

Coin Flipping Neural Networks

Yuval Sieradzki, Nitzan Hodos, Gal Yehuda

Advised by Assaf Schuster

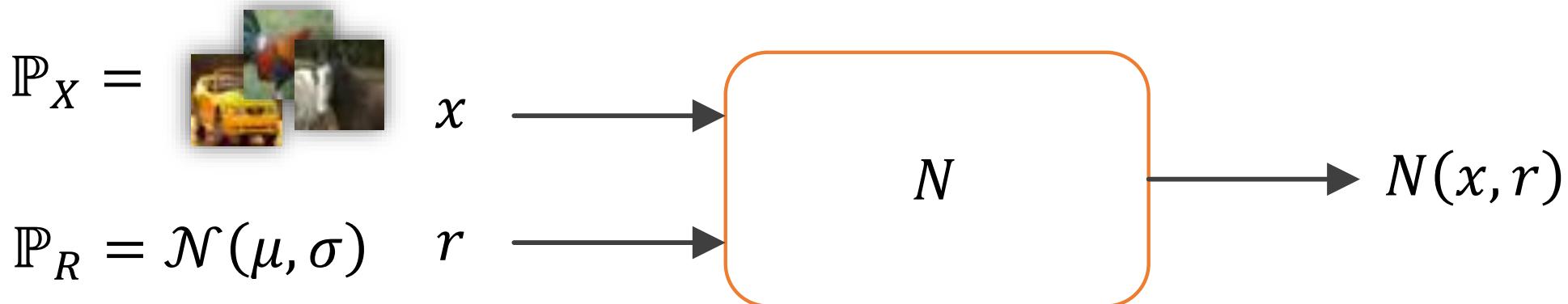
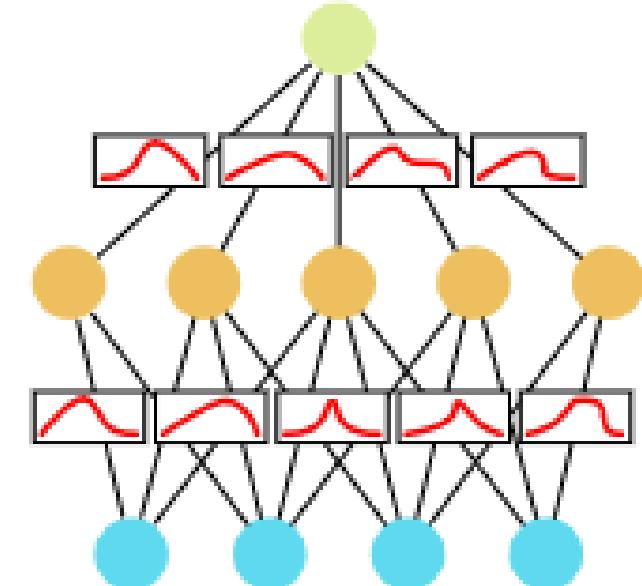
Technion Israel Institute of Technology

Definition

Coin-Flipping NNs are ***stochastic NNs***,
where we are allowed to ***amplify*** their outputs during inference.

