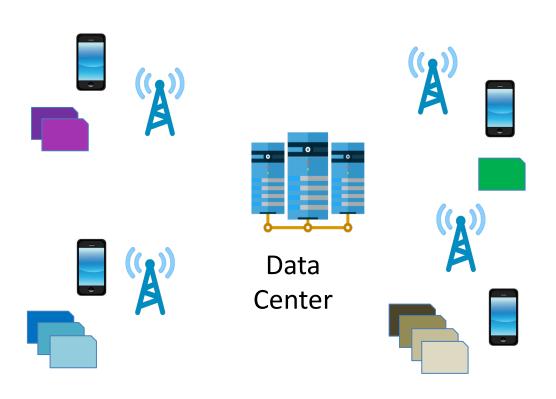
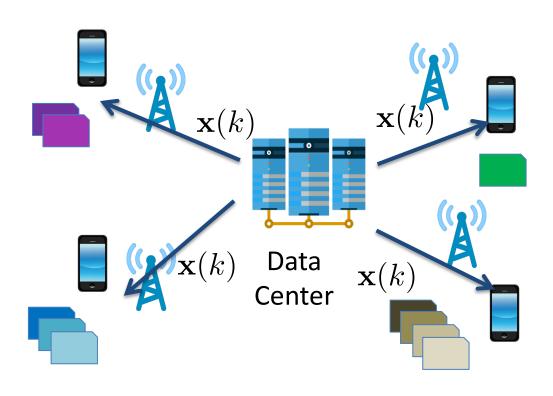
Ínría_

Personalized Federated Learning through Local Memorization

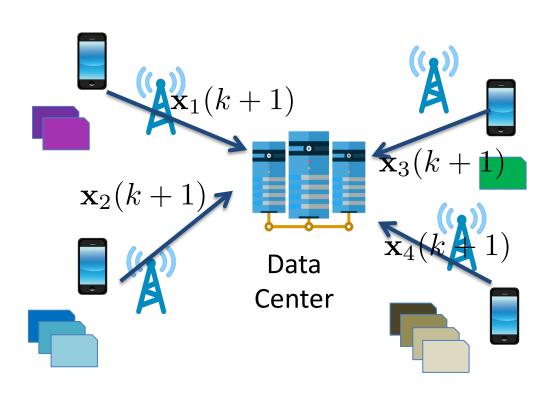
Giovanni Neglia
Joint work with O. Marfoq (Inria), L. Kameni, R. Vidal (Accenture Labs)



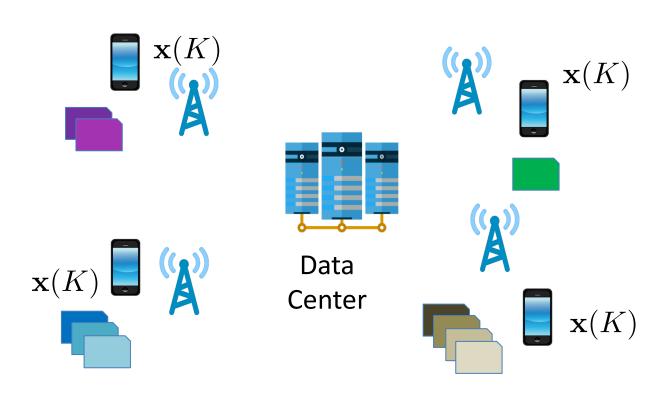
- Train ML models keeping data local
- A single model



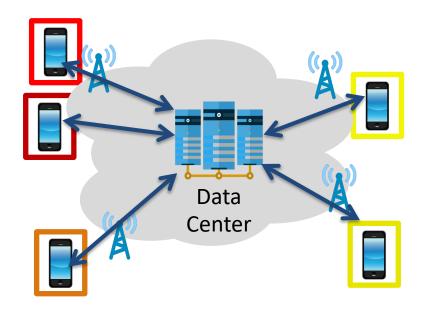
- Train ML models keeping data local
- > A single model



