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Learning and Minimization

gl

’ From ML to Optimization:
Given f: R - R
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Simple examples of nonconvex f where any algorithm with access to oracles for f,Vf,
sz requires exponential-in-d oracle calls to find global min

Even if f is given as a neural network, minimizing f is still
hard [Rivest, Blum, ‘89]

Many efficient local minimization algorithms for

nonconvex minimization



“Robust” Learning and “Min-Max”
Optimization

Applications:

* Privacy

* Bias
)) * Adversarial attacks
Unsupervised learning

1001 -
01, 1!

From Robust Learning to Min-Max Optimization: f: R*XR% — R
Learner: min max f(x; y) Adversary:
X

model parameters Perturbations, ...

Convex-concave setting (reasonably) well-understood (starting with
[von Neumann, 1928]...)

In ML applications: f is nonconvex in X and nonconcave in y

Bottleneck: (Locally) convergent algorithms for min-max models?



€-Local Minima

* Definition: £ —local minimum [Nesteroyv, Polyak, ‘O6]:
x* is a first-order (second-order) &€ —local minimum of f(x) if

1VF G| < V2f(x*)  —el

At any point which is not a first-order (or second-order) € —local minimum,
can decrease [ by roughly € in poly( L, log(d)) gradient and /or

Hessian evaluations!  (If f is L-smooth)

. poly( L, log(d)) Newton’s method with cubic regularization (need Hessian-

vector product) [Nesterov, Polyak, ‘06]
* Stochastic gradient descent (only gradient evaluations)

. poly( L d) [Ge, Huang, Jin Yuan, ‘15]
. poly( L, log(d)) [Jin, Ge, Netrapalli, Kakade, Jordan, ‘17]



Local Equilibria for Min-Max

Many prior attempts, e.g., £-local min-max: a point (x*, y*) where
1) y* is a e-local maximum for f(x*,") and
2) x* is a &-local minimum for f(:,y™)

* Simple examples where such points don’t exist [see Jin, Netrapalli,
Jordan ‘19] and hard to find even when they exist
[see Daskalakis, Skoulakis, Zampetakis ‘21]

* leads to convergence problems in algorithms such as
gradient descent-ascent (GDA), opt. mirror desc.

Convergence for “local” min-max algorithms require strong assumptions, e.g.:

GDA [Heusel, Ramsauer, Unterthiner, Nessler, Hochreiter ‘17] (special starting point)
Optimistic mirror descent [Daskalakis, Panageas ‘18] (f bilinear, or “coherence”)
Hamiltonian descent [Abernathy, Lai, Wibisono ‘19] (f to be sufficiently bilinear)
Other Algori’rhms [Thekumparampil, Jain, Netrapali, Oh ‘19], [Rafique,Liv, Lin, Yang ‘18] (COhCCIVG in y)

Computationally restricted equilibrium: min-max equilibrium for agents
computationally restricted to 2"-order algorithms [Mangoubi, Vishnoi, ‘21]
* Algorithm converges for any smooth/bounded f, from any initial point

* Runtime bound is polynomial-in-d, requires access to Hessian V2 f



This Paper

Key Idea : Place first-order computational restrictions on max-agent
(adversary)

Definition: (&, 0, w, Q)-min-max equilibrium under first-order max-agent
(coming up)

Theorem: Given access to f: RIXR? — R, its (stochastic) gradient, and a
sampling oracle for a proposal distribution Q. Suppose f is L-smooth and
uniformly bounded by b>0. Then given any initial point, our algorithm

returns an (&0, w, Q)- equilibrium (x*,y™) of f in a number of function,
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gradient, and sampling oracle evaluations that is poly(L, b,;,g,;) and

does not depend on the dimension d.

* No additional assumptions on starting point, concavity, coherence...
* Equilibrium exists for every bounded and smooth f
* Number of gradient evaluations does not depend on dimension d



g-increasing Paths and g-Equilibria
Starting at (x,y), update y to w using a (first-order) e-increasing pq’r{\: y2
Any unit speed path v: [0, t] = R? s.t.

%f(x,y(t)) > ¢

g-increasing paths model classes of 1¢-order optimization algorithms!

If adversary is restricted to £-increasing paths, min-agent seeks to minimize

L(x,y) = zeglg%a)c(,y) f(x,z),

Where P.(x,y) is set of points reachable by &-increasing path from an initial point y

A first attempt to define first-order equilibrium for this framework:

* Byl seand VLGN YOI <€ But L may be discontinuous!

(¢,0, w, Q)-min-max equilibrium :
* Pasg (L™ +Ay") <L(x™y") —d8)fw

* y* € argmaxyep,(xy)f (x7,¥)
(yx,y is a proposal distribution used by the min-player to search for updates

How to choose () to minimize discontinuous L¢



First-order method for Minimizing Discontinuous L

(Common) problem: L (x,y) may be discontinuous in x
L(x,y)

Y

Problem: Even where L is differentiable, don’t have access to its gradient V,.L
How can min-agent minimize L to update (X, ¥) via first-order algorithm?

