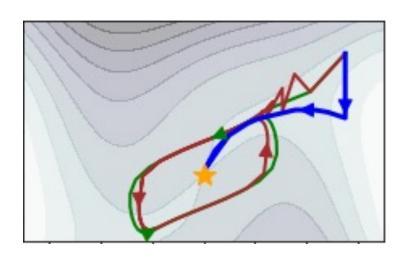
A Convergent and Dimension-Independent Min-Max Optimization Algorithm



Vijay Keswani Yale

Oren Mangoubi WPI

University of Toronto

Sushant Sachdeva Nisheeth Vishnoi Yale

ICML 2022

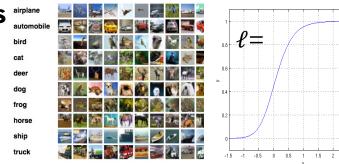
Learning and Minimization

From ML to Optimization:

Given
$$f: \mathbb{R}^d \to \mathbb{R}$$

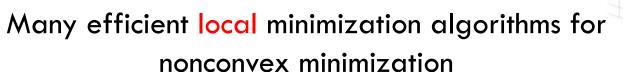
$$\min_{x} f(x)$$

Availability of large, real-world datasets alroland has given rise to complex, nonconvex, objective functions in high dimensions e.g. $f(x) = \sum_{i} \ell_{i}(x, D_{i})$

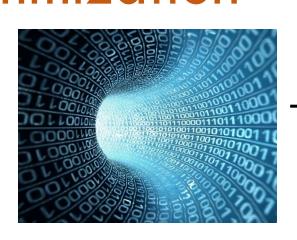


Simple examples of nonconvex f where any algorithm with access to oracles for f, ∇f , $\nabla^2 f$ requires exponential-in-d oracle calls to find global min

Even if f is given as a neural network, minimizing f is still hard [Rivest, Blum, '89]



"Robust" Learning and "Min-Max" Optimization



Applications:

- Privacy
- Bias
- Adversarial attacks
- Unsupervised learning
 - • •

From Robust Learning to Min-Max Optimization: $f: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$

Learner: model parameters $\min_{x} \max_{y} f(x, y)$

Adversary:
Perturbations, ...

Convex-concave setting (reasonably) well-understood (starting with [von Neumann, 1928]...)

In ML applications: f is nonconvex in x and nonconcave in y

Bottleneck: (Locally) convergent algorithms for min-max models?

E-Local Minima

• **Definition:** ε —local minimum [Nesterov, Polyak, '06]: x^* is a first-order (second-order) ε —local minimum of f(x) if $||\nabla f(x^*)|| < \varepsilon$ $\nabla^2 f(x^*) \ge -\sqrt{\varepsilon}I$

At any point which is not a first-order (or second-order) ε —local minimum, can decrease f by roughly ε in poly $\left(\frac{1}{\varepsilon}, L, \log(d)\right)$ gradient and/or Hessian evaluations! (If f is L-smooth)

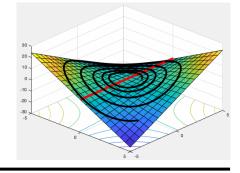
- $\operatorname{poly}\left(\frac{1}{\varepsilon}, L, \log(d)\right)$ Newton's method with cubic regularization (need Hessian-vector product) [Nesterov, Polyak, '06]
- Stochastic gradient descent (only gradient evaluations)
 - poly $\left(\frac{1}{\varepsilon}, L, d\right)$ [Ge, Huang, Jin Yuan, '15]
 - $\operatorname{poly}\left(\frac{1}{\varepsilon}, L, \log(d)\right)$ [Jin, Ge, Netrapalli, Kakade, Jordan, '17]

Local Equilibria for Min-Max Many prior attempts, e.g., ε -local min-max: a point (x^\star, y^\star) where

- 1) y^* is a ε -local maximum for $f(x^*, \cdot)$ and
- 2) x^* is a ε -local minimum for $f(\cdot, y^*)$
- Simple examples where such points don't exist [see Jin, Netrapalli,

Jordan '19] and hard to find even when they exist [see Daskalakis, Skoulakis, Zampetakis '21]

Leads to convergence problems in algorithms such as gradient descent-ascent (GDA), opt. mirror desc.



