

# Marginal Tail-Adaptive Normalizing Flows

Mike Laszkiewicz<sup>1,2</sup>, Johannes Lederer<sup>1</sup>, Asja Fischer<sup>2</sup>

1 Faculty of Mathematics, Ruhr University Bochum

 $2\ \mathsf{Center}$  of Computer Science, Ruhr University Bochum

International Conference on Machine Learning 2022 – July 17-23, 2022

### Overview

#### Research Question

How good are Normalizing Flows at modeling heavy-tailed distributions?

#### Autoregressive Lipschitz Flows

$$\mathbf{z} \sim egin{cases} \mathcal{N}(0,I) &\Rightarrow \text{All marginals of } T_{\theta}(\mathbf{z}) \text{ are light-tailed} \\ t_{\nu}(0,I) &\Rightarrow \text{All marginals of } T_{\theta}(\mathbf{z}) \text{ are heavy-tailed} \end{cases}$$

#### Can we do better? Yes!



### Overview

#### Research Question

How good are Normalizing Flows at modeling heavy-tailed distributions?

### Autoregressive Lipschitz Flows

$$\mathbf{z} \sim egin{cases} \mathcal{N}(0,I) &\Rightarrow \text{All marginals of } T_{\theta}(\mathbf{z}) \text{ are light-tailed} \\ t_{\nu}(0,I) &\Rightarrow \text{All marginals of } T_{\theta}(\mathbf{z}) \text{ are heavy-tailed} \end{cases}$$

#### Can we do better? Yes!



### Overview

#### Research Question

How good are Normalizing Flows at modeling heavy-tailed distributions?

### Autoregressive Lipschitz Flows

$$\mathbf{z} \sim egin{cases} \mathcal{N}(0,I) &\Rightarrow \mathsf{All} \text{ marginals of } T_{ heta}(\mathbf{z}) \text{ are light-tailed} \\ t_{
u}(0,I) &\Rightarrow \mathsf{All} \text{ marginals of } T_{ heta}(\mathbf{z}) \text{ are heavy-tailed} \end{cases}$$

#### Can we do better? Yes!



#### Overview

#### Research Question

How good are Normalizing Flows at modeling heavy-tailed distributions?

#### Autoregressive Lipschitz Flows

$$\mathbf{z} \sim egin{cases} \mathcal{N}(0,I) &\Rightarrow \mathsf{All} \text{ marginals of } T_{ heta}(\mathbf{z}) \text{ are light-tailed} \\ t_{
u}(0,I) &\Rightarrow \mathsf{All} \text{ marginals of } T_{ heta}(\mathbf{z}) \text{ are heavy-tailed} \end{cases}$$

#### Can we do better? Yes!



### Change of Variables

Let  $\mathbf{z}$  and  $\mathbf{x}:=T(\mathbf{z})$  be real random variables with PDF p and q, respectively, and T a diffeomorphism. Then,

$$p(x) = q(T^{-1}(x)) |\det J_{T^{-1}}(x)| \quad \forall x \in \mathbb{R}^D.$$

#### Idea of Normalizing Flows

Fix  $\mathbf{z}$  and learn  $T_{\theta}$  such that  $\mathbf{x} \approx T_{\theta}(\mathbf{z})$ .

#### Informally:



### Change of Variables

Let  $\mathbf{z}$  and  $\mathbf{x}:=T(\mathbf{z})$  be real random variables with PDF p and q, respectively, and T a diffeomorphism. Then,

$$p(x) = q(T^{-1}(x)) |\det J_{T^{-1}}(x)| \quad \forall x \in \mathbb{R}^D.$$

### Idea of Normalizing Flows

Fix  $\mathbf{z}$  and learn  $T_{\theta}$  such that  $\mathbf{x} \approx T_{\theta}(\mathbf{z})$ .

#### Informally:



### Change of Variables

Let  $\mathbf{z}$  and  $\mathbf{x}:=T(\mathbf{z})$  be real random variables with PDF p and q, respectively, and T a diffeomorphism. Then,

$$p(x) = q(T^{-1}(x)) |\det J_{T^{-1}}(x)| \quad \forall x \in \mathbb{R}^D.$$

### Idea of Normalizing Flows

Fix  $\mathbf{z}$  and learn  $T_{\theta}$  such that  $\mathbf{x} \approx T_{\theta}(\mathbf{z})$ .



### Informally:



### Change of Variables

Let  $\mathbf{z}$  and  $\mathbf{x}:=T(\mathbf{z})$  be real random variables with PDF p and q, respectively, and T a diffeomorphism. Then,

$$p(x) = q(T^{-1}(x)) |\det J_{T^{-1}}(x)| \quad \forall x \in \mathbb{R}^D.$$

### Idea of Normalizing Flows

Fix  $\mathbf{z}$  and learn  $T_{\theta}$  such that  $\mathbf{x} \approx T_{\theta}(\mathbf{z})$ .



### Informally:



# Tail Behavior of autoregressive NFs

## Tail-Adaptive Flows, Jaini et al., 2020; Informal Take-Away:

If  $\|\mathbf{z}\|$  is **light-tailed**, then  $\|T_{\theta}(\mathbf{z})\|$  is also **light-tailed**.

### Tail-Adaptive Flows (TAF)

Replace  $\mathbf{z} \sim \mathcal{N}(0, I)$  by a multivariate  $\mathbf{t}_{\nu}$ -distribution with learnable degree of freedom  $\nu$ .

### Proposition 3.3 from our paper; Informal

The marginals of TAF are all heavy-tailed.



# Tail Behavior of autoregressive NFs

### Tail-Adaptive Flows, Jaini et al., 2020; Informal Take-Away:

If  $\|\mathbf{z}\|$  is **light-tailed**, then  $\|T_{\theta}(\mathbf{z})\|$  is also **light-tailed**.

## Tail-Adaptive Flows (TAF)

Replace  $\mathbf{z} \sim \mathcal{N}(0, I)$  by a multivariate  $\mathbf{t}_{\nu}$ -distribution with learnable degree of freedom  $\nu$ .

Proposition 3.3 from our paper; Informal

The marginals of TAF are all heavy-tailed.



# Tail Behavior of autoregressive NFs

### Tail-Adaptive Flows, Jaini et al., 2020; Informal Take-Away:

If  $\|\mathbf{z}\|$  is **light-tailed**, then  $\|T_{\theta}(\mathbf{z})\|$  is also **light-tailed**.

## Tail-Adaptive Flows (TAF)

Replace  $\mathbf{z} \sim \mathcal{N}(0, I)$  by a multivariate  $\mathbf{t}_{\nu}$ -distribution with learnable degree of freedom  $\nu$ .

### Proposition 3.3 from our paper; Informal

The marginals of **TAF** are **all heavy-tailed**.



Let  $\mathbf{z}$  be a random variable that is j-light-tailed for  $j \in \{1, \dots, d_l\}$  and j-heavy-tailed for  $j \in \{d_l + 1, \dots, D\}$  Under certain conditions, we obtain:

Theorem (Tail Behavior after applying Autoregressive Transformations)

If T is an autoregressive map, then  ${f z}$  and  $T({f z})$  have the same marginal tail behavior

Theorem (Tail Behavior after applying Block-Triangular Linear Transformations)

Consider a block-diagonal invertible matrix

$$W = \begin{pmatrix} A & 0 \\ B & C \end{pmatrix} \tag{1}$$

with  $A \in \mathbb{R}^{d_l \times d_l}$ ,  $B \in \mathbb{R}^{(D-d_l) \times d_l}$ ,  $C \in \mathbb{R}^{(D-d_l) \times (D-d_l)}$  and 0 is a zero matrix of size  $d \times (D-d_l)$ . Then, it follows that  $\mathbf{z}$  and  $W\mathbf{z}$  have the same marginal tail behavior



Let  $\mathbf{z}$  be a random variable that is j-light-tailed for  $j \in \{1, \dots, d_l\}$  and j-heavy-tailed for  $j \in \{d_l + 1, \dots, D\}$  Under certain conditions, we obtain:

## Theorem (Tail Behavior after applying Autoregressive Transformations)

If T is an autoregressive map, then z and T(z) have the same marginal tail behavior.

## Theorem (Tail Behavior after applying Block-Triangular Linear Transformations

Consider a block-diagonal invertible matrix

$$W = \begin{pmatrix} A & 0 \\ B & C \end{pmatrix} \tag{1}$$

with  $A \in \mathbb{R}^{d_l \times d_l}$ ,  $B \in \mathbb{R}^{(D-d_l) \times d_l}$ ,  $C \in \mathbb{R}^{(D-d_l) \times (D-d_l)}$  and 0 is a zero matrix of size  $d \times (D-d_l)$ . Then, it follows that  $\mathbf{z}$  and  $W\mathbf{z}$  have the same marginal tail behavior.



Let  $\mathbf{z}$  be a random variable that is j-light-tailed for  $j \in \{1, \dots, d_l\}$  and j-heavy-tailed for  $j \in \{d_l + 1, \dots, D\}$  Under certain conditions, we obtain:

## Theorem (Tail Behavior after applying Autoregressive Transformations)

If T is an autoregressive map, then  $\mathbf{z}$  and  $T(\mathbf{z})$  have the same marginal tail behavior.

## Theorem (Tail Behavior after applying Block-Triangular Linear Transformations)

Consider a block-diagonal invertible matrix

$$W = \begin{pmatrix} A & 0 \\ B & C \end{pmatrix} \tag{1}$$

with  $A \in \mathbb{R}^{d_l \times d_l}$ ,  $B \in \mathbb{R}^{(D-d_l) \times d_l}$ ,  $C \in \mathbb{R}^{(D-d_l) \times (D-d_l)}$  and 0 is a zero matrix of size  $d \times (D-d_l)$ . Then, it follows that  $\mathbf{z}$  and  $W\mathbf{z}$  have the same marginal tail behavior.



**Step 1: Estimate the marginal Tail Indices** 





**Step 1: Estimate the marginal Tail Indices** 



Step 2: Defining the Base Distribution





Step 1: Estimate the marginal Tail Indices



Step 2: Defining the Base Distribution



Step 3: Autoregressive Layer with a data-driven Linearity





Background

# Experiments: Generating mixed-tailed Samples

#### Vanilla Flow:



#### TAF:



#### mTAF:





# Experiments: Learning from Weather and Climate Data



Randomly projected Standard deviation:

Randomly projected 1%-Quantiles



# Experiments: Learning from Weather and Climate Data



### Randomly projected Standard deviation:



Randomly projected 1%-Quantiles



Background

# Experiments: Learning from Weather and Climate Data



### Randomly projected Standard deviation:



#### Randomly projected 1%-Quantiles





# Summary

If you want to learn a **generative model** for data with **heavy**- as well as **light-tailed marginals**, you should contemplate to use **mTAF** 

arXiv:



## github:



