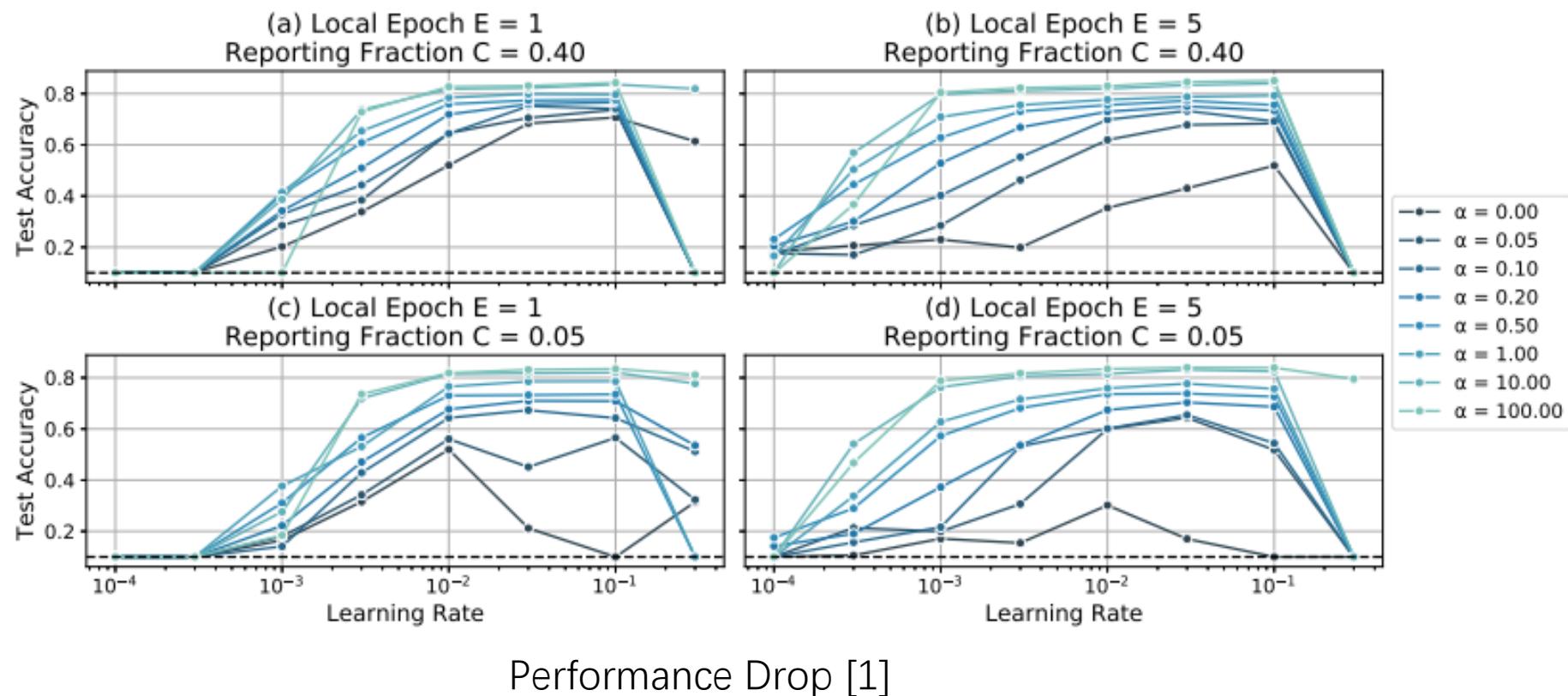
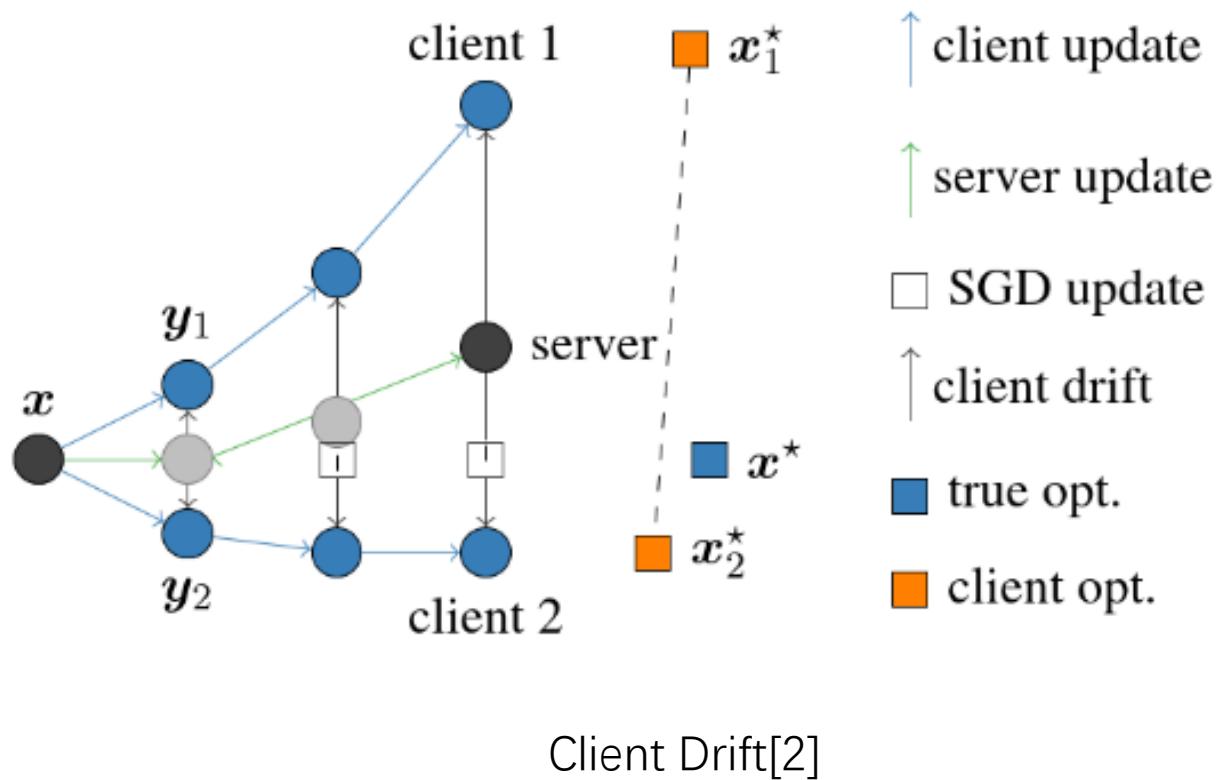


Virtual Homogeneity Learning: Defending against Data Heterogeneity in Federated Learning

Zhenheng Tang* Yonggang Zhang* Shaohuai Shi Xin He Bo Han Xiaowen Chu


香港浸會大學
HONG KONG BAPTIST UNIVERSITY

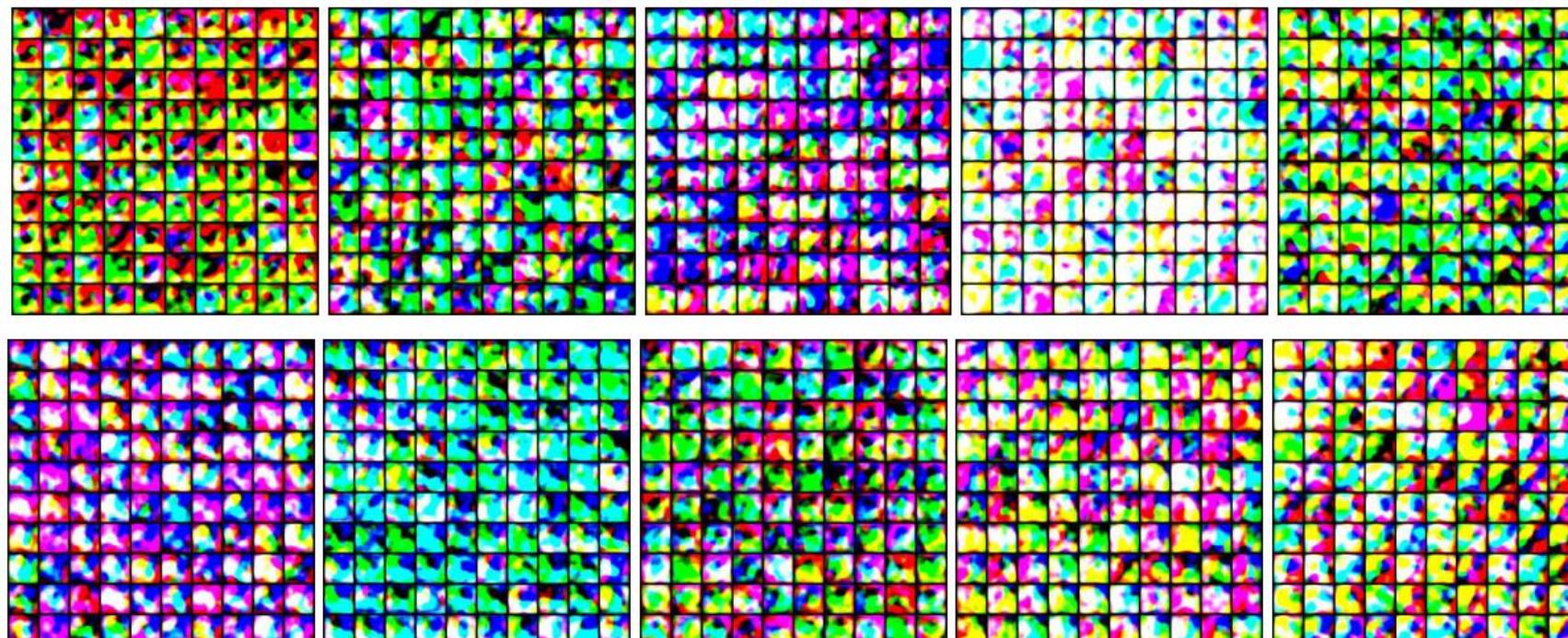