Convergence for "local" min-max algorithms require strong assumptions, e.g.:

- GDA [Heusel, Ramsauer, Unterthiner, Nessler, Hochreiter '17] (special starting point)
- Optimistic mirror descent [Daskalakis, Panageas '18] (f bilinear, or "coherence") Hamiltonian descent [Abernathy, Lai, Wibisono '19] (f to be sufficiently bilinear)
- Other Algorithms [Thekumparampil, Jain, Netrapali, Oh '19], [Rafique, Liu, Lin, Yang '18] (concave in y)

Computationally restricted equilibrium: min-max equilibrium for agents computationally restricted to 2nd-order algorithms [Mangoubi, Vishnoi, '21]

- Algorithm converges for **any** smooth/bounded f, from any initial point
- Runtime bound is polynomial-in-d, requires access to Hessian $\nabla^2 f$

This Paper

Key Idea: Place *first-order* computational restrictions on max-agent (adversary)

Definition: $(\varepsilon, \delta, \omega, Q)$ -min-max equilibrium under first-order max-agent (coming up)

Theorem: Given access to $f: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$, its (stochastic) gradient, and a sampling oracle for a proposal distribution Q. Suppose f is L-smooth and uniformly bounded by b>0. Then given any initial point, our algorithm returns an $(\varepsilon, \delta, \omega, Q)$ - equilibrium (x^*, y^*) of f in a number of function, gradient, and sampling oracle evaluations that is $poly(L, b, \frac{1}{\varepsilon}, \frac{1}{\delta}, \frac{1}{\omega})$ and does not depend on the dimension d.

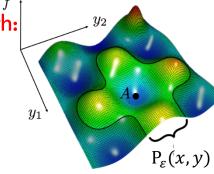
- No additional assumptions on starting point, concavity, coherence...
- ullet Equilibrium exists for every bounded and smooth f
- ullet Number of gradient evaluations $oldsymbol{\mathsf{does}}$ not $oldsymbol{\mathsf{depend}}$ on $oldsymbol{\mathsf{dimension}}$ $oldsymbol{d}$

ε -increasing Paths and ε -Equilibria

Starting at (x, y), update y to w using a (first-order) ε -increasing path: Any unit speed path $\gamma: [0, \tau] \to \mathbb{R}^d$ s.t.

$$\frac{d}{dt}f(x,\gamma(t)) \ge \varepsilon$$

E-increasing paths model classes of 1st-order optimization algorithms!



If adversary is restricted to ε -increasing paths, min-agent seeks to minimize

$$\mathcal{L}(x,y) \coloneqq \max_{z \in P_{\varepsilon}(x,y)} f(x,z),$$

Where $P_{\varepsilon}(x,y)$ is set of points reachable by ε -increasing path from an initial point y

- $\|\nabla_{\mathcal{V}} f(x^*, y^*)\| \le \varepsilon$ and $\|\nabla_{\mathcal{X}} \mathcal{L}(x^*, y^*)\| \le \varepsilon$
- But \mathcal{L} may be discontinuous!

$$(\varepsilon, \delta, \omega, Q)$$
-min-max equilibrium :

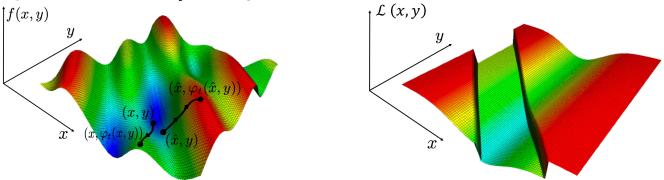
- $\mathbb{P}_{\Delta \sim Q_{x^*,y^*}}(\mathcal{L}(x^* + \Delta, y^*) < \mathcal{L}(x^*, y^*) \delta) \le \omega$
- $y^* \in \operatorname{argmax}_{y \in P_{\varepsilon}(x^*, y^*)} f(x^*, y)$

 $Q_{x,y}$ is a proposal distribution used by the min-player to search for updates

How to choose Q to minimize discontinuous \mathcal{L} ?