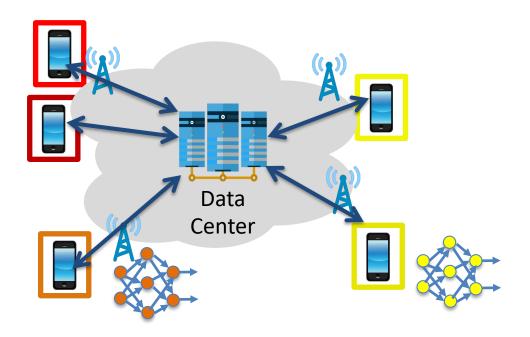
- Train ML models keeping data local
- > A single model



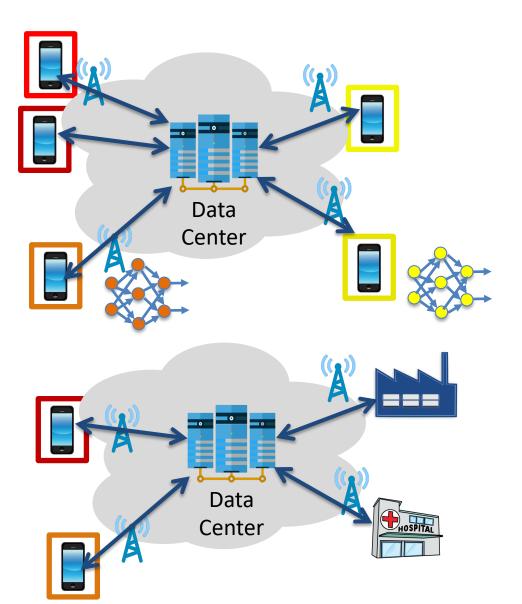
- Train ML models keeping data local
- A single model



Why a single model if local datasets come from different distributions? Statistical heterogeneity

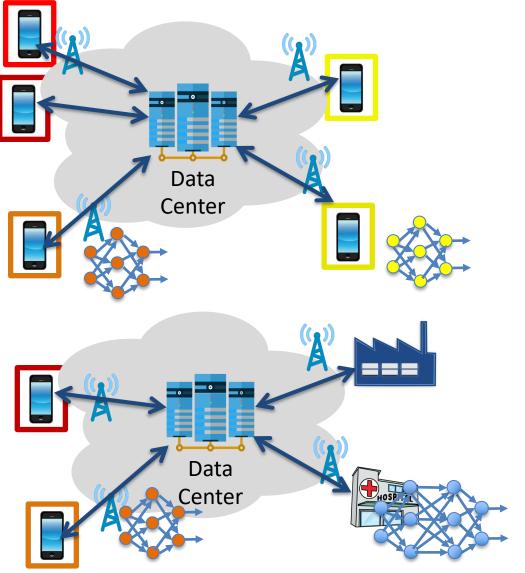


Why a single model if local datasets come from different distributions? Statistical heterogeneity



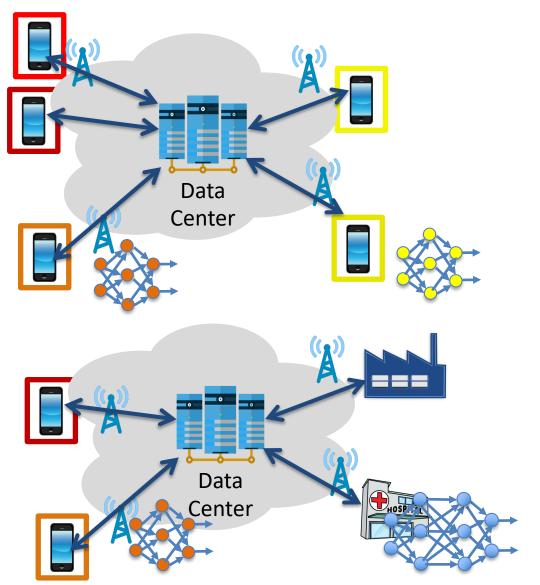
Why a single model if local datasets come from different distributions? Statistical heterogeneity

