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Learning and Minimization
From ML to Optimization: 
Given 𝑓:ℝ! → ℝ

min
"
𝑓(𝑥)

Availability of large, real-world datasets
has given rise to complex, nonconvex, 
objective functions in high dimensions e.g.
𝑓 𝑥 = ∑# ℓ# 𝑥, D#

ℓ=

Simple examples of nonconvex 𝑓 where any algorithm with access to oracles for 𝑓,∇𝑓,
∇!𝑓 requires exponential-in-d oracle calls to find global min

Even if 𝑓 is given as a neural network, minimizing 𝑓 is still 
hard [Rivest, Blum, ‘89]

Many efficient local minimization algorithms for 
nonconvex minimization



“Robust” Learning and “Min-Max” 
Optimization

From Robust Learning to Min-Max Optimization: 𝑓:ℝ!×ℝ! → ℝ
min
"
max
%
𝑓(𝑥, 𝑦)

Convex-concave setting (reasonably) well-understood  (starting with 
[von Neumann, 1928]…)

In ML applications: 𝑓 is nonconvex in 𝑥 and nonconcave in 𝑦

“Noise”

Bottleneck: (Locally) convergent algorithms for min-max models?

Adversary: 
Perturbations, …

Learner: 
model parameters

Applications:
• Privacy
• Bias
• Adversarial attacks
• Unsupervised learning
• …



𝜀-Local Minima

• Definition: 𝜀 −local minimum   [Nesterov, Polyak, ‘06]:
𝑥⋆ is a first-order (second-order) 𝜀 −local minimum of 𝑓(𝑥) if

∇𝑓 𝑥⋆ < 𝜀 ∇'𝑓 𝑥⋆ ≽ − 𝜀𝐼

At any point which is not a first-order (or second-order) 𝜀 −local minimum,

can decrease 𝑓 by roughly 𝜀 in poly (
) , 𝐿, log 𝑑 gradient and/or 

Hessian evaluations!    (If 𝑓 is L-smooth)
• poly "

#
, 𝐿, log 𝑑 Newton’s method with cubic regularization (need Hessian-

vector product) [Nesterov, Polyak, ‘06]
• Stochastic gradient descent  (only gradient evaluations)

• poly "
#
, 𝐿, 𝑑 [Ge, Huang, Jin Yuan, ‘15]

• poly "
#
, 𝐿, log 𝑑 [Jin, Ge, Netrapalli, Kakade, Jordan, ‘17]



Local Equilibria for Min-Max
Many prior attempts, e.g., 𝜀-local min-max: a point (𝑥⋆, 𝑦⋆) where 

1) 𝑦⋆ is a 𝜀-local maximum for 𝑓(𝑥⋆,⋅) and 
2) 𝑥⋆ is a 𝜀-local minimum for 𝑓(⋅, 𝑦⋆)

• Simple examples where such points don’t exist [see Jin, Netrapalli, 
Jordan ‘19] and hard to find even when they exist                      
[see Daskalakis, Skoulakis, Zampetakis ‘21]

Convergence for “local” min-max algorithms require strong assumptions, e.g.:
• GDA [Heusel, Ramsauer, Unterthiner, Nessler, Hochreiter ‘17] (special starting point)
• Optimistic mirror descent [Daskalakis, Panageas ‘18] (𝑓 bilinear, or “coherence”) 

Hamiltonian descent [Abernathy, Lai, Wibisono ‘19] (𝑓 to be sufficiently bilinear)
• Other Algorithms [Thekumparampil, Jain, Netrapali,Oh ‘19], [Rafique,Liu,Lin, Yang ‘18] (concave in 𝑦)

• Leads to convergence problems in algorithms such as 
gradient descent-ascent (GDA), opt. mirror desc.

Computationally restricted equilibrium: min-max equilibrium for agents 
computationally restricted to 2nd-order algorithms [Mangoubi, Vishnoi, ‘21]
• Algorithm converges for any smooth/bounded 𝑓, from any initial point
• Runtime bound is polynomial-in-𝑑,   requires access to Hessian ∇'𝑓



This Paper

• No additional assumptions on starting point, concavity, coherence…
• Equilibrium exists for every bounded and smooth 𝑓
• Number of gradient evaluations does not depend on dimension 𝒅

Key Idea : Place first-order computational restrictions on max-agent 
(adversary)

Definition: (𝜀, 𝛿, 𝜔, 𝑄)-min-max equilibrium under first-order max-agent 
(coming up)

Theorem: Given access to 𝑓:ℝ!×ℝ! → ℝ, its (stochastic) gradient, and a 
sampling oracle for a proposal distribution 𝑄. Suppose 𝑓 is 𝐿-smooth and 
uniformly bounded by 𝑏>0. Then given any initial point, our algorithm 
returns an (𝜀, 𝛿, 𝜔, 𝑄)- equilibrium (𝑥⋆, 𝑦⋆) of 𝑓 in a number of function, 

gradient, and sampling oracle evaluations that is poly 𝐿, 𝑏, () ,
(
* ,

(
+ and 

does not depend on the dimension 𝑑.