First-order method for Minimizing Discontinuous ${\mathcal L}$

(Common) problem: $\mathcal{L}(x,y)$ may be discontinuous in x



Problem: Even where \mathcal{L} is differentiable, don't have access to its gradient $\nabla_{\mathcal{X}}\mathcal{L}$ How can min-agent minimize \mathcal{L} to update (\hat{x}, \hat{y}) via **first-order** algorithm?

Solution:

- Min-agent proposes random updates $\widehat{x}+\Delta$ from a distribution $\Delta\sim Q$
- Roughly speaking, if $\mathcal{L}(\hat{x} + \Delta, y) < \mathcal{L}(x, y)$, accept the update. Otherwise, propose a new random update.

In practice, we observe that choosing Q to be distribution of stochastic gradients $-\nabla_{\chi}f$ leads to equilibria with good learning outcomes

Algorithm

Input: Initial point (\hat{x}, \hat{y}) , $f: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$

For i = 0,1,2,...

- 1. Sample $\Delta \sim Q_{\widehat{x},\widehat{y}}$ In practice we choose Q to be distribution of stochastic (batch) gradients for $-\nabla_{\chi}f$
- 2. Propose min-player update: $x \leftarrow \hat{x} + \Delta$
- 3. Compute max-agent's response, y, by running gradient ascent on $f(x,\cdot)$, starting at \hat{y} , until a point y is reached s.t. $||\nabla_y f(x,y)|| < \varepsilon$
- 4. If $\mathcal{L}(x,y) < \mathcal{L}(\hat{x},\hat{y}) \delta$, accept proposed update $(\hat{x},\hat{y}) \leftarrow (x,y)$
- 5. If no "accept" in previous $\frac{1}{\alpha}$ iterations of for loop, return (\hat{x}, \hat{y}) and halt

Runtime: Roughly, $\mathcal{L}(\hat{x}, \hat{y})$ decreases by at least δ each time proposal is accepted, which occurs at least every $\frac{1}{\omega}$ Iterations. Since f (and hence \mathcal{L}) is b-bounded, algorithm terminates after $\leq \frac{b}{\delta \omega}$ iterations.

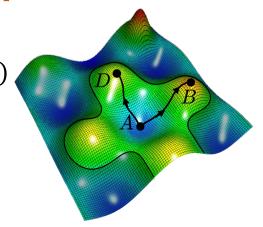
At each iteration, Q is sampled once, and gradient ascent computes $\operatorname{poly}(L,b,1/\varepsilon)$ gradients. Thus, total runtime is $\operatorname{poly}(L,b,1/\varepsilon,1/\omega,1/\delta)$ gradient/sampling oracle calls.

Equilibrium: The point (x^*, y^*) reached by the algorithm is a first-order ε -local max for $f(x^*, \cdot)$, and satisfies $\mathbb{P}_{\Delta \sim Q_{x^*, y^*}}(\mathcal{L}(x^* + \Delta, y^*) < \mathcal{L}(x^*, y^*) - \delta) \leq \omega$.

Convergence to Equilibrium

Problem: $\mathcal{L}(x,y)$ may not be tractable to compute at all (x,y)

- Adversary can choose to use any \mathcal{E} -increasing path
- Finding the max over all these paths is intractable



Solution: Have the min-agent minimize a *lower bound* $h(x,y) \leq \mathcal{L}(x,y)$, obtained with just one ε -increasing path

We show that, at any points (x, y^*) where y^* is ε -stationary point of $f(x, \cdot)$,

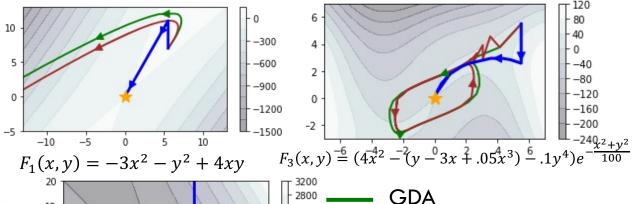
- 1. $h(x, y^*) = \mathcal{L}(x, y^*) = f(x, y^*)$ (because any ε -increasing path initialized at ε -stationary point y^* remains at y^*)
- 2. If $h(x^* + \Delta, y^*) > h(x^*, y^*) \delta$ then $\mathcal{L}(x^* + \Delta, y^*) > \mathcal{L}(x^*, y^*) \delta$ Because $\mathcal{L}(x^* + \Delta, y^*) \geq h(x^* + \Delta, y^*)$ (since $h \leq g$) $> h(x^*, y^*) - \delta$ $= f(x^*, y^*) - \delta$ (by (1))

