

Marginal Tail-Adaptive Normalizing Flows

Mike Laszkiewicz^{1,2}, Johannes Lederer¹, Asja Fischer²

1 Faculty of Mathematics, Ruhr University Bochum

 $2\ \mathsf{Center}$ of Computer Science, Ruhr University Bochum

International Conference on Machine Learning 2022 – July 17-23, 2022

Overview

Research Question

How good are Normalizing Flows at modeling heavy-tailed distributions?

Autoregressive Lipschitz Flows

$$\mathbf{z} \sim egin{cases} \mathcal{N}(0,I) &\Rightarrow \text{All marginals of } T_{\theta}(\mathbf{z}) \text{ are light-tailed} \\ t_{\nu}(0,I) &\Rightarrow \text{All marginals of } T_{\theta}(\mathbf{z}) \text{ are heavy-tailed} \end{cases}$$

Can we do better? Yes!

Overview

Research Question

How good are Normalizing Flows at modeling heavy-tailed distributions?

Autoregressive Lipschitz Flows

$$\mathbf{z} \sim egin{cases} \mathcal{N}(0,I) &\Rightarrow \text{All marginals of } T_{\theta}(\mathbf{z}) \text{ are light-tailed} \\ t_{\nu}(0,I) &\Rightarrow \text{All marginals of } T_{\theta}(\mathbf{z}) \text{ are heavy-tailed} \end{cases}$$

Can we do better? Yes!

Overview

Research Question

How good are Normalizing Flows at modeling heavy-tailed distributions?

Autoregressive Lipschitz Flows

$$\mathbf{z} \sim egin{cases} \mathcal{N}(0,I) &\Rightarrow \mathsf{All} \text{ marginals of } T_{ heta}(\mathbf{z}) \text{ are light-tailed} \\ t_{
u}(0,I) &\Rightarrow \mathsf{All} \text{ marginals of } T_{ heta}(\mathbf{z}) \text{ are heavy-tailed} \end{cases}$$

Can we do better? Yes!

Overview

Research Question

How good are Normalizing Flows at modeling heavy-tailed distributions?

Autoregressive Lipschitz Flows

$$\mathbf{z} \sim egin{cases} \mathcal{N}(0,I) &\Rightarrow \mathsf{All} \text{ marginals of } T_{ heta}(\mathbf{z}) \text{ are light-tailed} \\ t_{
u}(0,I) &\Rightarrow \mathsf{All} \text{ marginals of } T_{ heta}(\mathbf{z}) \text{ are heavy-tailed} \end{cases}$$

Can we do better? Yes!

Change of Variables

Let \mathbf{z} and $\mathbf{x}:=T(\mathbf{z})$ be real random variables with PDF p and q, respectively, and T a diffeomorphism. Then,

$$p(x) = q(T^{-1}(x)) |\det J_{T^{-1}}(x)| \quad \forall x \in \mathbb{R}^D.$$

Idea of Normalizing Flows

Fix \mathbf{z} and learn T_{θ} such that $\mathbf{x} \approx T_{\theta}(\mathbf{z})$.

Informally:

Change of Variables

Let \mathbf{z} and $\mathbf{x}:=T(\mathbf{z})$ be real random variables with PDF p and q, respectively, and T a diffeomorphism. Then,

$$p(x) = q(T^{-1}(x)) |\det J_{T^{-1}}(x)| \quad \forall x \in \mathbb{R}^D.$$

Idea of Normalizing Flows

Fix \mathbf{z} and learn T_{θ} such that $\mathbf{x} \approx T_{\theta}(\mathbf{z})$.

Informally:

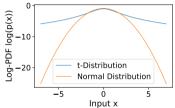
Change of Variables

Let \mathbf{z} and $\mathbf{x}:=T(\mathbf{z})$ be real random variables with PDF p and q, respectively, and T a diffeomorphism. Then,

$$p(x) = q(T^{-1}(x)) |\det J_{T^{-1}}(x)| \quad \forall x \in \mathbb{R}^D.$$

Idea of Normalizing Flows

Fix \mathbf{z} and learn T_{θ} such that $\mathbf{x} \approx T_{\theta}(\mathbf{z})$.