香港科技大學
THE HONG KONG
UNIVERSITY OF SCIENCE
AND TECHNOLOGY

* equal contribution

Data Heterogeneity

Data Heterogeneity

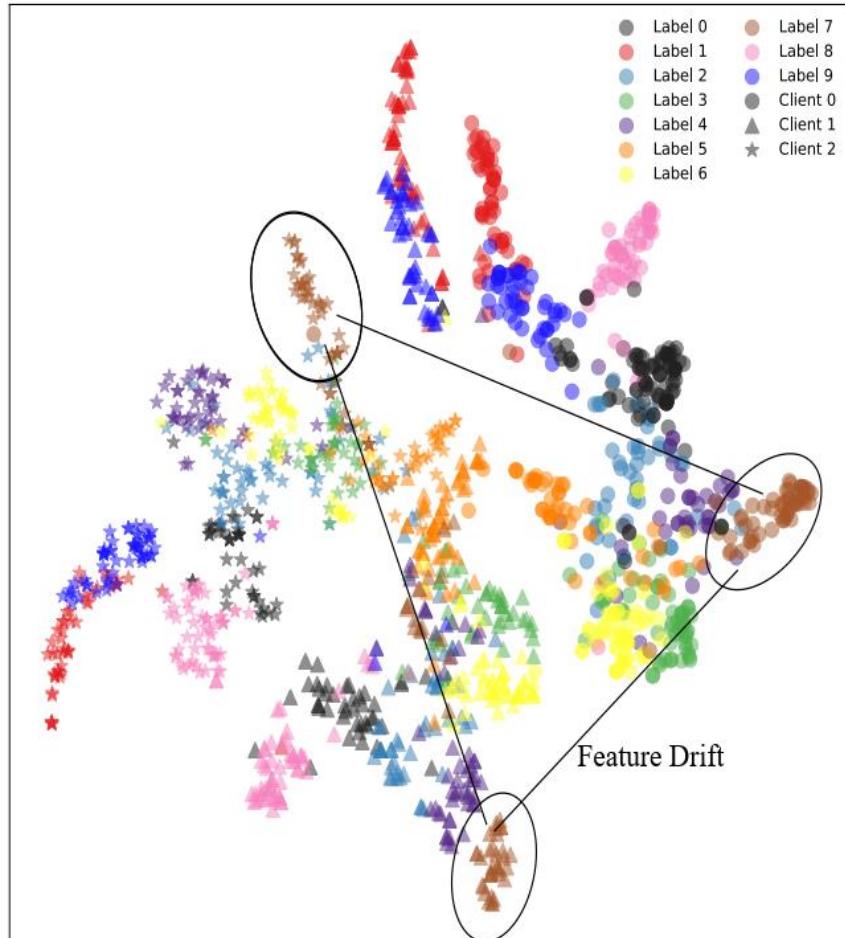
Related Work

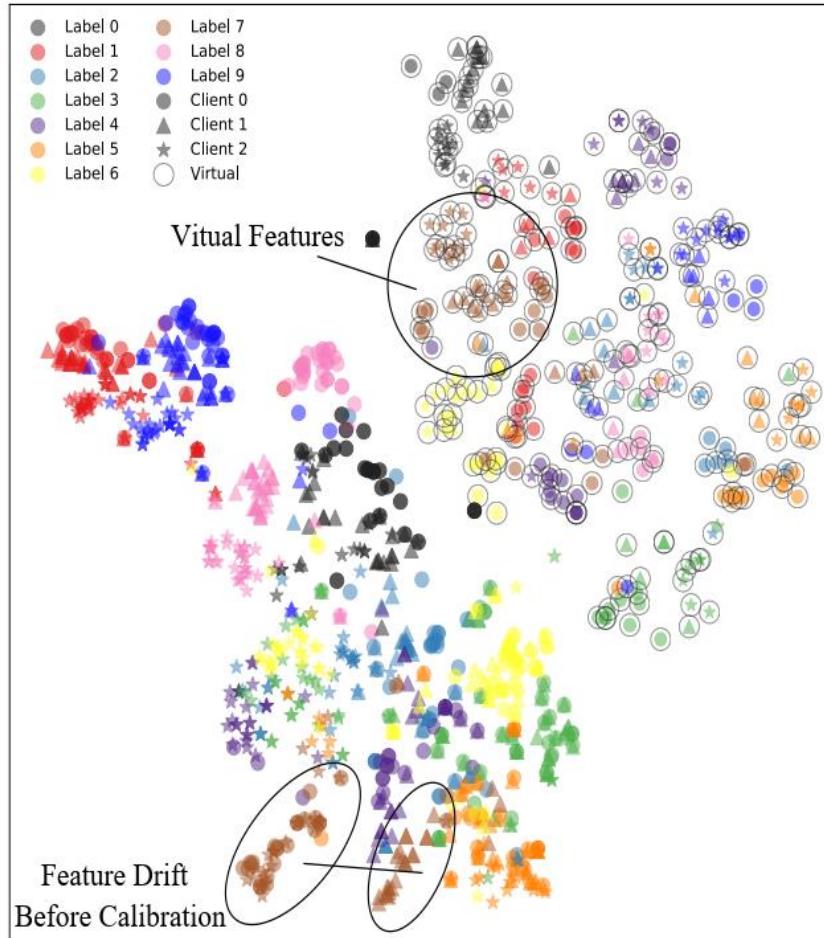

Model Regularization.

