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Introduction

* Various types of neural networks have been applied to speech processing
* Recurrent Neural Networks (RNNs)
* Convolutional Neural Networks (CNNs)
* Transformers with self-attention
* Multi-Layer Perceptrons (MLPs)

» Different architectures have complementary capacities

* Convolution-augmented Transformer (Conformer) 1l has achieved state-of-the-art
results in many speech processing tasks

[1] Gulati et al. Conformer: Convolution-augmented Transformer for Speech Recognition. In Proceedings of Interspeech, 2020. Eﬁ‘iﬂ,‘;gie A
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Conformer Encoder

e Conformer combines self-attention and convolution sequentially

* |t outperforms Transformer and convolution-based models
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Gulati et al. Conformer: Convolution-augmented Transformer for Speech Recognition. In Proceedings of Interspeech, 2020.
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Conformer Encoder

e Conformer combines self-attention and convolution sequentially

* |t outperforms Transformer and convolution-based models T
* Limitations Convolution
* The static single-branch architecture is difficult to interpret and modify ('-Ofa')
* The fixed, interleaving pattern of self-attention and convolution may not
always be optimal Attention
* Self-attention has quadratic complexity w.r.t. the sequence length (Global)

T
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Proposed Model

* We propose a novel encoder alternative, Branchformer, with parallel branches for
modeling various ranged dependencies
 Effective in various speech recognition and understanding benchmarks
 Stable to train for short utterances and limited data
* Flexible to allow efficient attention variants
* Interpretable to present interesting analysis on local and global context
* Customizable to have different inference speeds in a single trained model I

* Our code is released as part of IIIESPnet .
e https://github.com/espnet/espnet [ Attention } [ cgMLP

(Global) (Local)
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Branchformer Encoder

e Attention Branch for Global Context Modeling

e Multi-headed self-attention
e Efficient attention variants

[1] Wu et al. Fastformer: Additive attention can be all you need. arXiv preprint arXiv:2108.09084, 2021
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* E.g., Fastformer (1l
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Branchformer Encoder

* MLP Branch for Local Context Modeling
* MLP with convolutional gating (cgMLP) [}

Attention cgMLP
(Global) (Local)

A A

[1] Sakuma et al. MLP-based architecture with variable length input for automatic speech recognition, 2022. URL https://openreview.net/forum?id=RA-zVvZLYly

Carnegie
Mellon
- University A

7/15/22 Branchformer @ ICML 2022 7



https://openreview.net/forum?id=RA-zVvZLYIy

Branchformer Encoder

* Merging Two Branches
* Concatenation
* Weighted average
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Tasks and Datasets

» Automatic Speech Recognition (ASR)
* Aishell: 170 hours of Mandarin speech data
» Switchboard (SWBD): 300 hours of English telephone conversations
 LibriSpeech: 960 hours of English read audiobooks

e Spoken Language Understanding (SLU)
* SLURP: intent classification and entity prediction
e Speech Commands: limited-vocabulary speech recognition

Our Branchformer is a general encoder model which can be utilized in other sequence modeling tasks. We also tested the efficacy on
machine translation. Preliminary results are shown in Appendix G of our paper. Carnegie A
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Main Results: Aishell and SWBD

* We adopt the standard self-attention and concatenation-based merging

* Branchformer outperforms cgMLP and Transformer baselines by a large margin. It
matches with or outperforms our reproduced Conformer.
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Main Results: LibriSpeech and SLURP

* Branchformer outperforms cgMLP and Transformer baselines by a large margin.
It matches with or outperforms our reproduced Conformer.
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Model Scalability

* Branchformer achieves the best performance at the three scales

% Character Error Rate (/)

Figure 1. Character Error Rate (%) vs. Model Size. Our Branch-
former outperforms previously proposed Conformer, cgMLP and
Transformer at all scales on the benchmark Aishell ASR task.
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Figure 3. SLURP Entity Prediction SLU-F1 vs. Model Size. Our

Branchformer outperforms the previously proposed Conformer,
cgMLP and Transformer models at all scales for the SLURP bench-

mark Spoken Language Understanding task.
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Training Stability

 We have found that Branchformer is more stable to train than Conformer on
short utterances and limited data.

7/15/22

Table 5. Accuracy performance of Branchformer vs. other architec-
tures on Google Speech Commands (35 commands). Training the
vanilla Conformer model is unstable on this dataset, but Branch-
former achieves similar performance as other models.

Method Params (M) Accuracy (1)

dev test

SpeechBrain (Ravanelli et al., 2021)

TDNN (+ xvector) - - 0.974
ESPnet (Arora et al., 2022)

Conformer (w/o BatchNorm) - 0.974 0.975
Our Baselines (reproduced based on ESPnet)

cgMLP 30.7 0.966 0.966

Transformer 42.9 0.973 0.974

Conformer (w/ BatchNorm) 43.0 diverged
Our Proposed Model

Branchformer 41.8 0.973 0.973
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Results of Efficient Attention

» Standard self-attention = more efficient attentions such as Fastformer

* The complexity becomes lower, and the performance is still competitive

Table 6. Comparison of the Fastformer-based model with others on
Aishell (% CER) and Switchboard 300h (% WER). Fastformer has
linear complexity w.r.t. the sequence length 7", while self-attention
has quadratic complexity. K denotes the convolution kernel size.

Method Complexity Aishell SWBD 300h
dev test swb chm
cgMLP O(TK) 461 5.15 8.7 16.3
Transformer O(T%) 483 5.17 9.0 16.0
Conformer O(T?) 424 462 178 145
Branchformer
w/ self-attention O(T?) 419 443 78 14.1
w/ Fastformer O(TK) 422 458 79 14.5
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Figure 4. Encoder forward time vs. input audio length using dif-
ferent attention mechanisms for modeling global dependencies in
Branchformer. Branchformer w/ Fastformer achieves linear scal-
ing in forward time with different utterance lengths.
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Layerwise Analysis of Local/Global Branches

* We use weighted average to merge two branches. Aishell (24 layers) Aishell (36 layers)  Switchboard (24 layers)

The learned weights represent the importance of 7" /s & ™" g’mﬁ Mo o
local and global context in different layers. 2 = 1 |

* In most layers, one branch is dominant oo -

* Initial layers: interleaved attention and cgMLP

* Intermediate layers: multiple attention

* Final layers: multiple cgMLP 22

* More results and discussions are in Section 4.6 and -

20

Appendix D of our paper u
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Model Pruning Using Branch Dropout

* Asingle Branchformer model can have two different inference speeds
* During training, the attention branch is dropped at random

* During inference, the model can work in two modes
* Mode 1: both branches are employed, which is more accurate but slower
* Mode 2: only the cgMLP branch is utilized, which has lower complexity

* This approach does not require fine-tuning or re-training
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Conclusion

* We propose Branchformer, a novel encoder architecture with parallel branches
for modeling global and local context in speech processing

* Branchformer outperforms Transformer and cgMLP by a large margin in various
ASR and SLU benchmarks. It is also comparable with or superior to Conformer.

* Branchformer is stable to train, flexible to allow efficient attentions and
interpretable to present interesting design analysis

* With branch dropout, Branchformer can have two inference speeds within a
single model

Carnegie
Mellon
University

7/15/22 Branchformer @ ICML 2022 17




Poster Session

* Location: Hall E #127
* Time: Tue 19 Jul 6:30 p.m. EDT — 8:30 p.m. EDT
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