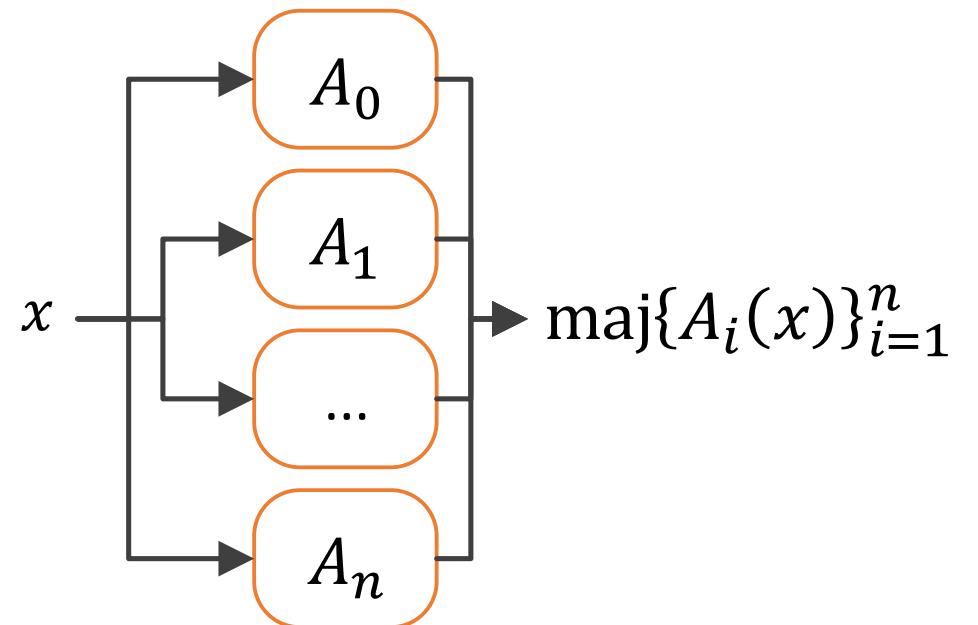
Stochastic NNs

- Output is a Random Variable
 - Random weights, activations...
- Bayesian NN, Variational AE, etc.
- In general: $N(x, r)$, $x \sim \mathbb{P}_X$, $r \sim \mathbb{P}_R$



Amplification

- Randomized A solves decision problem f
 - $\Pr[A(x) = f(x)] = \frac{1}{2} + \varepsilon$
- Take multiple samples from $A(x)$
- Calculate majority
- $\Pr[\text{maj}\{A_i(x)\}_{i=1}^n = f(x)] \geq 1 - e^{-2\varepsilon^2 n}$
- Improved complexity in practice
 - Convex volume estimation, polynomial equality test...



CFNN

- *Can amplification add power to NNs? – yes!*
- Reduce size, improve performance
- Our focus – classification

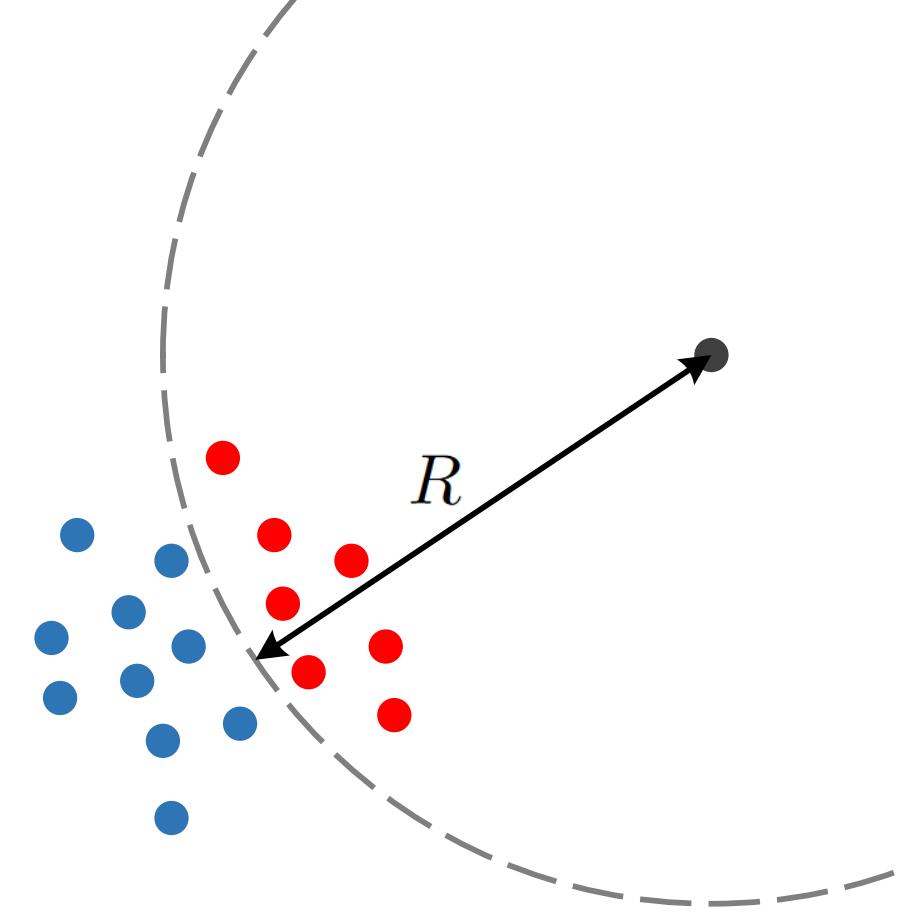
- Given $f(x): X \rightarrow \{1, 2, \dots, C\}$, define:

$$\text{Random Accuracy} = \Pr \left[\lim_{n \rightarrow \infty} \text{maj}\{N(x, r_i)\}_{i=1}^n = f(x) \right]$$

- Probability that taking the maj of ∞ samples will give the right answer
- Lets see an example...