Empirical Results: 2-D functions and synthetic data

2-dimensional min-max objectives bounded above in y

Global min-max at (0,0): 10

- GDA and OMD cycle or diverge to ∞
- Our algorithm converged to global min-max (0,0)



2400 2000

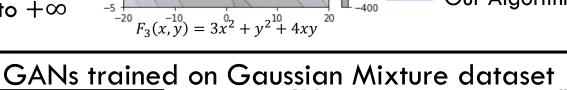
1600

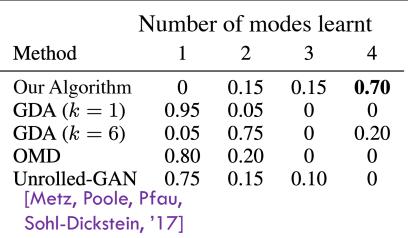
1200

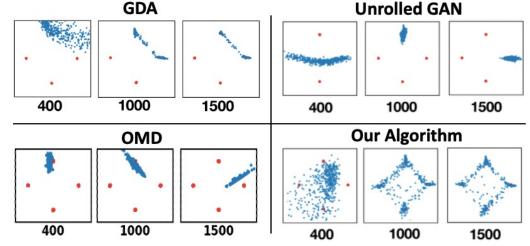
400

Global min-max (value) at $+\infty$:

- GDA and OMD go to point which is not global min-max
- Our algorithm goes to $+\infty$







[Daskalakis, Ilyas, Syrgkanis, Zeng, '18]

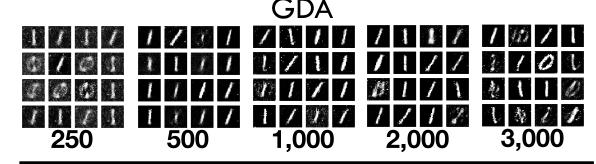
Our Algorithm

Empirical Results: Real-world datasets

GANs trained on 01-MNIST dataset

Mode collapse: by the 1000th iteration,

- Our algorithm
 generated both digits
 in all the training runs
- GDA did so in 22% of the runs



250 500 1,000 2,000 3,000

GANs trained on CIFAR-10 dataset

Mean Inception score (standard deviation)

Mean Inception score (standard deviation)				
		Iteration	Iteration	
Method	5000	25000	50000	
Our Algorithm 2.71 (0.28)		4.10 (0.35)	4.68 (0.39)	
GDA	2.80 (0.52)	4.28 (0.77)	4.51 (0.86)	
OMD	1.60 (0.18)	1.73 (0.25)	1.96 (0.26)	

Images generated by GAN trained with our algorithm

Conclusions

- New first-order computationally feasible alternative to min-max optimization
- **Key idea:** constrain max-agent to ε -increasing paths, which model first-order optimization algorithms
- **Dimension-independent bounds:** algorithm finds ε -equilibrium point in $\operatorname{poly}\left(\frac{1}{\varepsilon},L\right)$ gradient/sampling oracle evaluations
 - ullet only assume that f is L-smooth and bounded
 - No additional assumptions on starting point, concavity, coherence, etc.
 - In practice, update $\Delta \sim Q$ can be computed as stochastic gradient for $-\nabla_{\chi} f$
- **Previous work:** Use paths which model **second-order** greedy algorithms, converges to a **second-order** ε equilibrium in $\operatorname{poly}\left(d,\frac{1}{\varepsilon},L\right)$ gradient and Hessian evaluations [Mangoubi, Vishnoi, '21]
- Open problem: Can a second-order equilibrium be found in polylog(d) gradient evaluations (and without access to Hessian)?

Thanks!