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• We introduce R-Cross-Barcode  - a 
Topological Data Analysis (TDA) tool, that 
measures the differences in the multi-scale 
topology of two point clouds , with a point-
to-point correspondence between clouds; 

• Based on the R-Cross-Barcode , we 
de f ine the Representa t ion Topo logy 
Divergence (RTD), the quantity measuring the 
multi-scale topological dissimilarity between 
two representations; 

• RTD agrees with an intuitive notion of neural 
network representations similarity.
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• In contrast to most existing approaches, RTD 
is sensitive to differences in topological 
structures (clusters, voids, cavities, tunnels, 
etc.)  of the representations; 

• RTD enjoys a very good correlation with the 
disagreement of models predictions. 

• We apply RTD to compare representations in 
computer vision and NLP domains and 
various problems: training dynamics analysis, 
data distribution shift, transfer learning, 
ensemble learning, and disentanglement. 
Experiments show that RTD often outperforms  
CKA, IMD, and SVCCA.
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IDEA: compare (simplicial approximations to)  manifolds   
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• Let  be two representations giving two embeddings 

of the same data . The two embeddings belong in 
general to different ambient spaces and we have the 
natural point-to-point correspondence between  and .
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M𝒫, M𝒫̃
• Let  be two representations giving two embeddings 

of the same data . The two embeddings belong in 
general to different ambient spaces and we have the 
natural point-to-point correspondence between  and . 

• Given a sample of data , the two representations 
,  define two weighted graphs , 

 with the same vertex set , and with edge weights 
, .
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• Let  be two representations giving two embeddings 

of the same data . The two embeddings belong in 
general to different ambient spaces and we have the 
natural point-to-point correspondence between  and . 

• Given a sample of data , the two representations 
,  define two weighted graphs , 

 with the same vertex set , , 
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• Simplicial approximation  to the manifold  at 
threshold  consists of simplexes with vertices from 

 whose edges in  have weights not exceeding .
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• Simplicial approximation  to the manifold  at 

threshold  consists of simplexes with vertices from 
 whose edges in  have weights not exceeding . 

• Simplices in  which are absent in  form topological 
features (paths, 2-membranes,…, k-membranes).  

• We track the appearence and disappearence of such 
features with increase of the threshold, across all 
thresholds .  

• The longer the lifespan of such topological feature across 
the change of threshold the bigger the described by this 
feature discrepancy between the two manifolds. 

• The R-Cross-Barcode  is the set of intervals 
recording  the  « appearences »  and « disappearences» 
thresholds of such i-dimensional topological features. To 
calculate it we introduce the auxiliary graph . 
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Definition. The R-Cross-Barcode  is the set of 
intervals recording  the  « appearances »  and 
« disappearances» thresholds of i-dimensional topological 
features in the filtered simplicial complex . 
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Definition. The R-Cross-Barcode  is the 
set of intervals recording  the  « appearances »  
and « disappearances» thresholds of i-
dimensional topological features in the filtered 
simplicial complex . 
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Representation Topology Divergence: the Algorithm
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Experiments. ‘Five rings vs 5,4,3,2,1 rings
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Experiments. Internal similarity of Neural Network layers
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The differences of representations between the layers within networks trained on the ImageNet-1k dataset.  
The columns correspond to the metrics, and the rows – to the architectures (ConvNeXt, ResNet-50). We observe that 
RTD catches architecture's block structure better than CKA, SVCCA. The ResNet-50 architecture has sequence of 
blocks in form [3, 4, 6, 3] and it can be seen that RTD highlights it with sub-squares of corresponding sizes.



Conclusions
1. In this paper, we have proposed a topologically-inspired approach to compare neural network 

representations.The most widely used methods for this problem are statistical: Canonical 
Correlation Analysis (CCA) and Centered Kernel Alignment (CKA). But the problem itself is a 
geometric one: the comparison of two neural representations of the same objects is de-facto 
the comparison of two points clouds from different spaces having point-to-point 
correspondence between clouds. The natural way is to compare their geometrical and 
topological features with due account of their localization that is exactly what was done by the 
R-Cross-Barcode and RTD.  

2. We demonstrated that RTD agrees with the natural assessment of representations similarity. 
3. We used the RTD to gain insights into neural network representations in computer vision and 

NLP domains for various problems: training dynamics analysis, data distribution shift, transfer 
learning, ensemble learning, and disentanglement assessment. 

4. RTD correlates strikingly well with the disagreement of models' predictions;  
5. Finally, R-Cross-Barcode and RTD are general tools that are not limited only to the 

comparison of representations. They could be applied to other problems involving comparison 
of two point clouds with point-to-point correspondence, for example, in 3D computer vision.

20



Thank you for your attention!
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