𝜀-increasing Paths and 𝜀-Equilibria
Starting at (𝑥, 𝑦), update 𝑦 to 𝑤 using a (first-order) 𝜀-increasing path:
Any unit speed path 𝛾: 0, 𝜏 → ℝ$ s.t.

𝑑
𝑑𝑡
𝑓 𝑥, 𝛾 𝑡 ≥ 𝜀

𝜀-increasing paths model classes of 1st-order optimization algorithms!

A first attempt to define first-order equilibrium for this framework:
• 𝛻!𝑓(𝑥⋆, 𝑦⋆) ≤ ε and 𝛻#ℒ(𝑥⋆, 𝑦⋆) ≤ ε But ℒ may be discontinuous!

If adversary is restricted to 𝜀-increasing paths, min-agent seeks to minimize 
ℒ 𝑥, 𝑦 ≔ max

%∈'!(),+)
𝑓 𝑥, 𝑧 ,

Where P$(𝑥, 𝑦) is set of points reachable by 𝜀-increasing path from an initial point 𝑦

(𝜀, 𝛿, 𝜔, 𝑄)-min-max equilibrium :
• ℙ-∼/"⋆,%⋆ ℒ(𝑥

⋆ + Δ, 𝑦⋆) < ℒ(𝑥⋆, 𝑦⋆) − 𝛿 ≤ 𝜔
• 𝑦⋆ ∈ argmax+∈1! )⋆,+⋆ 𝑓(𝑥

⋆, 𝑦)
𝑄),+ is a proposal distribution used by the min-player to search for updates

How to choose 𝑄 to minimize discontinuous ℒ?

P!(𝑥, 𝑦)



First-order method for Minimizing Discontinuous ℒ
(Common) problem: ℒ 𝑥, 𝑦 may be discontinuous in 𝑥

Problem: Even where ℒ is differentiable, don’t have access to its gradient ∇)ℒ
How can min-agent minimize ℒ to update J𝑥, J𝑦 via first-order algorithm?

In practice, we observe that choosing 𝑄 to be distribution of stochastic 
gradients −𝛻"𝑓 leads to equilibria with good learning outcomes

Solution:
• Min-agent proposes random updates J𝑥 + Δ from a distribution Δ ∼ 𝑄

• Roughly speaking, if ℒ J𝑥 + Δ, 𝑦 < ℒ 𝑥, 𝑦 , accept the update. Otherwise,
propose a new random update.

ℒ 𝑥, 𝑦



Algorithm
Input: Initial point (J𝑥, J𝑦),  𝑓:ℝ$×ℝ$ → ℝ
For 𝑖 = 0,1,2, …
1. Sample Δ ∼ 𝑄2𝒙,2𝒚

In practice we choose 𝑄 to be distribution of stochastic (batch) gradients for −∇)𝑓
2. Propose min-player update:   𝑥 ← J𝑥 + Δ
3. Compute max-agent’s response, 𝑦, by running gradient ascent on 𝑓(𝑥,⋅), starting at 
J𝑦, until a point 𝑦 is reached s.t. |∇+𝑓 𝑥, 𝑦 | < ε
4. If ℒ 𝑥, 𝑦 < ℒ J𝑥, J𝑦 − 𝛿,  accept proposed update J𝑥, J𝑦 ← (𝑥, 𝑦)

5. If no “accept” in previous "
5

iterations of for loop, return  (J𝑥, J𝑦) and halt

Runtime: Roughly, ℒ(J𝑥, J𝑦) decreases by at least 𝛿 each time proposal is accepted, which 
occurs at least every "

5
Iterations. Since 𝑓 (and hence ℒ) is 𝑏-bounded, algorithm 

terminates after ≤ 6
75 iterations.

At each iteration, 𝑄 is sampled once, and gradient ascent computes poly 𝐿, 𝑏, 1/𝜀
gradients. Thus, total runtime is poly 𝐿, 𝑏, 1/𝜀, 1/𝜔, 1/𝛿 gradient/sampling oracle calls.