Ball Problem Example

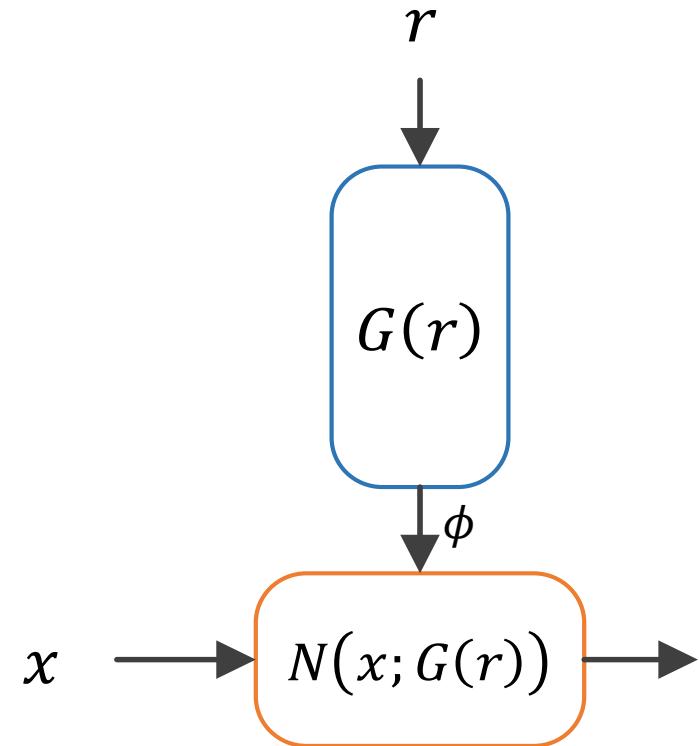
- Given $x \in \mathbb{R}^d$, determine if $x \in B_R$
- Deterministic, 2-Layer NN¹:
 - $\Omega(e^d)$ neurons
 - Otherwise, $MSE > \frac{c}{d^4}$
- We show that 2-layer CFNN only require $O(d)$ neurons!
 - Achieve 100% *Random Accuracy*
 - Total complexity: $O(\text{poly}(d))$, an **exponential improvement!**



¹ Safran & Shamir (2016)

Hypernetwork CFNN

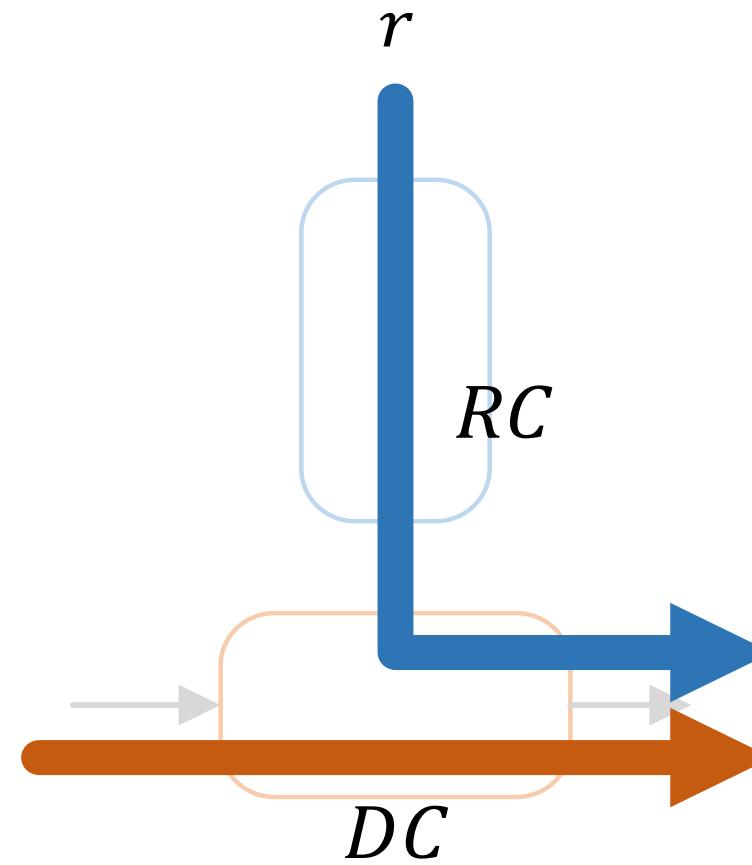
- Generator $\phi = G(r)$ of parameters for $N(x; \phi)$
- If N is sufficiently deep, $G(r) = Ar$ is enough to approx. any function²
- “Transposed” theorem:
If G is sufficiently deep, $N(x; \phi) = \text{sgn}(\phi x + b)$ is enough to approx. any function $f: \mathbb{R} \rightarrow \mathbb{R}$