Solution:
* Min-agent proposes random updates X + A from a distribution A ~ Q

* Roughly speaking, if L(X + A,y) < L(x,y), accept the update. Otherwise,
propose a new random update.

In practice, we observe that choosing Q to be distribution of stochastic
gradients —V,.f leads to equilibria with good learning outcomes



Algorithm

Input: Initial point (£,9), f:RIxR? - R
Fori =0,1,2, ...

1.  Sample A ~ Q353
In practice we choose Q) to be distribution of stochastic (batch) gradients for —V,.f

2. Propose min-player update: x <« X + A

3. Compute max-agent’s response, V, by running gradient ascent on f(x,-), starting at
¥, until a point y is reached s.t. ||Vyf(x, V|| < e

4.1f L (x,y) < L(X,9) — 6, accept proposed update (X,7) < (x,y)

1 N A\
5. If no “accept” in previous — iterations of for loop, return (X,y) and halt
P P o P

Runtime: Roughly, L(X, V) decreases by at least § each time proposal is accepted, which

1 . . . .
occurs at least every 5 lterations. Since f (and hence L) is b-bounded, algorithm

) b, )
terminates after < 50 iterations.

At each iteration, Q is sampled once, and gradient ascent computes poly(L, b, 1/¢)
gradients. Thus, total runtime is poly(L,b,1/g,1/w, 1/8) gradient/sampling oracle calls.

Equilibrium: The point (x*, y*) reached by the algorithm is a first-order &-local max for
f(x*,), and satisfies Ppq . i (L(x*+Ay) <L(x%y") —6) < w.



Convergence to Equilibrium

Problem: £ (x,y) may not be tractable to compute at all (x,y)

* Adversary can choose to use any &-increasing path
* Finding the max over all these paths is intractable

Solution: Have the min-agent minimize a lower bound h(x,y) < L(x,y), obtained with
just one &-increasing path

We show that, at any points (x, y*) where y* is e-stationary point of f(x,),

1. hCo,y™) =L0,y*) = flx,y)

(because any &-increasing path initialized at &-stationary point y* remains at y”*)

2. Wh(x*+A,y")>h(x*y*)—6 then L(x™+ A, y*) > L(x*,y*)— 6
Because L(x* + A, y*) = h(x* + A, y*) (since h < g)
> h(x*,y*)—96
=f(x"y*)—6 (by (1))



Empirical Results: 2-D functions and synthetic data
2-dimensional min-max ob|ec’r|ves bounded c:bove iny

Global min-max (value) at +00:*

Global min—max at (0,0): ©
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GANs trained on Gaussian Mixture dataset

GDA Unrolled GAN
Number of modes learnt A0 X : }
Method 1 2 3 4 " R [ " g -
Our Algorithm 0 0.15 0.15 0.70 ' : ;
GDA(k=1) 095 005 0 0 400 1000 1500 0 1000 1500
GDA (k = 6) 0.05 0.75 0 0.20 OMD Our Algorithm
OMD 080 020 0 0 } \ i o Yy *
Unrolled-GAN 0.75 0.15 0.10 0 I | T T Pk NI PO
[Metz, Poole, Pfau, . " ; g 48"
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Empirical Results: Real-world datasets

GAN:s trained on

O1-MNIST dataset HHE
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GAN:s trained on CIFAR-10 dataset

Mean Inception score (standard deviation)

Iteration
Method 5000 25000 50000
Our Algorithm 2.71 (0.28) 4.10 (0.35) 4.68 (0.39)
GDA 2.80(0.52) 4.28 (0.77) 4.51 (0.86)
OMD 1.60 (0.18) 1.73(0.25) 1.96 (0.26)

Images generated by GAN
trained with our algorithm
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Conclusions

* New first-order computationally feasible alternative to min-max optimization

Key idea: constrain max-agent to £-increasing paths, which model first-order
optimization algorithms

* Dimension-independent bounds: algorithm finds e-equilibrium point in poly (%, L)

gradient /sampling oracle evaluations
* only assume that f is L-smooth and bounded
* No additional assumptions on starting point, concavity, coherence, etc.
* In practice, update A ~ Q can be computed as stochastic gradient for =V, f

* Previous work: Use paths which model second-order greedy algorithms,
1
converges to a second-order £ — equilibrium in poly (d,g, L) gradient and

Hessian evaluations [Mangoubi, Vishnoi, '21]

* Open problem: Can a second-order equilibrium be found in polylog(d) gradient
evaluations (and without access to Hessian)?