Optimization Schemes.

Sharing Data.

*Is it possible to defend against data heterogeneity in FL systems by sharing data containing **no private information**?*

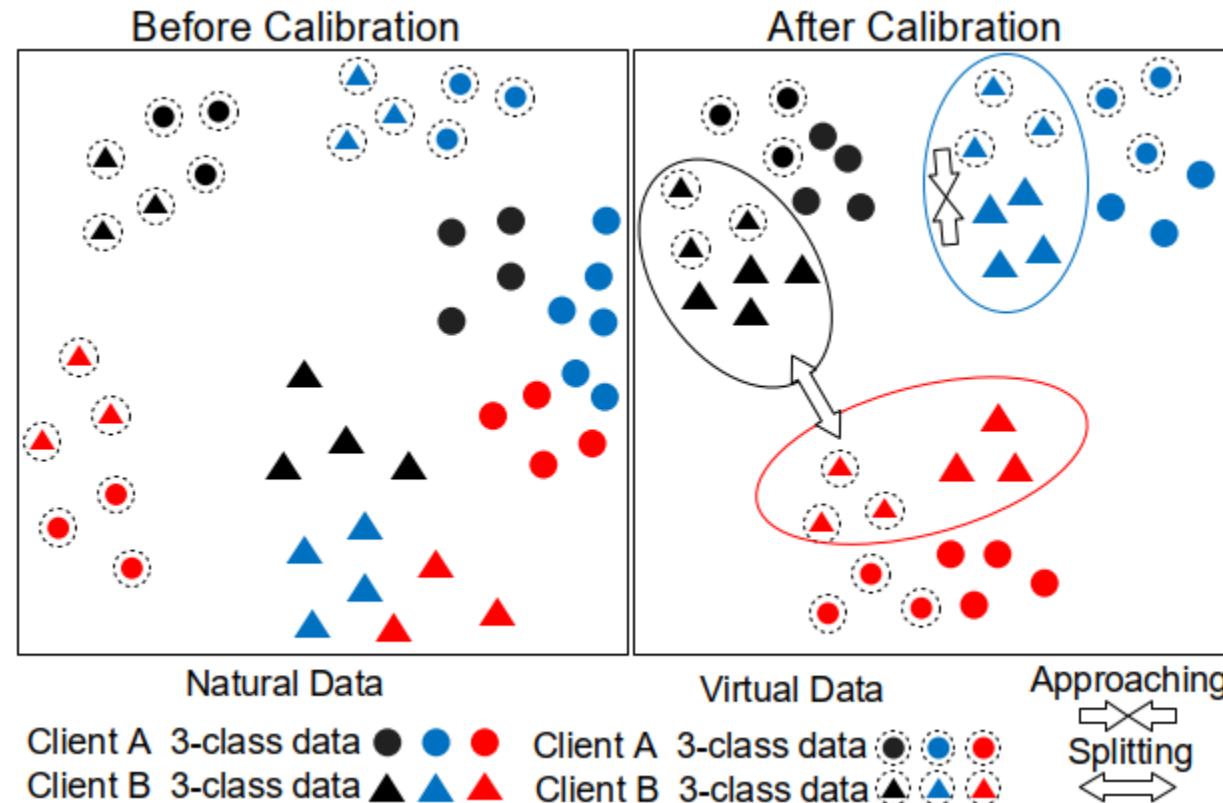

Virtual Dataset


A shared noise dataset between clients.
Each figure shows 90 data samples, representing a virtual class.

Feature Drift

FedAvg with private data

FedAvg with Both shared noise data and private data



The Private Data of the same class has **divergent feature distribution** between clients

The Shared Noise Data of the same class has **similar feature distribution** between clients

Feature Calibration

Pull the samples of the **same label** (Virtual and Natural) together.

Virtual Homogeneity Learning

Virtual Homogeneity Learning – We calibrate private features based on the virtual features

$$\begin{aligned}\bar{J}_k(w) = & \mathbb{E}_{\substack{(x,y) \sim \mathcal{P} \\ (\tilde{x},\tilde{y}) \sim \tilde{\mathcal{P}}}} \ell(f(x; w), y) + \ell(f(\tilde{x}; w), \tilde{y}) \\ & + \lambda \mathbb{E}_y d(\mathcal{P}(\phi|Y=y), \mathcal{P}(\tilde{\phi}|Y=y)),\end{aligned}$$

\mathbf{x} Natural Data

$\tilde{\mathbf{x}}$ Virtual Data

ϕ Feature

Algorithm 1 FedAvg with VHL

server input: initial w^0 , maximum communication round R
client k 's input: local epochs E

Initialization: server distributes the initial model w^0 to all clients, as well as the virtual dataset \tilde{D} .