² Dwaracherla et. al. (2020)

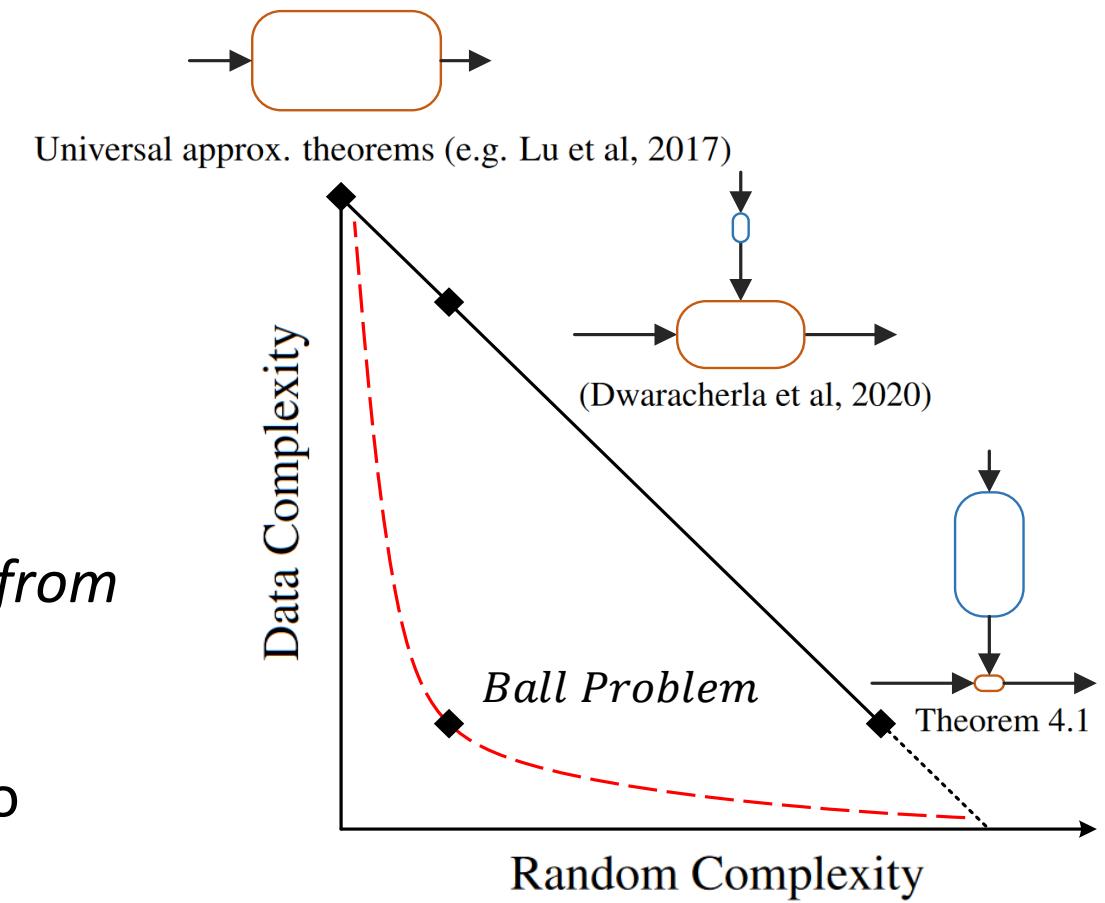
DC vs. RC tradeoff

- We suggest a new tradeoff:
- Data Complexity (DC)
neurons from x to output
- Random Complexity (RC)
neurons from r to output