Why the same model architecture when clients have different capabilities? System heterogeneity



Why a single model if local datasets come from different distributions? Statistical heterogeneity

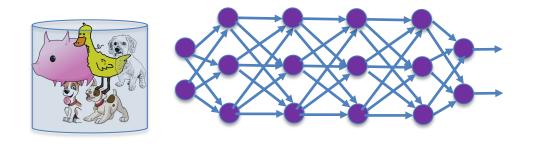
Why the same model architecture when clients have different capabilities? System heterogeneity



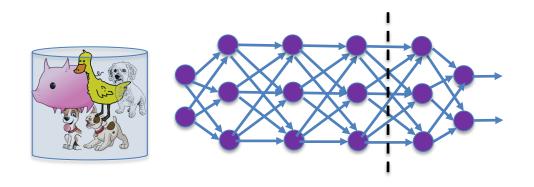
Why a single model if local datasets come from different distributions? Statistical heterogeneity

Why the same model architecture when clients have different capabilities? System heterogeneity

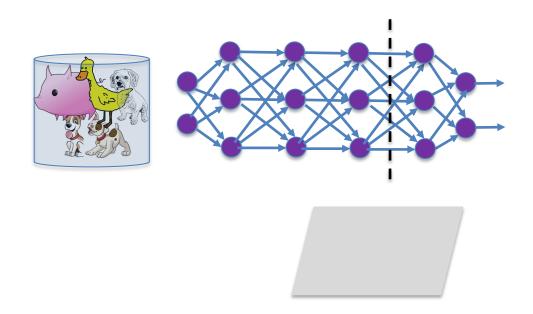
This paper



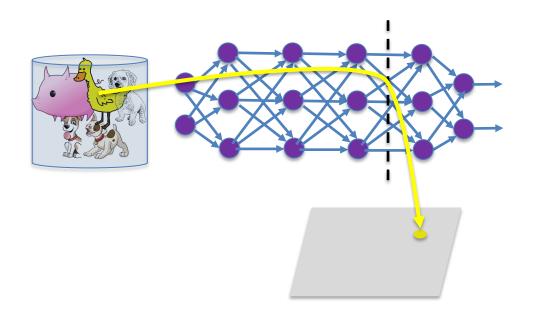
- 1. Khandelwal, Levy, Jurafsky, Zettlemoyer, Lewis. Generalization through Memorization: Nearest Neighbor Language Models. *ICLR'20*.
- 2. Orhan. A simple cache model for image recognition. NeurIPS'18.
- 3. Snell, Swersky, Zemel. Prototypical networks for few-shot learning. NeurIPS'17.



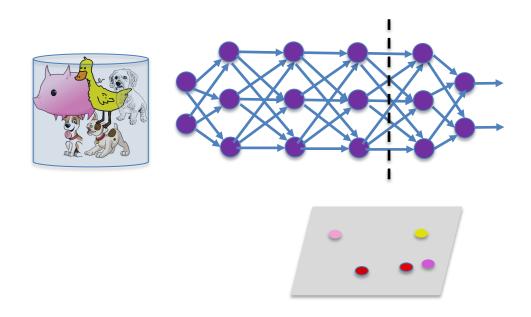
- 1. Khandelwal, Levy, Jurafsky, Zettlemoyer, Lewis. Generalization through Memorization: Nearest Neighbor Language Models. *ICLR'20*.
- 2. Orhan. A simple cache model for image recognition. NeurIPS'18.
- 3. Snell, Swersky, Zemel. Prototypical networks for few-shot learning. NeurIPS'17.



