

Deep Network Approximation in Terms of Intrinsic Parameters

Shijun Zhang

National University of Singapore

(Joint work with Zuowei Shen and Haizhao Yang)

Motivation

- Deep neural networks have achieved great success in real-world applications.

Motivation

- Deep neural networks have achieved great success in real-world applications.
- Explosive growth of parameters and computation.

Motivation

- Deep neural networks have achieved great success in real-world applications.
- Explosive growth of parameters and computation.
- Network approximation: “important” parameters.

Preliminary

- \mathcal{F}_{Lip} : 1-Lipschitz functions on $[0, 1]^d$.

Preliminary

- \mathcal{F}_{Lip} : 1-Lipschitz functions on $[0, 1]^d$.
- A ReLU network approximates $f \in \mathcal{F}_{\text{Lip}}$:
optimal error $\mathcal{O}(n^{-2/d})$ ($n = \#\text{all parameters}$).

Preliminary

- \mathcal{F}_{Lip} : 1-Lipschitz functions on $[0, 1]^d$.
- A ReLU network approximates $f \in \mathcal{F}_{\text{Lip}}$:
optimal error $\mathcal{O}(n^{-2/d})$ ($n = \#\text{all parameters}$).
- **Intrinsic parameters**:
those depending on the target function f .

Main results

For $f \in \mathcal{F}_{\text{Lip}}$ and $p \in [1, \infty)$, $\exists \phi$ realized by a ReLU network with $n + 2$ intrinsic parameters s.t.

$$\|\phi - f\|_{L^p([0,1]^d)} \leq 5\sqrt{d} 2^{-n}$$

Main results

For $f \in \mathcal{F}_{\text{Lip}}$ and $p \in [1, \infty)$, $\exists \phi$ realized by a ReLU network with $n + 2$ intrinsic parameters s.t.

$$\|\phi - f\|_{L^p([0,1]^d)} \leq 5\sqrt{d} 2^{-n}$$

- $\mathcal{F}_{\text{Lip}} \rightarrow C([0, 1]^d)$, modulus of continuity.
- $L^p \rightarrow L^\infty$, additional $\mathcal{O}(n)$ intrinsic parameters.

Main results

$\forall \varepsilon > 0, \exists \phi$ realized by a ReLU network s.t. $\forall f \in \mathcal{F}_{\text{Lip}}$,
 $\exists s, v, b \in \mathbb{R}$ satisfying

$$|s\phi(\mathbf{x}, v) + b - f(\mathbf{x})| \leq \varepsilon \quad \forall \mathbf{x} \in [0, 1]^d.$$

Main results

$\forall \varepsilon > 0, \exists \phi$ realized by a ReLU network s.t. $\forall f \in \mathcal{F}_{\text{Lip}}$,
 $\exists s, v, b \in \mathbb{R}$ satisfying

$$|s\phi(\mathbf{x}, v) + b - f(\mathbf{x})| \leq \varepsilon \quad \forall \mathbf{x} \in [0, 1]^d.$$

- ϕ is independent of f .
- Three intrinsic parameters are enough.
- High precision is required for v .

Connection to transfer learning

- Transfer learning:
Apply knowledge gained in a related problem.

Connection to transfer learning

- Transfer learning:
Apply knowledge gained in a related problem.
- Non-intrinsic parameters:
Reused and transferred from another target function.

Thank you!

<https://shijunzhang.top>