Equilibrium: The point 𝑥⋆, 𝑦⋆ reached by the algorithm is a first-order 𝜀-local max for   
𝑓(𝑥⋆,⋅), and satisfies ℙ-∼/"⋆,%⋆ ℒ(𝑥

⋆ + Δ, 𝑦⋆) < ℒ(𝑥⋆, 𝑦⋆) − 𝛿 ≤ 𝜔.



Convergence to Equilibrium
Problem: ℒ 𝑥, 𝑦 may not be tractable to compute at all 𝑥, 𝑦

• Adversary can choose to use any 𝜀-increasing path
• Finding the max over all these paths is intractable

Solution: Have the min-agent minimize a lower bound ℎ 𝑥, 𝑦 ≤ ℒ(𝑥, 𝑦), obtained with
just one 𝜀-increasing path

We show that, at any points (𝑥, 𝑦⋆) where 𝑦⋆ is 𝜀-stationary point of 𝑓 𝑥,⋅ ,

1. ℎ 𝑥, 𝑦⋆ = ℒ 𝑥, 𝑦⋆ = 𝑓 𝑥, 𝑦⋆
(because any 𝜀-increasing path initialized at 𝜀-stationary point 𝑦⋆ remains at  𝑦⋆)

2. If ℎ 𝑥⋆ + Δ, 𝑦⋆ > ℎ 𝑥⋆, 𝑦⋆ − 𝛿 then ℒ 𝑥⋆ + Δ, 𝑦⋆ > ℒ(𝑥⋆, 𝑦⋆) − 𝛿
Because ℒ 𝑥⋆ + Δ, 𝑦⋆ ≥ ℎ 𝑥⋆ + Δ, 𝑦⋆ (since ℎ ≤ 𝑔)

> ℎ 𝑥⋆, 𝑦⋆ − 𝛿
= 𝑓 𝑥⋆, 𝑦⋆ − 𝛿 (by (1))



Empirical Results: 2-D functions and synthetic data
2-dimensional min-max objectives bounded above in y

GDA

OMD

𝐹" 𝑥, 𝑦 = −3𝑥# − 𝑦# + 4𝑥𝑦

Global min-max (value) at +∞:
• GDA and OMD go to point 

which is not global min-max
• Our algorithm goes to +∞

𝐹! 𝑥, 𝑦 = 4𝑥" − 𝑦 − 3𝑥 + .05𝑥! − .1𝑦# 𝑒$
%!&'!
())

Our Algorithm

Global min−max at (0,0):
• GDA and OMD cycle or 

diverge to ∞
• Our algorithm converged 

to global min-max (0,0)

𝐹! 𝑥, 𝑦 = 3𝑥" + 𝑦" + 4𝑥𝑦

[Daskalakis, Ilyas, 
Syrgkanis, Zeng, ‘18]

GANs trained on Gaussian Mixture dataset

Our Algorithm

Number of modes learnt

[Metz, Poole, Pfau, 
Sohl-Dickstein, ’17]



Empirical Results: Real-world datasets

3_Picky_MNIST

250 1,000500 2,000 3,000

9_Vanilla_MNIST

250 500 1,000 2,000 3,000
3_Picky_MNIST

250 1,000500 2,000 3,000

9_Vanilla_MNIST

250 500 1,000 2,000 3,000

GDA

Our Algorithm

Mode collapse: by the 
1000th iteration,
• Our algorithm 

generated both digits 
in all the training runs

• GDA did so in 22% of 
the runs

GANs trained on 
01-MNIST dataset

GANs trained on CIFAR-10 dataset Images generated by GAN 
trained with our algorithm

Mean Inception score (standard deviation)

Our Algorithm



• New first-order computationally feasible alternative to min-max optimization

• Key idea: constrain max-agent to 𝜀-increasing paths, which model first-order 
optimization algorithms

• Dimension-independent bounds: algorithm finds 𝜀-equilibrium point in poly "
#
, 𝐿

gradient/sampling oracle evaluations
• only assume that 𝑓 is 𝐿-smooth and bounded
• No additional assumptions on starting point, concavity, coherence, etc.
• In practice, update Δ ∼ 𝑄 can be computed as stochastic gradient for −∇)𝑓

• Previous work: Use paths which model second-order greedy algorithms, 

converges to a second-order 𝜀 − equilibrium in poly 𝑑, "
#
, 𝐿 gradient and 

Hessian evaluations [Mangoubi, Vishnoi, '21]

• Open problem:  Can a second-order equilibrium be found in polylog 𝑑 gradient
evaluations (and without access to Hessian)?

Conclusions

Thanks! 


