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Introduction
• Various types of neural networks have been applied to speech processing

• Recurrent Neural Networks (RNNs)
• Convolutional Neural Networks (CNNs)
• Transformers with self-attention
• Multi-Layer Perceptrons (MLPs)

• Different architectures have complementary capacities
• Convolution-augmented Transformer (Conformer) [1] has achieved state-of-the-art 

results in many speech processing tasks
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[1] Gulati et al. Conformer: Convolution-augmented Transformer for Speech Recognition. In Proceedings of Interspeech, 2020.
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Conformer Encoder
• Conformer combines self-attention and convolution sequentially
• It outperforms Transformer and convolution-based models
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Gulati et al. Conformer: Convolution-augmented Transformer for Speech Recognition. In Proceedings of Interspeech, 2020.
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Conformer Encoder
• Conformer combines self-attention and convolution sequentially
• It outperforms Transformer and convolution-based models
• Limitations

• The static single-branch architecture is difficult to interpret and modify
• The fixed, interleaving pattern of self-attention and convolution may not 

always be optimal
• Self-attention has quadratic complexity w.r.t. the sequence length
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Gulati et al. Conformer: Convolution-augmented Transformer for Speech Recognition. In Proceedings of Interspeech, 2020.
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Proposed Model
• We propose a novel encoder alternative, Branchformer, with parallel branches for 

modeling various ranged dependencies
• Effective in various speech recognition and understanding benchmarks
• Stable to train for short utterances and limited data
• Flexible to allow efficient attention variants
• Interpretable to present interesting analysis on local and global context
• Customizable to have different inference speeds in a single trained model

• Our code is released as part of
• https://github.com/espnet/espnet
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Branchformer Encoder
• Attention Branch for Global Context Modeling

• Multi-headed self-attention
• Efficient attention variants

• E.g., Fastformer [1]
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[1] Wu et al. Fastformer: Additive attention can be all you need. arXiv preprint arXiv:2108.09084, 2021 
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Branchformer Encoder
• MLP Branch for Local Context Modeling

• MLP with convolutional gating (cgMLP) [1]
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[1] Sakuma et al. MLP-based architecture with variable length input for automatic speech recognition, 2022. URL https://openreview.net/forum?id=RA-zVvZLYIy
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Branchformer Encoder
• Merging Two Branches

• Concatenation
• Weighted average
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Tasks and Datasets
• Automatic Speech Recognition (ASR)

• Aishell: 170 hours of Mandarin speech data
• Switchboard (SWBD): 300 hours of English telephone conversations
• LibriSpeech: 960 hours of English read audiobooks

• Spoken Language Understanding (SLU)
• SLURP: intent classification and entity prediction
• Speech Commands: limited-vocabulary speech recognition
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Our Branchformer is a general encoder model which can be utilized in other sequence modeling tasks. We also tested the efficacy on 
machine translation. Preliminary results are shown in Appendix G of our paper.
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Main Results: Aishell and SWBD
• We adopt the standard self-attention and concatenation-based merging
• Branchformer outperforms cgMLP and Transformer baselines by a large margin. It 

matches with or outperforms our reproduced Conformer.
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Main Results: LibriSpeech and SLURP 
• Branchformer outperforms cgMLP and Transformer baselines by a large margin. 

It matches with or outperforms our reproduced Conformer.
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Model Scalability
• Branchformer achieves the best performance at the three scales
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Training Stability
• We have found that Branchformer is more stable to train than Conformer on 

short utterances and limited data.
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Results of Efficient Attention
• Standard self-attention à more efficient attentions such as Fastformer
• The complexity becomes lower, and the performance is still competitive
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Layerwise Analysis of Local/Global Branches
• We use weighted average to merge two branches. 

The learned weights represent the importance of 
local and global context in different layers.
• In most layers, one branch is dominant
• Initial layers: interleaved attention and cgMLP
• Intermediate layers: multiple attention
• Final layers: multiple cgMLP
• More results and discussions are in Section 4.6 and 

Appendix D of our paper
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Model Pruning Using Branch Dropout
• A single Branchformer model can have two different inference speeds

• During training, the attention branch is dropped at random
• During inference, the model can work in two modes

• Mode 1: both branches are employed, which is more accurate but slower
• Mode 2: only the cgMLP branch is utilized, which has lower complexity

• This approach does not require fine-tuning or re-training
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Conclusion
• We propose Branchformer, a novel encoder architecture with parallel branches 

for modeling global and local context in speech processing
• Branchformer outperforms Transformer and cgMLP by a large margin in various 

ASR and SLU benchmarks. It is also comparable with or superior to Conformer.
• Branchformer is stable to train, flexible to allow efficient attentions and 

interpretable to present interesting design analysis
• With branch dropout, Branchformer can have two inference speeds within a 

single model
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Poster Session
• Location: Hall E #127
• Time: Tue 19 Jul 6:30 p.m. EDT — 8:30 p.m. EDT
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