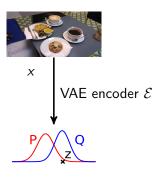
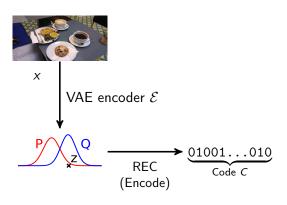
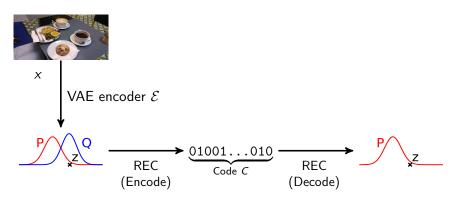
Fast Relative Entropy Coding with A* Coding

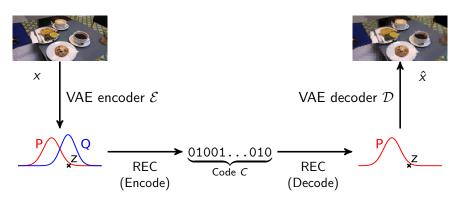
Gergely Flamich* Stratis Markou*

José Miguel Hernández-Lobato

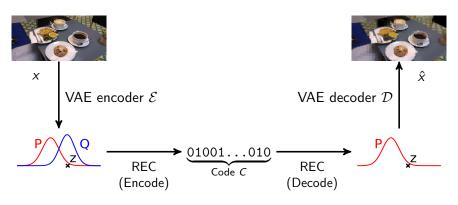

Computational and Biological Learning Lab
Department of Engineering

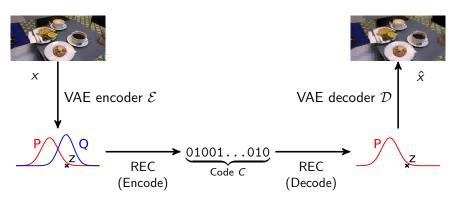



Learned compression with VAEs



Χ





Learned compression with VAEs

 \checkmark Does not require quantizing z.

- \checkmark Does not require quantizing z.
- ✓ Lossless and lossy compression, and further applications.

Relative Entropy Coding

Setup: Alice holds target distribution *Q*.

Relative Entropy Coding

Setup: Alice holds target distribution Q. Alice and Bob share

Relative Entropy Coding

Setup: Alice holds target distribution *Q*. Alice and Bob share

• Proposal distribution *P*.

Relative Entropy Coding

Setup: Alice holds target distribution *Q*. Alice and Bob share

- Proposal distribution P.
- **Public** sequence of fair coin tosses $S = (s_1, s_2, ...)$.

Relative Entropy Coding

Setup: Alice holds target distribution *Q*. Alice and Bob share

- Proposal distribution P.
- **Public** sequence of fair coin tosses $S = (s_1, s_2, ...)$.

Goal: Alice uses P, S and Q to produce code C which

Relative Entropy Coding

Setup: Alice holds target distribution *Q*. Alice and Bob share

- Proposal distribution P.
- **Public** sequence of fair coin tosses $S = (s_1, s_2, ...)$.

Goal: Alice uses P, S and Q to produce code C which

Is decodable by Bob.

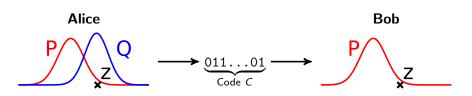
Relative Entropy Coding

Setup: Alice holds target distribution *Q*. Alice and Bob share

- Proposal distribution P.
- **Public** sequence of fair coin tosses $S = (s_1, s_2, ...)$.

Goal: Alice uses P, S and Q to produce code C which

- Is decodable by Bob.
- Represents exact sample from Q.

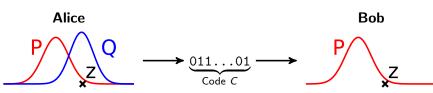

Relative Entropy Coding

Setup: Alice holds target distribution Q. Alice and Bob share

- Proposal distribution P.
- **Public** sequence of fair coin tosses $S = (s_1, s_2, ...)$.

