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Side Sensor

Multi-view data in real-world scenarios.



Introduction

» Imputed samples that are semantic
consistent with the missing samples
boost clustering performance

» semantic inconsistency between
Imputed views and missing views leads
to degenerated clustering performance
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Challenges in IMVC:

» how to achieve semantic consistency between imputed views
and missing views

» how to reduce the risk of clustering performance degradation
caused by semantic inconsistency between imputed views and
missing views
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» features are dynamically updated in a moving-average manner
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» missing views are imputed from nearest neighbors inferred from features
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rgl;{]’w(f(l)c;w)) s.t. weS(p)
S(p) = argminL(f(DC; W)) + L(f(De; w), g(D¢; gb))

» Lower-level problem: find the best multi-view model learning from
both complete data and incomplete data with weights given by g

» Upper-level problem: g Is optimized such that the model returned
by the lower-level optimization task achieves the lowest empirical
risk on complete data
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» empirical safe incomplete multi-view clustering

Let L(f(D€; w) be the empirical clustering risk on complete data D¢. The
parameters of the multi-view model learning only from complete data and the
optimal solution of the bi-level optimization problem are denoted as w* =

argmin,, ey L(f (D¢ w)) and ¢ respectively. We can prove that

L(f(DGw* (@) < L(F (DS w™)).
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> expected safe incomplete multi-view clustering

Suppose that ||fz(x?)|| < E hold for all {xP};.; € X, where E > 0 is a

constant. For any 0 < 6 < 1, with at least probability 1 — é for any f € F, the
following inequality holds

C1 log12/6
+ Cy
NP NIRL:

L (f(w*(¢3))) + &< L(f(w*)) +



Experiments

ACC NMI
Dataset ~ Method\p 0.1 0.3 0.5 0.7 0.1 0.3 0.5 0.7
BSV 39.64+1.43  54.67+1.34 44494059  3596+0.32  47.21+1.54  42.5341.40  32.2440.63  22.974+0.37
PVC 55.64+2.48 54994013 68331749 59.87+026 29374243  31.531+0.12  46.69+6.97  42.2540.51
UEAF 90.66+0.57  89.324+0.00 87.084+0.00 76.88+0.00 74.87+1.33  71.9940.00 67.15+£0.00 53.7540.00
& CDIMC-net 80.47+0.82  7467+053 67.714+1.05 56.11+4.80 70.08+0.36  67.6440.78  54.51+1.12  39.704+4.85
a MKKM-IK 65.01+0.03  59.80+0.00 52.56+0.00 43.84+0.00 49.62+0.51  35.2240.00  24.5540.00  14.5840.00
M EE-R-IMVC 65.28+0.00 57.36+0.00 42.484+0.00 34.85+2.48  43.82+0.00 31.794+0.00  21.39+0.00 11.87+4+1.99
COMPLETER  40.914+7.04  41.80+4.12  41.5447.64  39.631278  33.194433 31154543  32.624558  27.4743.37
OS-LE-IMVC 82.7842.18 T7434%1.16  5971£3.22 4534+1.39  60.2514.69  4827+233  30.5613.97 18.54+1.31
DSIMVC 98.40+0.26  96.93+0.45  95.294+0.37 92.14+0.84  94.67+0.91  90.34+1.13  86.11+0.92  79.37+1.56
BSV 49.154+1.76  42.574+1.70  35.624+1.67 26.67+1.04 45154069  39.1740.78  31.7340.94  23.6240.41
PVC 64.57+2.73  63.04+3.69 52.56+1.14  50.2442.84  58.74+1.66  55.63+1.03  46.3540.47  44.344+1.33
2 UEAF 71.274097 66.08+1.26  61.9440.00 54.1840.00 66.75+1.81 58.044+2.14  57.841+0.00 49.7740.00
(= CDIMC-net 52234452 49724110 4797+1.13  31.78+1.68 61454274 64404242 56.6240.87  347940.83
; MKKM-IK 72.2540.61 64444000 49744104 35704+0.00 61.6440.18 52.014+0.00 37.674+0.59  24.6840.00
Z EE-R-IMVC 75.074+0.50  58.86+0.00  45.5840.00 28.0240.00 64.2740.17 49474000 34.1540.00 16.9740.00
2 COMPLETER  96.874+1.04 96.56+0.82  93.66+5.63  83.804+6.05 93944129 0231+4+1.18  90.514+2.71  81.1842.94
OS-LE-IMVC 62.29+1.80  46.58+2.93  32.83+1.45 2370+0.86  49.144242  33.98+2.11  22.2240.82 13.96+0.66
DSIMVC 98.88+0.09 97.80+0.14 96.784+0.25  93.34+0.64  96.91+0.21  94.50+0.36  91.98+£0.55  85.6440.93
BSV 18.914+0.37  17.554041 15744026  14.46140.27 17.2240.15 15.614£020  13.4440.15 11.4640.10
PVC 16.48+0.40 15544027 14.75+0.33 14.01+£0.24  13.86+036  10.12+0.28 9.6710.27 8.6640.18
UEAF 26.38+0.00 24824000 22.63+0.00 14924320 23.64+0.00 23.10+0.00 21.34+0.00 10.4243.66
- CDIMC-net 18.53+1.10  18.20+1.24  17.414+0.56  14.53+0.98 15.881+0.68 14891072  13.4541.06 9.284+1.12
B MKKM-IK 19.71£0.38  18.29+£0.00  15.46+0.00 14131000  14.78+0.06  12.61+0.00  10.3040.00 8.00+0.00
EE-R-IMVC 25.2940.04  23.03£0.00  17.87£0.00  1478+0.00  21.43£0.10  17.5320.00  12.3540.00 7.4840.00
COMPLETER  21.7241.30  20.6240.48 18.3840.73 17.35+0.69  22.57+096  19.594+066  17.33+£0.80  13.73+0.79
OS-LE-IMVC 20474074 17.15+0.63 14.214+0.50  12.374+0.46 15344056  12.2340.36 9.504-0.37 7.05+0.46
DSIMVC 30.90+1.22 29.33+1.24  27.07+0.81  24.87+0.49  29.76+0.71  28.184+0.65  2572+0.61  22.96+0.56
BSV 49.814+2.60  42.97+2.01 34.834+1.32  26.5940.83  48.3240.99  40.8540.60  32.4640.64  23.7340.41
PVC 45.60+£044  40.77£1.50 42.01x2.61 40551079 44984033  39.321+1.07  39.78£1.12 39.240.71
8 UEAF 57.07+0.67 50.88+2.88  48064+0.88  30.34+0.00 57.15£1.72  4879+478  44.04+4.03  24.1340.00
;55 CDIMC-net 51.00+4.89  44.73+223  42.104+3.00 37.61+3.68 62.52+194 54.67+1.94  4485+4.19 46.05+1.29
B MKKM-IK 70.0840.12  59.96+0.00 46.3840.00  29.8440.00 61.2940.13  50.5240.00  38.2540.00  20.644+0.00
% EE-R-IMVC 72.8340.97  63.3240.00 51.1640.00  20.244-0.00 65.7840.36  57.2840.00  43.504-0.00  14.6140.00
= COMPLETER  78.6340.33 71684370 70.76+5.62  €9.3344.51  82.2341.18  77.1240.57 74.76+1.35  70.234£2.73
OS-LE-IMVC 62.5441.01  50.10£2.68  3747£138  27.67£1.25 523641.11  3874£205  30.0411.48 19.98£1.70
DSIMVC 89.60+0.89  87.47+1.23 83.79+1.40 7571+1.69  84.47+0.70 81.76+1.07 77.82+0.73  T71.53+1.45
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BDGP MNIST-USPS
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The objective value and clustering performance of DSIMVC
with the increase of iterations on BDGP and MNIST-USPS
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t-SNE visualization of the learned features on MNIST-USPS with
Increasing training iterations
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Sematic consistency ratio of the learned neighbors with the increase of

Iiterations
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Parameters sensitivity analysis
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Clustering performance in terms of NMI
of DSIMVC and its variant with different
missing ratios



Conclusion

* A novel IMVC framework to mine semantic consistent imputations
and reduce the clustering performance degradation risk from semantic
Inconsistent imputations

* By the proposed bi-level optimization framework, missing views are
dynamically imputed from semantic neighbors, and the incomplete
samples are automatically selected for learning.

* The proposed framework is guaranteed to achieve no higher empirical
and expected risk than the model learning only from complete data.
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Thanks for your attention!