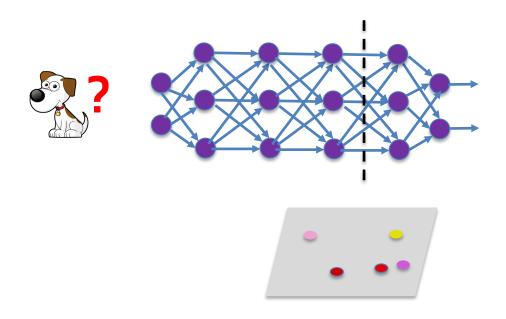
- 1. Khandelwal, Levy, Jurafsky, Zettlemoyer, Lewis. Generalization through Memorization: Nearest Neighbor Language Models. *ICLR'20*.
- 2. Orhan. A simple cache model for image recognition. *NeurIPS'18*.
- 3. Snell, Swersky, Zemel. Prototypical networks for few-shot learning. NeurIPS'17.



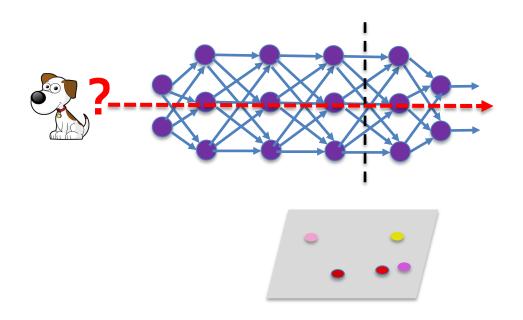
- 1. Khandelwal, Levy, Jurafsky, Zettlemoyer, Lewis. Generalization through Memorization: Nearest Neighbor Language Models. *ICLR'20*.
- 2. Orhan. A simple cache model for image recognition. NeurIPS'18.
- 3. Snell, Swersky, Zemel. Prototypical networks for few-shot learning. NeurIPS'17.



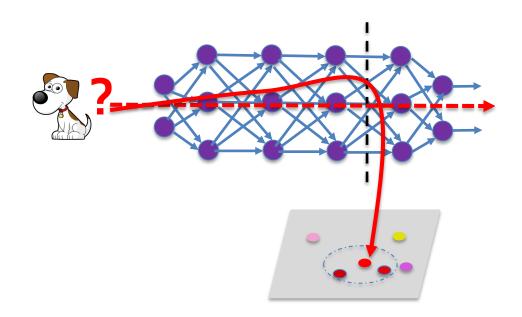
- 1. Khandelwal, Levy, Jurafsky, Zettlemoyer, Lewis. Generalization through Memorization: Nearest Neighbor Language Models. *ICLR'20*.
- 2. Orhan. A simple cache model for image recognition. *NeurIPS'18*.
- 3. Snell, Swersky, Zemel. Prototypical networks for few-shot learning. NeurIPS'17.



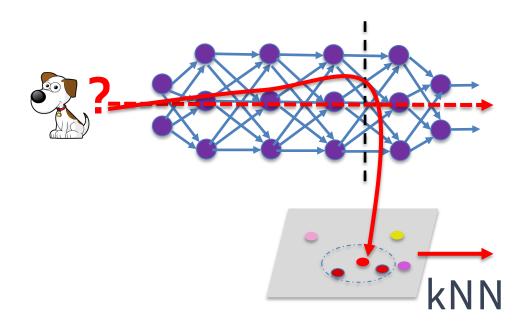
- 1. Khandelwal, Levy, Jurafsky, Zettlemoyer, Lewis. Generalization through Memorization: Nearest Neighbor Language Models. *ICLR'20*.
- 2. Orhan. A simple cache model for image recognition. *NeurIPS'18*.
- 3. Snell, Swersky, Zemel. Prototypical networks for few-shot learning. NeurIPS'17.