Server Executes:

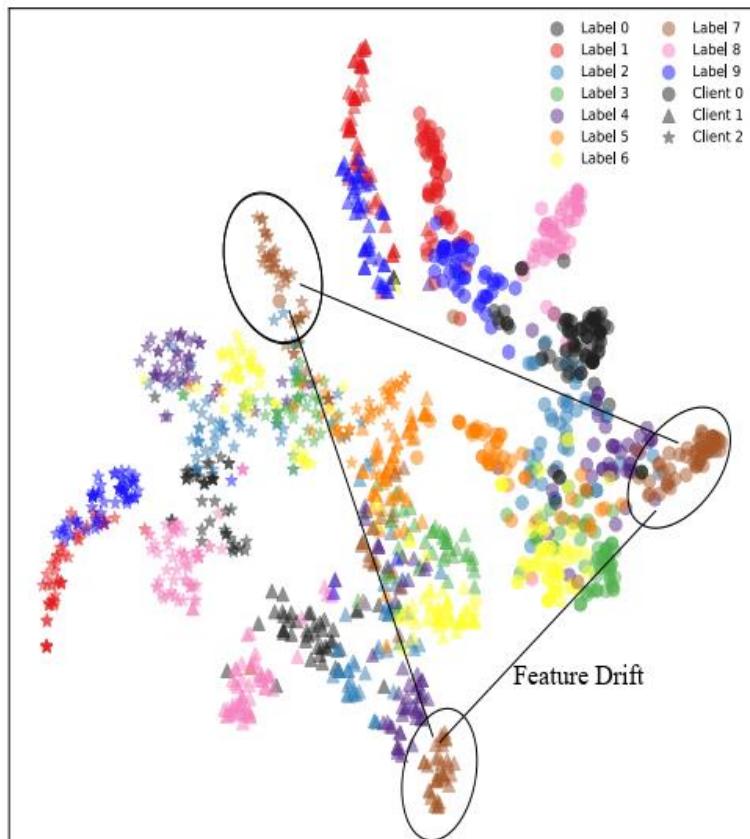
```
for each round  $r = 0, 1, \dots, R$  do
    server samples a set of clients  $\mathcal{S}_r \subseteq \{1, \dots, K\}$ 
    server communicates  $w_r$  to all clients  $k \in \mathcal{S}$ 
    for each client  $k \in \mathcal{S}^r$  in parallel do do
         $w_{k,E-1}^{r+1} \leftarrow \text{ClientUpdate}(k, w^r)$ 
    end for
     $w^{r+1} \leftarrow \sum_{k=1}^K p_k w_{k,E-1}^r$ 
end for
```

Client_Training(k, w):

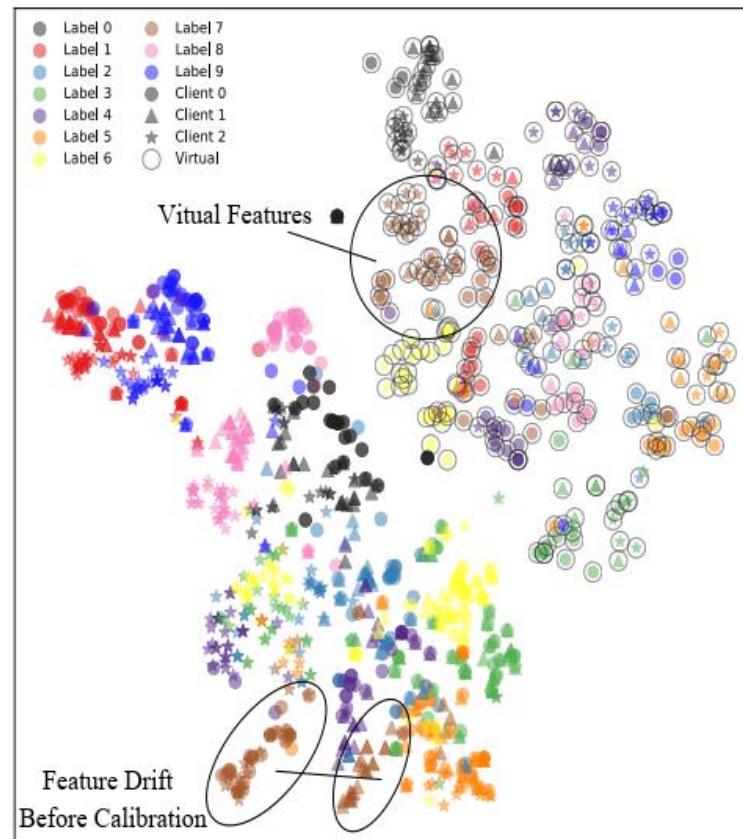
```
for each local epoch  $j$  with  $j = 0, \dots, E-1$  do
     $w_{k,j+1} \leftarrow w_{k,j} - \eta_{k,j} \nabla_w \bar{J}_k(w)$ , i.e., Eq. 6
end for
return  $w$  to server
```