Goal: Alice uses P, S and Q to produce code C which

- Is decodable by Bob.
- Represents exact sample from Q.


Relative Entropy Coding

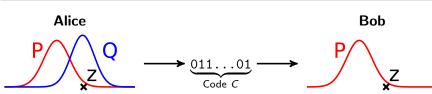
Setup: Alice holds target distribution Q. Alice and Bob share

- Proposal distribution P.
- **Public** sequence of fair coin tosses $S = (s_1, s_2, ...)$.

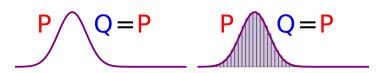
Goal: Alice uses P, S and Q to produce code C which

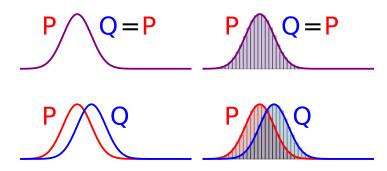
- Is decodable by Bob.
- Represents exact sample from Q.

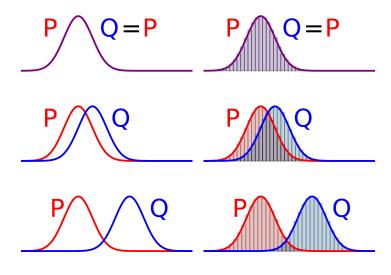
• As small codelength |C| as possible.

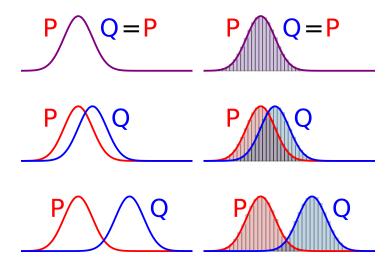

Relative Entropy Coding

Setup: Alice holds target distribution *Q*. Alice and Bob share


- Proposal distribution P.
- **Public** sequence of fair coin tosses $S = (s_1, s_2, ...)$.


Goal: Alice uses P, S and Q to produce code C which


- Is decodable by Bob.
- Represents exact sample from Q.



- As small codelength |C| as possible.
- As short runtime as possible.

Challenge and our solution

Challenge and our solution

Runtime of general REC (Agustsson and Theis, 2020)

Without additional assumptions, any REC scheme will have

$$\Omega(\exp(D_{\mathrm{KL}}[Q||P]))$$

expected runtime.

Challenge and our solution

Runtime of general REC (Agustsson and Theis, 2020)

Without additional assumptions, any REC scheme will have

$$\Omega(\exp(D_{\mathrm{KL}}[Q||P]))$$

expected runtime.

Our Solution

A* coding, a REC algorithm based on A* sampling.

Theoretical results

Theoretical results

Codelength of A* coding (informal)

Let C be the code returned by A^* coding. Then

$$\mathbb{E}\left[|C|\right] = \mathcal{O}(D_{\mathrm{KL}}[Q||P]).$$

Theoretical results

Codelength of A* coding (informal)

Let C be the code returned by A^* coding. Then

$$\mathbb{E}\left[|C|\right] = \mathcal{O}(D_{\mathrm{KL}}[Q||P]).$$

Runtime of AS* coding (informal)

For unimodal q/p, the expected runtime of AS* coding is

$$\mathbb{E}\left[T\right] = \mathcal{O}(D_{\infty}[Q\|P]) = \mathcal{O}\left(\log\sup_{z \in \mathbb{R}} \frac{q(z)}{p(z)}\right).$$

Empirical results

Empirical results

Synthetic Experiments

Empirical results

Synthetic Experiments

Compression with VAEs (MNIST)

# Latent	Neg. ELBO	A* Coding
20	1.43 ± 0.01	1.53 ± 0.01
50	1.40 ± 0.01	1.66 ± 0.01

Summary

We introduce A^* coding, a practically fast REC algorithm.

Summary

We introduce A* coding, a practically fast REC algorithm.

For more info, find us in Hall E at poster #703 or read our paper.

