Implicit Regularization with Polynomial Growth in Deep Tensor Factorization

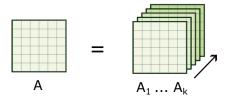
Kais Hariz^{1,2}, Hachem Kadri¹, Stéphane Ayache¹, Maher Moakher², Thierry Artières^{1,3}

 1 Aix-Marseille University, CNRS, LIS, Marseille, France 2 LAMSIN, National Engineering School of Tunis, University of Tunis El Manar, Tunis, Tunisia

³Ecole Centrale de Marseille, Marseille, France

Generalization in deep learning

How deep neural networks generalize well?

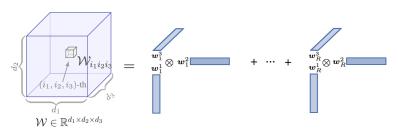

ullet # learnable parameters \gg # training examples

Role of implicit regularization

Measure of complexity: matrix rank, tensor rank, . . . ?

The role of implicit regularization in deep learning

Deep Matrix Factorization


Arora et al., 2019

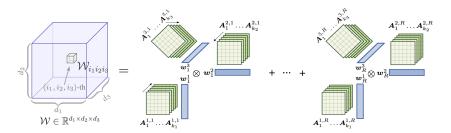
For $A \in \mathbb{R}^{d_1 imes d_2}$ and depth $k \geq 2$, for any $r = 1, \dots, \min(d_1, d_2)$,

$$\frac{d}{dt}\sigma_r(t) = k\alpha_r(t) \cdot (\sigma_r(t))^{2-\frac{2}{k}}$$

The role of implicit regularization in deep learning

(Shallow) Tensor CP Factorization

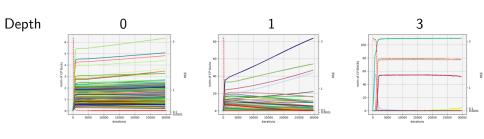
Razin et al., 2021


Under certain assumptions, for any $r = 1, \dots, R$,

$$\frac{d}{dt} \left\| \bigotimes_{n=1}^{N} \boldsymbol{w}_{r}^{n}(t) \right\| = N \gamma_{r}(t) \cdot \left\| \bigotimes_{n=1}^{N} \boldsymbol{w}_{r}^{n}(t) \right\|^{2 - \frac{2}{N}}$$

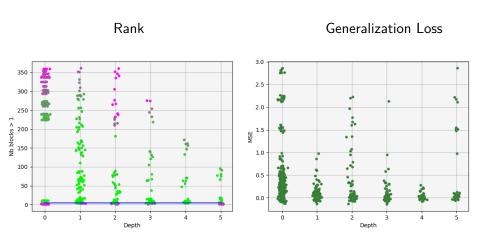
The role of implicit regularization in deep learning

Deep Tensor CP Factorization


This work

Under certain assumptions, for any $r = 1, \dots, R$,

$$\frac{d}{dt} \left\| \bigotimes_{n=1}^{N} \boldsymbol{w}_{r}^{n}(t) \right\| = N \delta_{r}(t) \left\| \bigotimes_{n=1}^{N} \boldsymbol{w}_{r}^{n}(t) \right\|^{2 - \frac{2}{N} + \frac{1}{N}}$$



Effect of the depth on tensor rank

How this impacts the implicit regularization on the learned tensor
$$\mathcal{W}$$
?
$$\left\| \bigotimes_{n=1}^{N} \prod_{i=1}^{k} \boldsymbol{A}_{i}^{n,r}(t) \boldsymbol{w}_{r}^{n}(t) \right\| \leq \left\| \bigotimes_{n=1}^{N} \boldsymbol{w}_{r}^{n}(t) \right\|^{1+\frac{k}{k}}$$

How depth yields low-rank solutions?