DC vs. RC tradeoff

- *Exact* complexity tradeoff between DC and RC
- Some problems show significant improvement
 - E.g. our Ball Problem
- Conjecture:
Most classification problems will benefit from CFNN
- e.g. functions easy to sample but hard to compute



Empirical Study

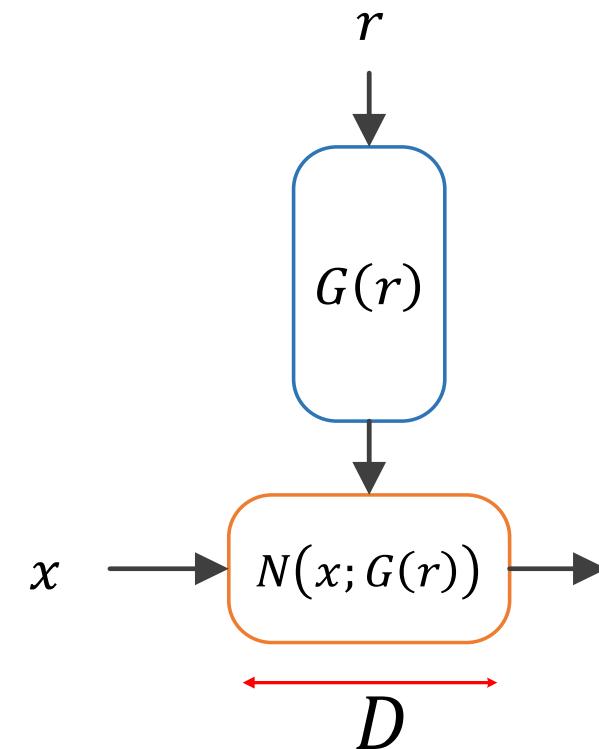
- Two architectures
- Hypernetwork CFNN
- Resnet20 + Dropout as CFNN

ARCH.	DET.	CFNN	Δ
CIFAR10			
HYPERNET	79.71 ± 0.5	81.45 ± 0.2	$+1.74 \pm 0.6$
RESNET20	87.82 ± 0.6	90.49 ± 0.1	$+2.67 \pm 0.7$
CIFAR100			
HYPERNET	58.09 ± 0.2	61.24 ± 0.2	$+3.15 \pm 0.3$
RESNET20	50.90 ± 0.1	60.16 ± 0.6	$+9.25 \pm 0.7$

Testing the Tradeoff

D	CIFAR10		
	CFNN	DET.	Δ
2	44.05	42.14	+1.91
6	81.45 ± 0.24	79.71 ± 0.52	$+1.74 \pm 0.57$
10	89.37	88.41	+0.96
14	91.81	91.42	+0.39
20	92.37	92.89	-0.52

	CIFAR100		
	CFNN	DET.	Δ
6	45.29	44.23	+1.06
10	61.24 ± 0.41	58.09 ± 0.22	$+3.15 \pm 0.29$
14	66.48	65.16	+1.32
20	69.26	67.68	+1.58
56	72.00	72.23	-0.23



Comparing to MCDropout

METHOD	CIFAR10	CIFAR100
STANDARD TRAIN, STANDARD TEST	87.82 ± 0.65	50.90 ± 0.03
STANDARD TRAIN, MEAN IN TEST (MCDROPOUT)	88.61 ± 0.10	53.66 ± 0.24
STANDARD TRAIN, MAJ IN TEST	88.37 ± 0.18	53.31 ± 0.16
MAJ TRAIN, STANDARD TEST	89.70 ± 0.39	47.92 ± 1.78
MAJ TRAIN, MEAN IN TEST	90.49 ± 0.12	56.49 ± 0.57
MAJ TRAIN, MAJ TEST (CFNN)	90.20 ± 0.14	60.16 ± 0.67

Summary

- CFNNs: *Stochastic NNs + Amplification*
- Ball problem – exponential complexity improvement!
- New DC vs. RC tradeoff for hypernetworks
- Empirically verified

Amplification in Inference helps!

Thank you!

Hope you enjoyed the talk