Experiment

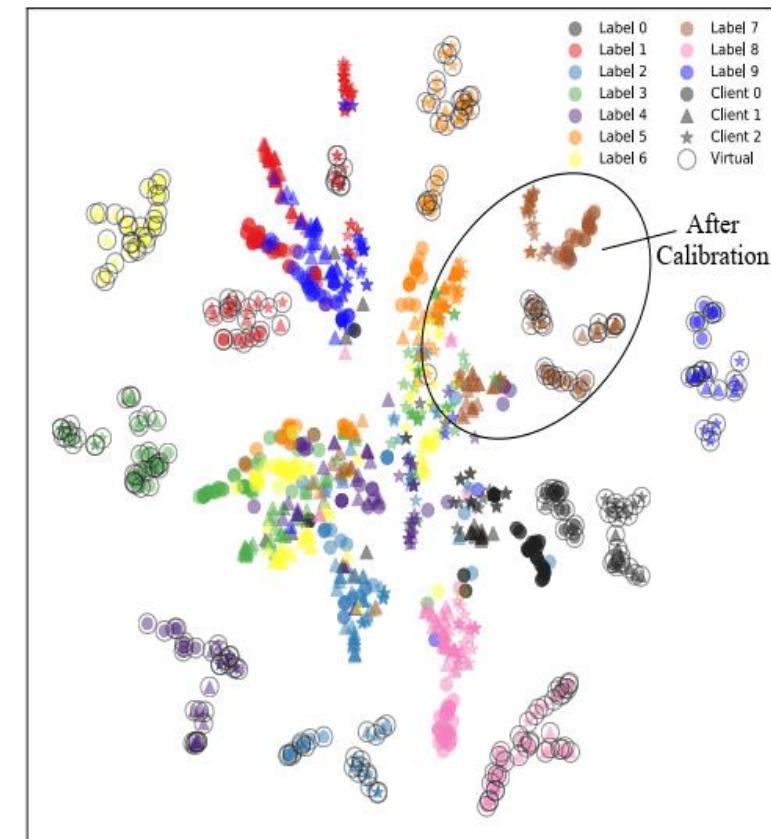
Datasets: CIFAR-10, Fashion-MNIST, SVHN, CIFAR-100


FL settings: 10 clients or 100 clients, LDA partition, $\alpha=0.1$ or 0.05 , Local epoch = 1 or 5.

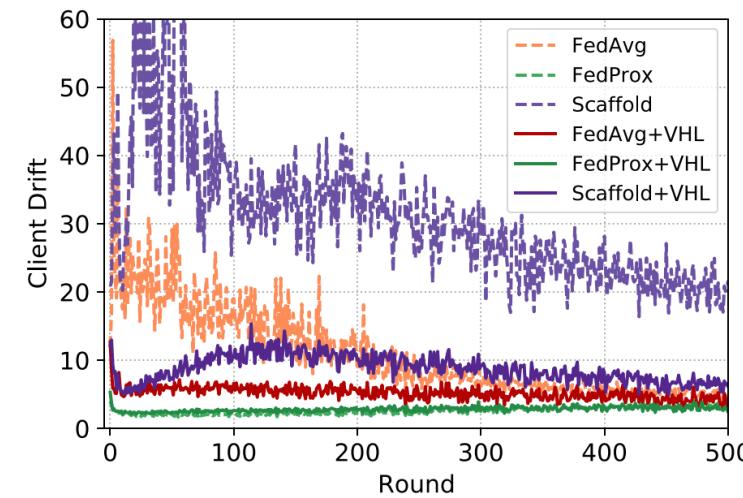
Model: ResNet18 for CIFAR-10, Fashion-MNIST, SVHN, ResNet50 for CIFAR-100.


FL algorithms: FedAvg, FedProx, SCAFFOLD, FedNova.

Experiment


Feature Distribution After Calibration

(a) FedAvg without VHL


(b) FedAvg with Naive VHL

(c) FedAvg with VHL

Experiment

$$\frac{1}{|\mathcal{S}^r|} \sum_{i \in \mathcal{S}^r} \|\bar{w} - w_i\|$$

(b) Model Divergence

Measuring Empirical Client Drift (Model Divergence)

Experiment

Metrics: Test Accuracy, Target Round

Table 1. Results with/without VHL on CIFAR-10.

