∗ ≤
∑r+1

τ=1 cτ ≤ 2T 1/B · 2 log(1/δ)
ϵ2j

- total comparisons for j ≤ K · 2T 1/B · 2 log(1/δ)
ϵ2j

= Tj

- total regret contribution: ϵj · Tj

▶ Summing over all j gives the Condorcet guarantee!

18 / 24

Regret Analysis II

Assumptions: Condorcet winner + Pi ,j ≈r P̂i ,j

Notation: ϵj = ϵ(i∗, j)

▶ Recall: if P̂i ,j > 1/2 + γr , delete j

▶ i∗ never deleted: else Pi ,i∗ ≤ P̂i ,j − γr < 1/2, contradiction

- can use i∗ as an anchor to eliminate others

▶ Suppose j not deleted in batch r : Pi∗,j ≤ 1/2 + 2γr

ϵj ≤ 2γr = 2
√

log(1/δ)
2cr

⇒ cr ≤ 2 log(1/δ)
ϵ2j

▶ Let r be the last such batch; then

- # comparisons of j and i∗ ≤
∑r+1

τ=1 cτ ≤ 2T 1/B · 2 log(1/δ)
ϵ2j

- total comparisons for j ≤ K · 2T 1/B · 2 log(1/δ)
ϵ2j

= Tj

- total regret contribution: ϵj · Tj

▶ Summing over all j gives the Condorcet guarantee!

18 / 24

Regret Analysis II

Assumptions: Condorcet winner + Pi ,j ≈r P̂i ,j

Notation: ϵj = ϵ(i∗, j)

▶ Recall: if P̂i ,j > 1/2 + γr , delete j

▶ i∗ never deleted: else Pi ,i∗ ≤ P̂i ,j − γr < 1/2, contradiction

- can use i∗ as an anchor to eliminate others

▶ Suppose j not deleted in batch r : Pi∗,j ≤ 1/2 + 2γr

ϵj ≤ 2γr = 2
√

log(1/δ)
2cr

⇒ cr ≤ 2 log(1/δ)
ϵ2j

▶ Let r be the last such batch; then

- # comparisons of j and i∗ ≤
∑r+1

τ=1 cτ ≤ 2T 1/B · 2 log(1/δ)
ϵ2j

- total comparisons for j ≤ K · 2T 1/B · 2 log(1/δ)
ϵ2j

= Tj

- total regret contribution: ϵj · Tj

▶ Summing over all j gives the Condorcet guarantee!

18 / 24

Regret Analysis II

Assumptions: Condorcet winner + Pi ,j ≈r P̂i ,j

Notation: ϵj = ϵ(i∗, j)

▶ Recall: if P̂i ,j > 1/2 + γr , delete j

▶ i∗ never deleted: else Pi ,i∗ ≤ P̂i ,j − γr < 1/2, contradiction

- can use i∗ as an anchor to eliminate others

▶ Suppose j not deleted in batch r : Pi∗,j ≤ 1/2 + 2γr

ϵj ≤ 2γr = 2
√

log(1/δ)
2cr

⇒ cr ≤ 2 log(1/δ)
ϵ2j

▶ Let r be the last such batch; then

- # comparisons of j and i∗ ≤
∑r+1

τ=1 cτ ≤ 2T 1/B · 2 log(1/δ)
ϵ2j

- total comparisons for j ≤ K · 2T 1/B · 2 log(1/δ)
ϵ2j

= Tj

- total regret contribution: ϵj · Tj

▶ Summing over all j gives the Condorcet guarantee!

18 / 24

Regret Analysis II

Assumptions: Condorcet winner + Pi ,j ≈r P̂i ,j

Notation: ϵj = ϵ(i∗, j)

▶ Recall: if P̂i ,j > 1/2 + γr , delete j

▶ i∗ never deleted: else Pi ,i∗ ≤ P̂i ,j − γr < 1/2, contradiction

- can use i∗ as an anchor to eliminate others

▶ Suppose j not deleted in batch r : Pi∗,j ≤ 1/2 + 2γr

ϵj ≤ 2γr = 2
√

log(1/δ)
2cr

⇒ cr ≤ 2 log(1/δ)
ϵ2j

▶ Let r be the last such batch; then

- # comparisons of j and i∗ ≤
∑r+1

τ=1 cτ ≤ 2T 1/B · 2 log(1/δ)
ϵ2j

- total comparisons for j ≤ K · 2T 1/B · 2 log(1/δ)
ϵ2j

= Tj

- total regret contribution: ϵj · Tj

▶ Summing over all j gives the Condorcet guarantee!

