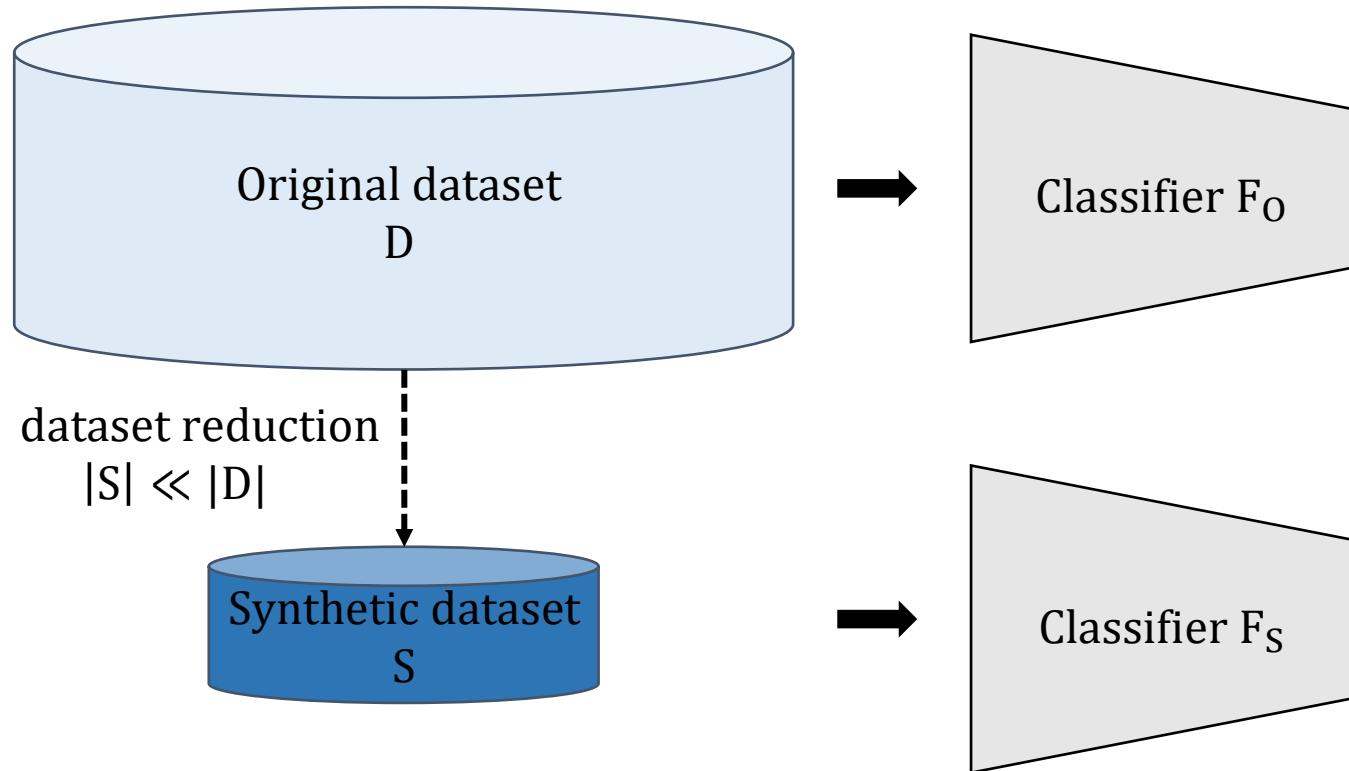


Dataset Condensation with Contrastive Signals

Saehyung Lee Sanghyuk Chun Sangwon Jung Sangdoo Yun Sungroh Yoon



SEOUL
NATIONAL
UNIVERSITY

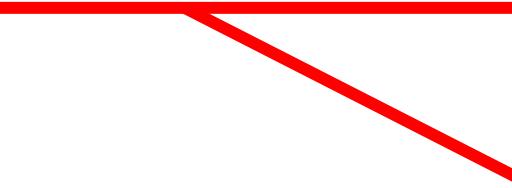
NAVER AI LAB

Introduction

Minimize the performance gap between F_O and F_S

Introduction

(a) Trailer Truck



(b) Police Van

Task-irrelevant features: {Wheels, Head lights, Roads, Trees, ...}

Task-relevant features: {Logo, Police sign, Trailers, ...}

Class-Wise Gradient Matching (DC)

$$\mathcal{L} = \sum_{c=0}^{C-1} D \left(\nabla_{\theta_t} L(\mathcal{X}^c; \theta_t), \nabla_{\theta_t} L(\mathcal{S}^c; \theta_t) \right),$$

