

Piotr Tempczyk^{1,2,3}, Rafał Michaluk^{1,2}, Łukasz Garncarek^{2,4}, Przemysław Spurek⁵, Jacek Tabor⁵, Adam Goliński⁶

06 November 2021

- 1. Institute of Informatics, University of Warsaw
- 2. Polish National Institute for Machine Learning Foundation (opium.sh)
- 3. deeptale.ai
- 4. Applica
- 5. Jagiellonian University
- 6. University of Oxford

Local Intrinsic Dimension

Figure 1: Lollipop dataset with composed of three manifolds of different dimensionality.

In our setting X is a subset of some d-dimensional data manifold M equipped with probability measure μ , and there exist an embedding $j: M \to \mathbb{R}^{D}$ into an Euclidean space, through which we can view X.

- The estimation of the intrinsic dimension (ID) of a data set is a classical problem of pattern recognition and machine learning.
- LID estimation is a powerful analytical tool to study the process of training and representation learning in deep neural networks ^{1 2}.
- Intrinsic dimension is connected with model performance ³. Our experiments show, that it can affect point-wise autoencoder performance for image datasets, and the accuracy of the classifier.

¹Li et al. "Measuring the intrinsic dimension of objective landscapes. ICLR 2018."

²Ansuini et al. "Intrinsic dimension of data representations in deep neural networks." NeurIPS 2019.

³Pope et al. "The intrinsic dimension of images and its impact on learning", ICLR 2020

Intuition

Figure 2: How density changes when perturbed with Gaussian noise.

For small values of δ and smooth on-manifold densities we have

$$\log \rho_{\delta}(x) \approx (d - D) \log \delta + const.$$
 (1)

where:

 $\rho_{\delta}(x)$ – the probability density of the perturbed data at point x with noise $\mathcal{N}(0, \delta^2 l_D)$,

- δ the noise amplitude,
- d manifold dimensionality at x,
- D ambient space dimensionality.

LIDL Algorithm

return $(\hat{d}_1, \ldots, \hat{d}_m)$

Require: $X \subset \mathbb{R}^D$; $x_1, \ldots, x_m \in \mathbb{R}^D$; $\delta_1, \ldots, \delta_n \in \mathbb{R}^+$; for j = 1 to n do $X_i \leftarrow X$ perturbed with $\mathcal{N}(0, \delta_i^2 I_D)$ Fit the density model $\hat{\rho}_i$ to X_i end for for i = 1 to m do for j = 1 to n do $\xi_i \leftarrow \log \delta_i$ $\eta_i \leftarrow \log \hat{\rho}_i(x_i)$ end for $\beta \leftarrow$ regression coefficient for a set of n points (ξ_i, η_i) $\hat{d}_i \leftarrow D + \beta$ end for

Numerical evaluation

Figure 3: LIDL estimates for points from distributions that break some of the assumptions for different values of δ (marked with different colors).

Figure 4: LID estimates for *d* dimensional uniform distribution on a hypercube. The dimensionality *d* of the distribution is plotted on the horizontal axis and the estimates for different algorithms on the vertical axis.

piotr.tempczk@opium.sh https://ptempczyk.github.io/