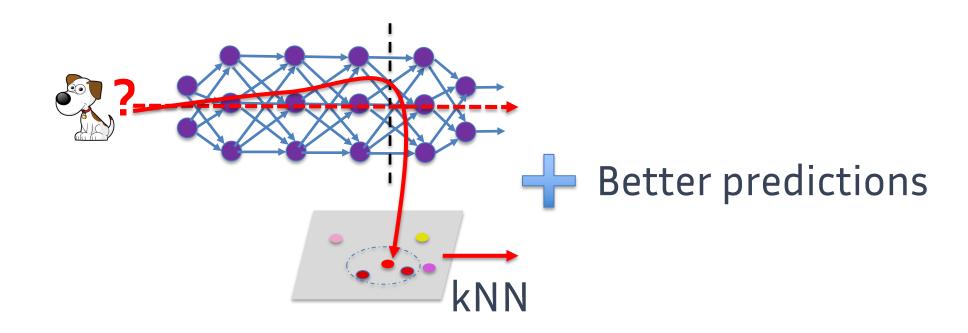
- 1. Khandelwal, Levy, Jurafsky, Zettlemoyer, Lewis. Generalization through Memorization: Nearest Neighbor Language Models. *ICLR'20*.
- 2. Orhan. A simple cache model for image recognition. NeurIPS'18.
- 3. Snell, Swersky, Zemel. Prototypical networks for few-shot learning. NeurIPS'17.



- 1. Khandelwal, Levy, Jurafsky, Zettlemoyer, Lewis. Generalization through Memorization: Nearest Neighbor Language Models. *ICLR'20*.
- 2. Orhan. A simple cache model for image recognition. NeurIPS'18.
- 3. Snell, Swersky, Zemel. Prototypical networks for few-shot learning. NeurIPS'17.

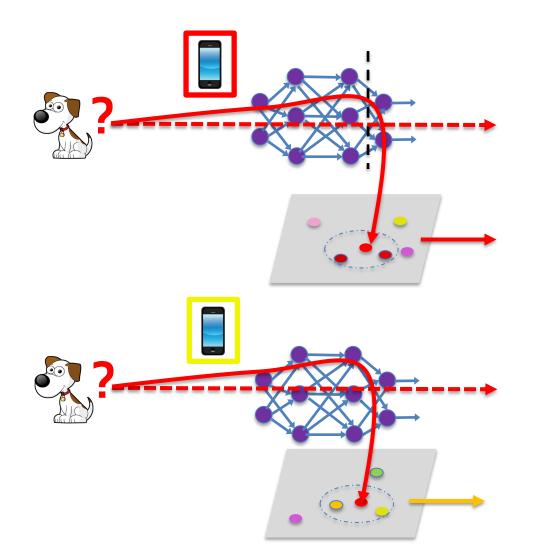


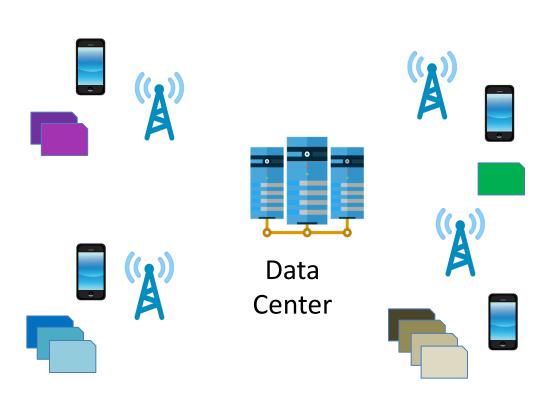
- 1. Khandelwal, Levy, Jurafsky, Zettlemoyer, Lewis. Generalization through Memorization: Nearest Neighbor Language Models. *ICLR'20*.
- 2. Orhan. A simple cache model for image recognition. NeurIPS'18.
- 3. Snell, Swersky, Zemel. Prototypical networks for few-shot learning. NeurIPS'17.



- 1. Khandelwal, Levy, Jurafsky, Zettlemoyer, Lewis. Generalization through Memorization: Nearest Neighbor Language Models. *ICLR'20*.
- 2. Orhan. A simple cache model for image recognition. *NeurIPS'18*.
- 3. Snell, Swersky, Zemel. Prototypical networks for few-shot learning. NeurIPS'17.