18 / 24

Regret Analysis II

Assumptions: Condorcet winner + Pi ,j ≈r P̂i ,j

Notation: ϵj = ϵ(i∗, j)

▶ Recall: if P̂i ,j > 1/2 + γr , delete j

▶ i∗ never deleted: else Pi ,i∗ ≤ P̂i ,j − γr < 1/2, contradiction

- can use i∗ as an anchor to eliminate others

▶ Suppose j not deleted in batch r : Pi∗,j ≤ 1/2 + 2γr

ϵj ≤ 2γr = 2
√

log(1/δ)
2cr

⇒ cr ≤ 2 log(1/δ)
ϵ2j

▶ Let r be the last such batch; then

- # comparisons of j and i∗ ≤
∑r+1

τ=1 cτ ≤ 2T 1/B · 2 log(1/δ)
ϵ2j

- total comparisons for j ≤ K · 2T 1/B · 2 log(1/δ)
ϵ2j

= Tj

- total regret contribution: ϵj · Tj

▶ Summing over all j gives the Condorcet guarantee!

18 / 24

Algorithm+: Seeded Comparisons

▶ Compare each seed with every active arm as before

▶ Eliminate sub-optimal arms

▶ Switch to all pairs policy if <
√
K arms remain (this is ok!)

Technical insight: randomly chosen seed set contains a
“good” arm that acts as anchor → gives Õ(K 1.5) depen-
dence!

19 / 24

Algorithm+: Seeded Comparisons

▶ Compare each seed with every active arm as before

▶ Eliminate sub-optimal arms

▶ Switch to all pairs policy if <
√
K arms remain (this is ok!)

Technical insight: randomly chosen seed set contains a
“good” arm that acts as anchor → gives Õ(K 1.5) depen-
dence!

19 / 24

Algorithm+: Seeded Comparisons

▶ Compare each seed with every active arm as before

▶ Eliminate sub-optimal arms

▶ Switch to all pairs policy if <
√
K arms remain (this is ok!)

Technical insight: randomly chosen seed set contains a
“good” arm that acts as anchor → gives Õ(K 1.5) depen-
dence!

19 / 24

Algorithm+: Seeded Comparisons

▶ Compare each seed with every active arm as before

▶ Eliminate sub-optimal arms

▶ Switch to all pairs policy if <
√
K arms remain (this is ok!)

Technical insight: randomly chosen seed set contains a
“good” arm that acts as anchor → gives Õ(K 1.5) depen-
dence!

19 / 24

Algorithm+: Seeded Comparisons

▶ Compare each seed with every active arm as before

▶ Eliminate sub-optimal arms

▶ Switch to all pairs policy if <
√
K arms remain (this is ok!)

Technical insight: randomly chosen seed set contains a
“good” arm that acts as anchor

→ gives Õ(K 1.5) depen-
dence!

19 / 24

Algorithm+: Seeded Comparisons

▶ Compare each seed with every active arm as before

▶ Eliminate sub-optimal arms

▶ Switch to all pairs policy if <
√
K arms remain (this is ok!)

Technical insight: randomly chosen seed set contains a
“good” arm that acts as anchor → gives Õ(K 1.5) depen-
dence!

19 / 24

Algorithm++: Additional Adaptivity

▶ Need more ideas to achieve Õ(K) dependence

▶ Compare seeds amongst themselves; choose empirical best

- here we need additional adaptivity

▶ Use this seed against all active arms

Technical insight: best seed serves as good proxy for anchor
and at most B different best arms →
gives Õ(KB) dependence!

20 / 24

Algorithm++: Additional Adaptivity

▶ Need more ideas to achieve Õ(K) dependence
▶ Compare seeds amongst themselves; choose empirical best

- here we need additional adaptivity

▶ Use this seed against all active arms

Technical insight: best seed serves as good proxy for anchor
and at most B different best arms →
gives Õ(KB) dependence!