\mathcal{X}^c : a set of real images for class c

\mathcal{S}^c : a set of synthetic images for class c

θ_t : the model parameter at time t

C : the number of classes

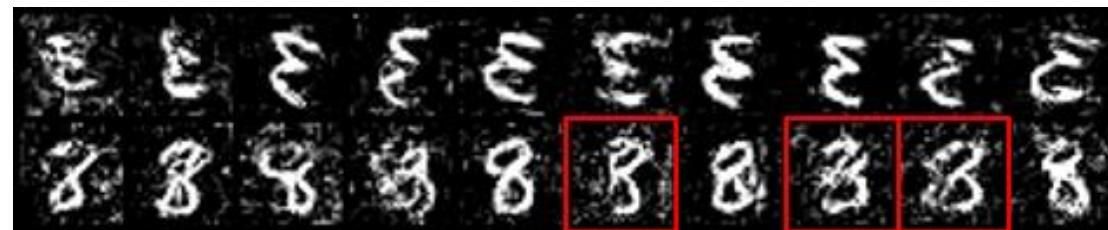
$D(\cdot, \cdot)$: a distance function

$L(\cdot; \cdot)$: the cross-entropy loss function

Our Gradient Matching (DCC)

$$\mathcal{L} = \sum_{c=0}^{C-1} D \left(\nabla_{\theta_t} L(\mathcal{X}^c; \theta_t), \nabla_{\theta_t} L(\mathcal{S}^c; \theta_t) \right)$$

$$\mathcal{L} = D \left(\frac{\sum_{c=0}^{C-1} \nabla_{\theta_t} L(\mathcal{X}^c; \theta_t)}{\sum_{c=0}^{C-1} \|\mathcal{X}^c\|}, \frac{\sum_{c=0}^{C-1} \nabla_{\theta_t} L(\mathcal{S}^c; \theta_t)}{\sum_{c=0}^{C-1} \|\mathcal{S}^c\|} \right)$$


Comparison

3 vs. 8 class-wise gradient matching

3 vs. 8 our gradient matching

Flipped 3 vs. 8 our gradient matching

Comparison

Dataset	Img/cls	Selection-based			Synthesis-based		Ours		Ω
		Random	C-score	GraNd	EL2N	DC	DSA	DCC	
SVHN	1	14.6 \pm 1.6	-	19.6 \pm 0.5	19.1 \pm 0.6	34.6 \pm 2.0	36.0 \pm 2.0	34.3 \pm 1.6	47.5\pm2.6
	10	35.1 \pm 4.1	-	37.5 \pm 1.6	32.5 \pm 1.2	76.2 \pm 0.6	78.9 \pm 0.5	76.2 \pm 0.8	80.5\pm0.6
	50	70.9 \pm 0.9	-	69.1 \pm 0.7	68.7 \pm 0.7	82.7 \pm 0.3	84.4 \pm 0.4	83.3 \pm 0.2	87.2\pm0.3
CIFAR-10	1	14.4 \pm 2.0	21.7 \pm 0.6	21.8 \pm 0.5	20.9 \pm 0.6	28.2 \pm 0.7	28.7 \pm 0.7	32.9 \pm 0.8	34.0\pm0.7
	10	26.0 \pm 1.2	31.6 \pm 0.4	32.3 \pm 0.4	32.3 \pm 0.4	44.7 \pm 0.6	52.1 \pm 0.6	49.4 \pm 0.5	54.5\pm0.5
	50	43.4 \pm 1.0	39.8 \pm 0.4	41.2 \pm 0.3	40.7 \pm 0.3	54.8 \pm 0.5	60.6 \pm 0.4	61.6 \pm 0.4	64.2\pm0.4
CIFAR-100	1	4.2 \pm 0.3	8.0 \pm 0.3	8.8 \pm 0.3	8.8 \pm 0.3	12.8 \pm 0.3	13.9 \pm 0.4	13.3 \pm 0.3	14.6\pm0.3
	10	14.6 \pm 0.5	18.1 \pm 0.2	17.8 \pm 0.2	17.3 \pm 0.2	26.6 \pm 0.3	32.4 \pm 0.3	30.6 \pm 0.4	33.5\pm0.3
	50	29.7 \pm 0.4	30.4 \pm 0.3	27.6 \pm 0.2	27.7 \pm 0.2	32.1 \pm 0.3	38.6 \pm 0.3	40.0\pm0.3	39.3 \pm 0.4

Conclusion

- We show that DC primarily focuses on the class-wise gradient while overlooking **contrastive signals**.
- To address this issue, we propose the **Dataset Condensation with Contrastive signals (DCC)** method.
- In our experiments, we demonstrate that the proposed DCC **outperforms** DC in fine-grained classification tasks and general benchmark datasets

Thank you!

<https://github.com/Saehyung-Lee/DCC>