	ACC ↑	ROUND ↓	Speedup ↑
	w/ (w/o) VHL		
centralized training ACC = 92.88% (92.53%)			
$a = 0.1, E = 1, K = 10$ (Target ACC = 79%)			
FedAvg	87.82 (79.98)	128 (287)	$\times 2.2$ ($\times 1.0$)
FedProx	87.30 (83.56)	128 (188)	$\times 2.2$ ($\times 1.5$)
SCAFFOLD	84.87 (83.58)	90 (291)	$\times 3.2$ ($\times 1.0$)
FedNova	87.56 (81.35)	128 (351)	$\times 2.2$ ($\times 0.8$)
$a = 0.05, E = 1, K = 10$ (Target ACC = 69%)			
FedAvg	79.23 (69.02)	112 (411)	$\times 3.7$ ($\times 1.0$)
FedProx	80.84 (78.66)	151 (201)	$\times 2.7$ ($\times 2.0$)
SCAFFOLD	55.73 (38.55)	Nan (Nan)	Nan (Nan)
FedNova	80.59 (64.78)	247 (Nan)	$\times 1.66$ (Nan)
$a = 0.1, E = 5, K = 10$ (Target ACC = 84%)			
FedAvg	89.93 (84.79)	91 (255)	$\times 2.8$ ($\times 1.0$)
FedProx	86.41 (82.18)	255 (Nan)	$\times 1.0$ (Nan)
SCAFFOLD	87.27 (86.20)	45 (66)	$\times 5.7$ ($\times 2.0$)
FedNova	90.24 (86.09)	67 (127)	$\times 3.8$ ($\times 1.0$)
$a = 0.1, E = 1, K = 100$ (Target ACC = 49%)			
FedAvg	70.20 (49.61)	385 (957)	$\times 2.5$ ($\times 1.0$)
FedProx	73.90 (49.97)	325 (842)	$\times 2.9$ ($\times 1.1$)
SCAFFOLD	59.66 (52.24)	479 (664)	$\times 2.0$ ($\times 1.4$)
FedNova	61.59 (46.53)	554 (Nan)	$\times 1.7$ (Nan)

"ROUND" represents the communication rounds that need to attain the target accuracy. The notion ↓ (↑) indicates smaller (larger) values are preferred.

Table 2. Results with/without VHL on FMNIST.

	ACC ↑	ROUND ↓	Speedup ↑
	w/ (w/o) VHL		
centralized training ACC = 93.8% (93.7%)			
$a = 0.1, E = 1, K = 10$ (Target ACC = 86%)			
FedAvg	92.05 (86.81)	52 (119)	$\times 2.3$ ($\times 1.0$)
FedProx	90.68 (87.12)	31 (135)	$\times 3.8$ ($\times 0.9$)
SCAFFOLD	90.27 (86.21)	14 (143)	$\times 8.5$ ($\times 0.8$)
FedNova	91.88 (86.99)	52 (83)	$\times 2.3$ ($\times 1.4$)
$a = 0.05, E = 1, K = 10$ (Target ACC = 78%)			
FedAvg	89.06 (78.57)	53 (425)	$\times 8.0$ ($\times 1.0$)
FedProx	87.76 (81.96)	30 (41)	$\times 14.2$ ($\times 10.4$)
SCAFFOLD	80.68 (76.08)	58 (Nan)	$\times 7.3$ (Nan)
FedNova	87.25 (79.06)	30 (538)	$\times 14.2$ ($\times 0.8$)
$a = 0.1, E = 5, K = 10$ (Target ACC = 87%)			
FedAvg	91.52 (87.45)	51 (278)	$\times 5.5$ ($\times 1.0$)
FedProx	88.27 (86.07)	74 (Nan)	$\times 3.8$ (Nan)
SCAFFOLD	91.82 (87.10)	20 (105)	$\times 13.9$ ($\times 2.7$)
FedNova	91.86 (87.53)	51 (193)	$\times 5.5$ ($\times 1.4$)
$a = 0.1, E = 1, K = 100$ (Target ACC = 90%)			
FedAvg	91.14 (90.11)	436 (658)	$\times 1.5$ ($\times 1.0$)
FedProx	91.37 (90.71)	283 (491)	$\times 2.3$ ($\times 1.3$)
SCAFFOLD	87.91 (85.99)	Nan (Nan)	Nan (Nan)
FedNova	88.34 (87.09)	Nan (Nan)	Nan (Nan)

Table 4. Results with/without VHL on SVHN.