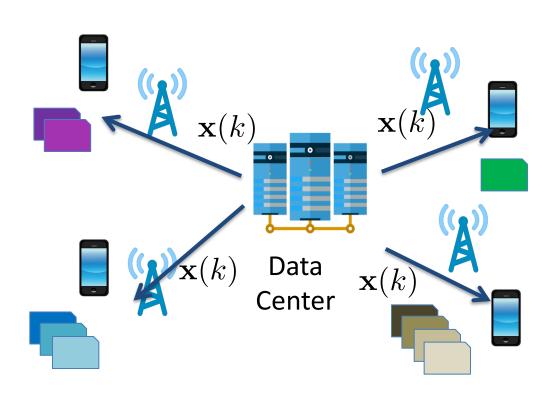
Our idea: Memorization for Personalization





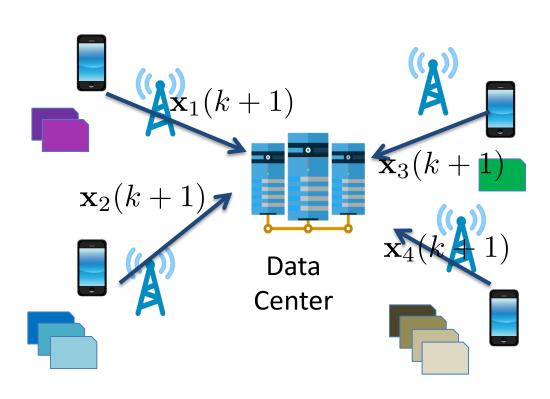
kNN-Per

 Clients train a global model using a federated learning algorithm (e.g. FedAvg)



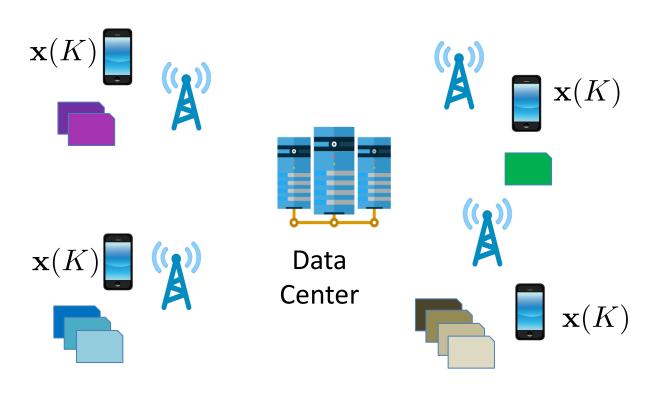
kNN-Per

 Clients train a global model using a federated learning algorithm (e.g. FedAvg)



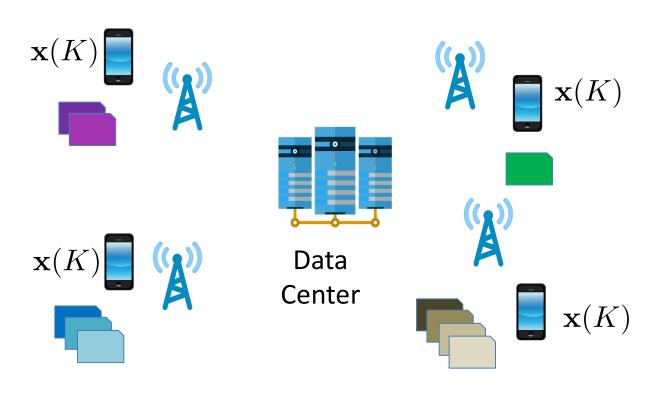
kNN-Per

 Clients train a global model using a federated learning algorithm (e.g. FedAvg)