20 / 24

Algorithm++: Additional Adaptivity

▶ Need more ideas to achieve Õ(K) dependence
▶ Compare seeds amongst themselves; choose empirical best

- here we need additional adaptivity

▶ Use this seed against all active arms

Technical insight: best seed serves as good proxy for anchor
and at most B different best arms →
gives Õ(KB) dependence!

20 / 24

Algorithm++: Additional Adaptivity

▶ Need more ideas to achieve Õ(K) dependence
▶ Compare seeds amongst themselves; choose empirical best

- here we need additional adaptivity

▶ Use this seed against all active arms

Technical insight: best seed serves as good proxy for anchor

and at most B different best arms →
gives Õ(KB) dependence!

20 / 24

Algorithm++: Additional Adaptivity

▶ Need more ideas to achieve Õ(K) dependence
▶ Compare seeds amongst themselves; choose empirical best

- here we need additional adaptivity

▶ Use this seed against all active arms

Technical insight: best seed serves as good proxy for anchor
and at most B different best arms

→
gives Õ(KB) dependence!

20 / 24

Algorithm++: Additional Adaptivity

▶ Need more ideas to achieve Õ(K) dependence
▶ Compare seeds amongst themselves; choose empirical best

- here we need additional adaptivity

▶ Use this seed against all active arms

Technical insight: best seed serves as good proxy for anchor
and at most B different best arms →
gives Õ(KB) dependence!

20 / 24

Computations: Set-up

Datasets used

▶ ArXiv: Six rankers

▶ Sushi

▶ Synthetic data based on BTL model

▶ Synthetic data based on Hard Instances

Benchmarks
▶ RMED (Komiyama et al., 2015)

▶ RUCB (Zoghi et al., 2014)

▶ BTM (Yue and Joachims, 2011)

21 / 24

Computations: Set-up

Datasets used
▶ ArXiv: Six rankers

▶ Sushi

▶ Synthetic data based on BTL model

▶ Synthetic data based on Hard Instances

Benchmarks
▶ RMED (Komiyama et al., 2015)

▶ RUCB (Zoghi et al., 2014)

▶ BTM (Yue and Joachims, 2011)

21 / 24

Computations: Set-up

Datasets used
▶ ArXiv: Six rankers

▶ Sushi

▶ Synthetic data based on BTL model

▶ Synthetic data based on Hard Instances

Benchmarks
▶ RMED (Komiyama et al., 2015)

▶ RUCB (Zoghi et al., 2014)

▶ BTM (Yue and Joachims, 2011)

21 / 24

Computations: Regret using log(T) batches

0 20000 40000 60000 80000 100000
t

0

1000

2000

3000

4000
Re

gr
et

 R
(t)

PCOMP
SCOMP
SCOMP2
RMED
RUCB
BTM

Figure: (a) Six rankers

22 / 24

Computations: Trade-off b/w regret and #batches

0 20000 40000 60000 80000 100000
t

0

200

400

600

800

1000

1200

1400

1600

Re
gr

et
 R

(t)

RMED
B=2
B=8
B=16

Figure: (a) Six rankers

23 / 24

Conclusion
▶ Introduce the batched dueling bandit problem

▶ Give algorithms that obtain a trade-off b/w #batches and
regret for two pairwise comparison models:

- SST + STI
- Condorcet

▶ Also give matching lower bound against # batches
- Ω(T 1/B) for B batches

▶ Experiments corroborate our theoretical results
▶ Open Question I: How many batches are needed to exactly

match sequential results in (i) SST+STI, and (ii) Condorcet
▶ Open Question II: Can we obtain similar results for more

general notions of winner; for e.g., von Nuemann winner,
Copeland winner, etc.

▶ Full paper: https://tinyurl.com/batcheddb

THANK YOU!

24 / 24

Conclusion
▶ Introduce the batched dueling bandit problem
▶ Give algorithms that obtain a trade-off b/w #batches and

regret for two pairwise comparison models:
- SST + STI
- Condorcet

▶ Also give matching lower bound against # batches
- Ω(T 1/B) for B batches

▶ Experiments corroborate our theoretical results
▶ Open Question I: How many batches are needed to exactly

match sequential results in (i) SST+STI, and (ii) Condorcet
▶ Open Question II: Can we obtain similar results for more

general notions of winner; for e.g., von Nuemann winner,
Copeland winner, etc.

▶ Full paper: https://tinyurl.com/batcheddb

THANK YOU!

24 / 24

Conclusion
▶ Introduce the batched dueling bandit problem
▶ Give algorithms that obtain a trade-off b/w #batches and

regret for two pairwise comparison models:
- SST + STI
- Condorcet

▶ Also give matching lower bound against # batches
- Ω(T 1/B) for B batches

▶ Experiments corroborate our theoretical results
▶ Open Question I: How many batches are needed to exactly

match sequential results in (i) SST+STI, and (ii) Condorcet
▶ Open Question II: Can we obtain similar results for more

general notions of winner; for e.g., von Nuemann winner,
Copeland winner, etc.

▶ Full paper: https://tinyurl.com/batcheddb

THANK YOU!

24 / 24

Conclusion
▶ Introduce the batched dueling bandit problem
▶ Give algorithms that obtain a trade-off b/w #batches and

regret for two pairwise comparison models:
- SST + STI
- Condorcet

▶ Also give matching lower bound against # batches
- Ω(T 1/B) for B batches

▶ Experiments corroborate our theoretical results

▶ Open Question I: How many batches are needed to exactly
match sequential results in (i) SST+STI, and (ii) Condorcet

▶ Open Question II: Can we obtain similar results for more
general notions of winner; for e.g., von Nuemann winner,
Copeland winner, etc.

▶ Full paper: https://tinyurl.com/batcheddb

THANK YOU!

24 / 24

Conclusion
▶ Introduce the batched dueling bandit problem
▶ Give algorithms that obtain a trade-off b/w #batches and

regret for two pairwise comparison models:
- SST + STI
- Condorcet

▶ Also give matching lower bound against # batches
- Ω(T 1/B) for B batches

▶ Experiments corroborate our theoretical results
▶ Open Question I: How many batches are needed to exactly

match sequential results in (i) SST+STI, and (ii) Condorcet

▶ Open Question II: Can we obtain similar results for more
general notions of winner; for e.g., von Nuemann winner,
Copeland winner, etc.

▶ Full paper: https://tinyurl.com/batcheddb

THANK YOU!

24 / 24

Conclusion
▶ Introduce the batched dueling bandit problem
▶ Give algorithms that obtain a trade-off b/w #batches and

regret for two pairwise comparison models:
- SST + STI
- Condorcet

▶ Also give matching lower bound against # batches
- Ω(T 1/B) for B batches

▶ Experiments corroborate our theoretical results
▶ Open Question I: How many batches are needed to exactly

match sequential results in (i) SST+STI, and (ii) Condorcet
▶ Open Question II: Can we obtain similar results for more

general notions of winner; for e.g., von Nuemann winner,
Copeland winner, etc.

▶ Full paper: https://tinyurl.com/batcheddb

THANK YOU!

24 / 24

Conclusion
▶ Introduce the batched dueling bandit problem
▶ Give algorithms that obtain a trade-off b/w #batches and

regret for two pairwise comparison models:
- SST + STI
- Condorcet

▶ Also give matching lower bound against # batches
- Ω(T 1/B) for B batches

▶ Experiments corroborate our theoretical results
▶ Open Question I: How many batches are needed to exactly

match sequential results in (i) SST+STI, and (ii) Condorcet
▶ Open Question II: Can we obtain similar results for more

general notions of winner; for e.g., von Nuemann winner,
Copeland winner, etc.

▶ Full paper: https://tinyurl.com/batcheddb

THANK YOU!

24 / 24

Conclusion
▶ Introduce the batched dueling bandit problem
▶ Give algorithms that obtain a trade-off b/w #batches and

regret for two pairwise comparison models:
- SST + STI
- Condorcet

▶ Also give matching lower bound against # batches
- Ω(T 1/B) for B batches

▶ Experiments corroborate our theoretical results
▶ Open Question I: How many batches are needed to exactly

match sequential results in (i) SST+STI, and (ii) Condorcet
▶ Open Question II: Can we obtain similar results for more

general notions of winner; for e.g., von Nuemann winner,
Copeland winner, etc.

▶ Full paper: https://tinyurl.com/batcheddb

THANK YOU!
24 / 24