	ACC ↑	ROUND ↓	Speedup ↑
	w/ (w/o) VHL		
centralized training ACC = 95.01% (95.27%)			
$a = 0.1, E = 1, K = 10$ (Target ACC = 88%)			
FedAvg	93.49 (88.56)	75 (251)	$\times 3.3$ ($\times 1.0$)
FedProx	91.70 (86.51)	271 (Nan)	$\times 0.9$ (Nan)
SCAFFOLD	87.54 (80.61)	Nan (Nan)	Nan (Nan)
FedNova	93.35 (89.12)	75 (251)	$\times 3.3$ ($\times 1.0$)
$a = 0.05, E = 1, K = 10$ (Target ACC = 82%)			
FedAvg	92.26 (82.67)	94 (357)	$\times 3.8$ ($\times 1.0$)
FedProx	89.30 (78.57)	320 (Nan)	$\times 1.1$ (Nan)
SCAFFOLD	83.89 (74.23)	147 (Nan)	$\times 2.4$ (Nan)
FedNova	91.82 (82.22)	128 (741)	$\times 2.8$ ($\times 0.5$)
$a = 0.1, E = 5, K = 10$ (Target ACC = 87%)			
FedAvg	90.52 (87.92)	145 (131)	$\times 0.9$ ($\times 1.0$)
FedProx	87.20 (78.43)	351 (Nan)	$\times 0.4$ (Nan)
SCAFFOLD	88.04 (81.07)	210 (Nan)	$\times 0.6$ (Nan)
FedNova	90.99 (88.17)	75 (162)	$\times 1.7$ ($\times 0.8$)
$a = 0.1, E = 1, K = 100$ (Target ACC = 89%)			
FedAvg	92.05 (89.44)	362 (618)	$\times 1.7$ ($\times 1.0$)
FedProx	92.08 (89.51)	356 (618)	$\times 1.7$ ($\times 1.0$)
SCAFFOLD	89.21 (89.55)	968 (643)	$\times 0.6$ ($\times 1.0$)
FedNova	92.01 (82.08)	676 (Nan)	$\times 0.9$ (Nan)

Table 5. Results with/without VHL on CIFAR-100.

	ACC ↑	ROUND ↓	Speedup ↑
	w/ (w/o) VHL		
centralized training ACC = 71.90 % (74.25 %)			
$a = 0.1, E = 1, K = 10$ (Target ACC = 67%)			
FedAvg	70.04 (67.95)	384 (497)	$\times 1.3$ ($\times 1.0$)
FedProx	68.29 (65.29)	617 (Nan)	$\times 0.8$ (Nan)
SCAFFOLD	67.88 (67.14)	294 (766)	$\times 1.7$ ($\times 0.6$)
FedNova	69.58 (68.26)	384 (472)	$\times 1.3$ ($\times 1.1$)
$a = 0.05, E = 1, K = 10$ (Target ACC = 62%)			
FedAvg	65.61 (62.07)	354 (514)	$\times 1.5$ ($\times 1.0$)
FedProx	64.39 (61.52)	482 (Nan)	$\times 1.1$ (Nan)
SCAFFOLD	60.67 (59.04)	Nan (Nan)	Nan (Nan)
FedNova	66.45 (60.35)	320 (Nan)	$\times 1.6$ (Nan)
$a = 0.1, E = 5, K = 10$ (Target ACC = 69%)			
FedAvg	69.85 (69.81)	327 (283)	$\times 0.9$ ($\times 1.0$)
FedProx	63.83 (62.62)	Nan (Nan)	Nan (Nan)
SCAFFOLD	69.43 (70.68)	291 (171)	$\times 1.0$ ($\times 1.7$)
FedNova	68.86 (70.05)	Nan (292)	Nan ($\times 1.0$)
$a = 0.1, E = 1, K = 100$ (Target ACC = 48%)			
FedAvg	53.45 (48.33)	717 (967)	$\times 1.3$ ($\times 1.0$)
FedProx	52.68 (48.14)	717 (955)	$\times 1.3$ ($\times 1.0$)
SCAFFOLD	54.93 (51.63)	656 (827)	$\times 1.5$ ($\times 1.2$)
FedNova	53.50 (48.12)	797 (967)	$\times 1.2$ ($\times 1.0$)

Ablation Study

Baselines	79.98	83.56	83.58	81.35
VHL	87.82	87.30	84.87	87.56
VFTL	80.38	82.20	83.83	80.63
Naive VHL	86.50	85.66	85.70	85.74
VFA	85.14	84.75	85.31	86.59

- Virtual Feature Transfer Learning (VFTL): Pretrained on noise data
- Naive VHL: Training with both private data and noise data without feature calibration
- Virtual Feature Alignment (VFA): Feature calibration based on random features of different classes.

Pure Noise	87.01	86.46	85.57	87.81
Simple-CNN	84.87	85.30	84.15	85.25
Tiny-ImageNet	84.05	83.62	81.57	85.41
$B_v = 64$	87.36	86.36	82.39	87.20
$B_v = 128$	87.82	87.30	84.87	87.56
$B_v = 256$	88.95	86.82	84.68	87.89
$B_v = 384$	89.69	86.59	85.87	88.73
$\lambda = 0.2$	87.04	86.02	84.41	87.65
$\lambda = 0.5$	87.02	85.99	84.29	87.15
$\lambda = 1.0$	87.82	87.30	84.87	87.56
$\lambda = 2.0$	87.87	86.86	84.81	88.71
$\lambda = 5.0$	83.52	88.34	85.58	88.47
$h_{shallow}$	86.10	85.59	85.19	84.95
h_{middle}	87.06	86.30	87.97	87.27
h_{deep}	89.26	87.54	86.00	88.42
h_{last}	87.82	87.30	84.87	87.56

- Different Noise
- Different Batch Size
- Different weight of calibration loss
- Different depth of calibration

Thank You