kNN-Per

1. Clients train a global model using a federated learning algorithm (e.g. FedAvg)



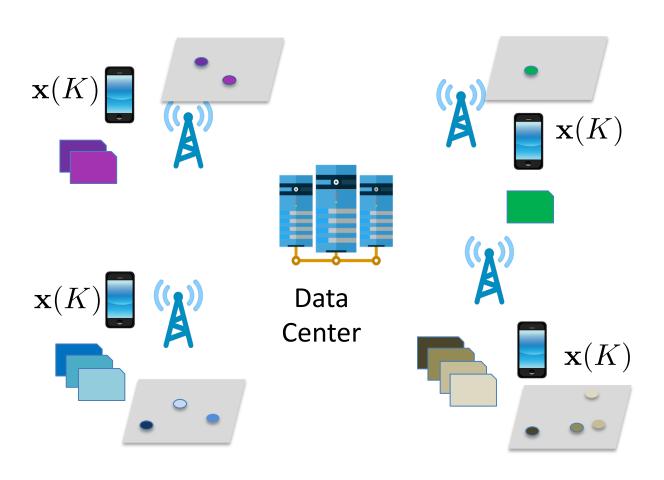
kNN-Per

- 1. Clients train a global model using a federated learning algorithm (e.g. FedAvg)
- 2. Each client creates its local datastore



kNN-Per

- Clients train a global model using a federated learning algorithm (e.g. FedAvg)
- 2. Each client creates its local datastore



kNN-Per

- Clients train a global model using a federated learning algorithm (e.g. FedAvg)
- 2. Each client creates its local datastore
- 3. A linear interpolation is used at inference

$$(1 - \lambda)h_{\text{glob}}(\mathbf{x}(K), \chi) + \lambda h_{i,kNN}(\mathbf{x}(K), \chi)$$

Theoretical Guarantees

> Enjoys global model's convergence properties

Theoretical Guarantees

- > Enjoys global model's convergence properties
- What about generalization properties?

$$\mathbb{E}_{\mathcal{S} \sim \otimes_{m=1}^{M} \mathcal{D}_{m}^{n_{m}}} \left[\mathcal{L}_{\mathcal{D}_{m}} \left(h_{m,\lambda} \right) \right] \leq \left(1 + \lambda \right) \cdot \mathcal{L}_{\mathcal{D}_{m}} \left(h_{m}^{*} \right)$$
 VC-dimension of hypothesis class

$$+ c_{1} \left(1 - \lambda\right) \cdot \operatorname{disc}_{\mathcal{H}} \left(\bar{\mathcal{D}}, \mathcal{D}_{m}\right) + c_{3} \left(1 - \lambda\right) \cdot \sqrt{\frac{d}{n}} \cdot \sqrt{c_{4} + \log\left(\frac{n}{d}\right)} \\ + c_{2} \lambda \cdot \frac{\sqrt{p}}{\frac{p+\sqrt{n_{m}}}{\sqrt{n_{m}}}} \cdot \operatorname{disc}_{\mathcal{H}} \left(\bar{\mathcal{D}}, \mathcal{D}_{m}\right) + c_{5} \lambda \cdot \sqrt{\frac{d}{n}} \cdot \sqrt{c_{4} + \log\left(\frac{n}{d}\right)} \cdot \frac{\sqrt{p}}{\frac{p+\sqrt{n_{m}}}{\sqrt{n_{m}}}}$$

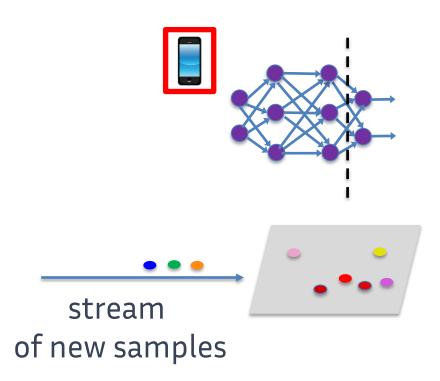
distribution heterog. aggregate dataset size local dataset size

Experiments

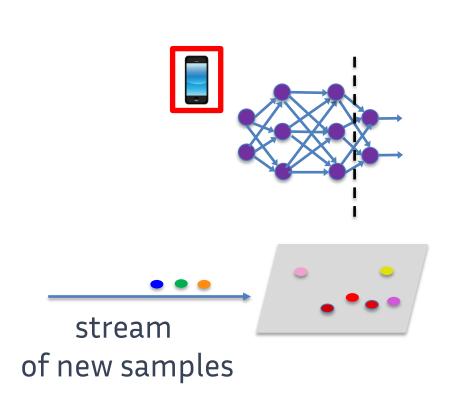
Table 2: Test accuracy: average across clients / bottom decile.

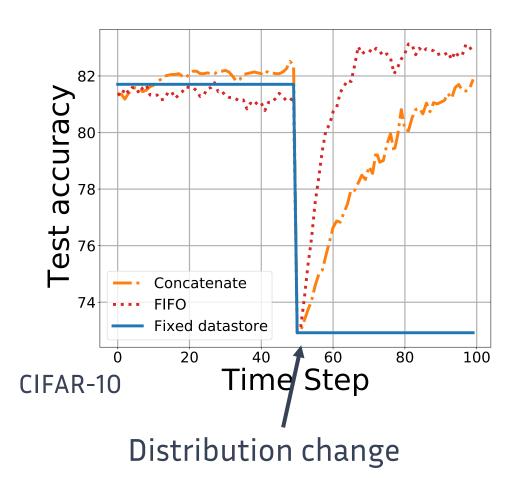
Dataset	Local	FedAvg	FedAvg+	ClusteredFL	Ditto	FedRep	APFL	kNN-Per (Ours)
FEMNIST	71.0 / 57.5	83.4 / 68.9	84.3 / 69.4	83.7 / 69.4	84.3 / 71.3	85.3 / 72.7	84.1 / 69.4	88.2 / 78.8
CIFAR-10	57.6 / 41.1	72.8 / 59.6	75.2 / 62.3	73.3 / 61.5	80.0 / 66.5	77.7 / 65.2	78.9 / 68.1	83.0 / 71.4
CIFAR-100	31.5 / 19.8	47.4 / 36.0	51.4 / 41.1	47.2 / 36.2	52.0 / 41.4	53.2 / 41.7	51.7 / 41.1	55.0 / 43.6
Shakespeare	32.0 / 16.0	48.1 / 43.1	47.0 / 42.2	46.7/41.4	47.9 / 42.6	47.2 / 42.3	45.9 / 42.4	51.4 / 45.4

Robustness to Distribution Shift



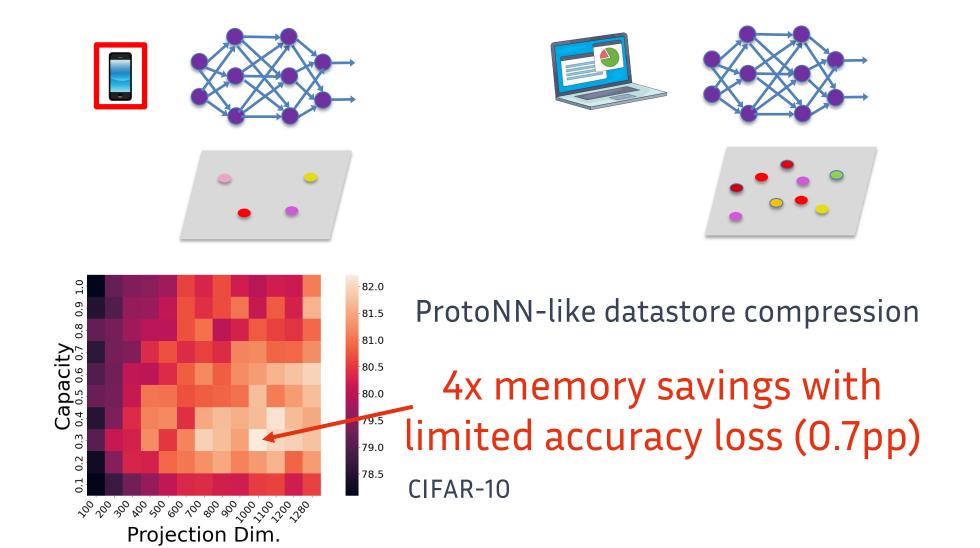
Robustness to Distribution Shift





Datastore adapted to clients' capabilities

Datastore adapted to clients' capabilities



Thanks for your attention

Paper Code