Informally:

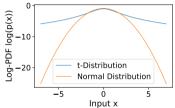
Change of Variables

Let \mathbf{z} and $\mathbf{x}:=T(\mathbf{z})$ be real random variables with PDF p and q, respectively, and T a diffeomorphism. Then,

$$p(x) = q(T^{-1}(x)) |\det J_{T^{-1}}(x)| \quad \forall x \in \mathbb{R}^D.$$

Idea of Normalizing Flows

Fix \mathbf{z} and learn T_{θ} such that $\mathbf{x} \approx T_{\theta}(\mathbf{z})$.



Informally:

Tail Behavior of autoregressive NFs

Tail-Adaptive Flows, Jaini et al., 2020; Informal Take-Away:

If $\|\mathbf{z}\|$ is **light-tailed**, then $\|T_{\theta}(\mathbf{z})\|$ is also **light-tailed**.

Tail-Adaptive Flows (TAF)

Replace $\mathbf{z} \sim \mathcal{N}(0, I)$ by a multivariate \mathbf{t}_{ν} -distribution with learnable degree of freedom ν .

Proposition 3.3 from our paper; Informal

The marginals of TAF are all heavy-tailed.

Tail Behavior of autoregressive NFs

Tail-Adaptive Flows, Jaini et al., 2020; Informal Take-Away:

If $\|\mathbf{z}\|$ is **light-tailed**, then $\|T_{\theta}(\mathbf{z})\|$ is also **light-tailed**.

Tail-Adaptive Flows (TAF)

Replace $\mathbf{z} \sim \mathcal{N}(0, I)$ by a multivariate \mathbf{t}_{ν} -distribution with learnable degree of freedom ν .

Proposition 3.3 from our paper; Informal

The marginals of TAF are all heavy-tailed.

Tail Behavior of autoregressive NFs

Tail-Adaptive Flows, Jaini et al., 2020; Informal Take-Away:

If $\|\mathbf{z}\|$ is **light-tailed**, then $\|T_{\theta}(\mathbf{z})\|$ is also **light-tailed**.

Tail-Adaptive Flows (TAF)

Replace $\mathbf{z} \sim \mathcal{N}(0, I)$ by a multivariate \mathbf{t}_{ν} -distribution with learnable degree of freedom ν .

Proposition 3.3 from our paper; Informal

The marginals of **TAF** are **all heavy-tailed**.

Let \mathbf{z} be a random variable that is j-light-tailed for $j \in \{1, \dots, d_l\}$ and j-heavy-tailed for $j \in \{d_l + 1, \dots, D\}$ Under certain conditions, we obtain:

Theorem (Tail Behavior after applying Autoregressive Transformations)

If T is an autoregressive map, then ${f z}$ and $T({f z})$ have the same marginal tail behavior

Theorem (Tail Behavior after applying Block-Triangular Linear Transformations)

Consider a block-diagonal invertible matrix

$$W = \begin{pmatrix} A & 0 \\ B & C \end{pmatrix} \tag{1}$$

with $A \in \mathbb{R}^{d_l \times d_l}$, $B \in \mathbb{R}^{(D-d_l) \times d_l}$, $C \in \mathbb{R}^{(D-d_l) \times (D-d_l)}$ and 0 is a zero matrix of size $d \times (D-d_l)$. Then, it follows that \mathbf{z} and $W\mathbf{z}$ have the same marginal tail behavior

Let \mathbf{z} be a random variable that is j-light-tailed for $j \in \{1, \dots, d_l\}$ and j-heavy-tailed for $j \in \{d_l + 1, \dots, D\}$ Under certain conditions, we obtain:

Theorem (Tail Behavior after applying Autoregressive Transformations)

If T is an autoregressive map, then z and T(z) have the same marginal tail behavior.

Theorem (Tail Behavior after applying Block-Triangular Linear Transformations

Consider a block-diagonal invertible matrix

$$W = \begin{pmatrix} A & 0 \\ B & C \end{pmatrix} \tag{1}$$

with $A \in \mathbb{R}^{d_l \times d_l}$, $B \in \mathbb{R}^{(D-d_l) \times d_l}$, $C \in \mathbb{R}^{(D-d_l) \times (D-d_l)}$ and 0 is a zero matrix of size $d \times (D-d_l)$. Then, it follows that \mathbf{z} and $W\mathbf{z}$ have the same marginal tail behavior.

Let \mathbf{z} be a random variable that is j-light-tailed for $j \in \{1, \dots, d_l\}$ and j-heavy-tailed for $j \in \{d_l + 1, \dots, D\}$ Under certain conditions, we obtain:

Theorem (Tail Behavior after applying Autoregressive Transformations)

If T is an autoregressive map, then \mathbf{z} and $T(\mathbf{z})$ have the same marginal tail behavior.

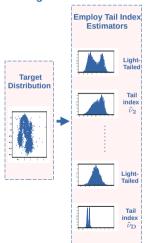
Theorem (Tail Behavior after applying Block-Triangular Linear Transformations)

Consider a block-diagonal invertible matrix

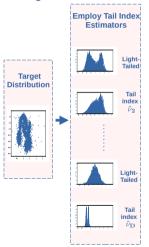
$$W = \begin{pmatrix} A & 0 \\ B & C \end{pmatrix} \tag{1}$$

with $A \in \mathbb{R}^{d_l \times d_l}$, $B \in \mathbb{R}^{(D-d_l) \times d_l}$, $C \in \mathbb{R}^{(D-d_l) \times (D-d_l)}$ and 0 is a zero matrix of size $d \times (D-d_l)$. Then, it follows that \mathbf{z} and $W\mathbf{z}$ have the same marginal tail behavior.

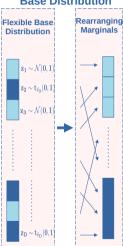
Step 1: Estimate the marginal Tail Indices



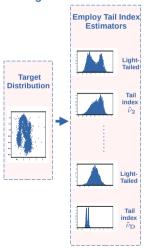
Step 1: Estimate the marginal Tail Indices



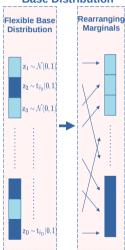
Step 2: Defining the Base Distribution



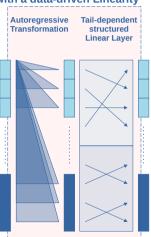
Step 1: Estimate the marginal Tail Indices



Step 2: Defining the Base Distribution



Step 3: Autoregressive Layer with a data-driven Linearity



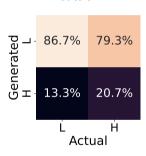
Background

Experiments: Generating mixed-tailed Samples

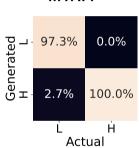
Vanilla Flow:



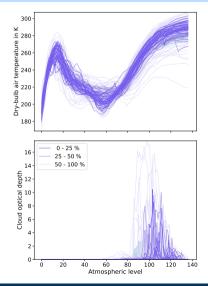
TAF:



mTAF:



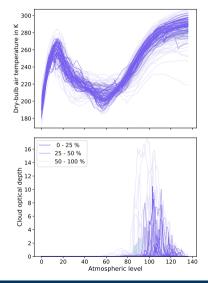
Experiments: Learning from Weather and Climate Data



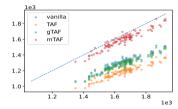
Randomly projected Standard deviation:

Randomly projected 1%-Quantiles

Experiments: Learning from Weather and Climate Data



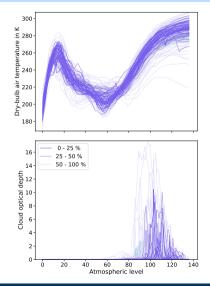
Randomly projected Standard deviation:



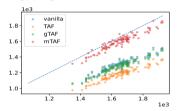
Randomly projected 1%-Quantiles

Background

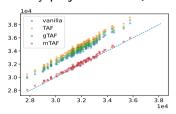
Experiments: Learning from Weather and Climate Data



Randomly projected Standard deviation:



Randomly projected 1%-Quantiles



Summary

If you want to learn a **generative model** for data with **heavy**- as well as **light-tailed marginals**, you should contemplate to use **mTAF**

arXiv:

github:

