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® Stochastic gradient descent (SGD) is the workhorse in modern machine learning and
data-driven optimization. As iterative algorithms, SGD works by querying an oracle for an
unbiased gradient estimate built on one or several training examples in place of the exact
gradients.

® Since its simplicity in implementation, low memory requirement, and low computational
complexity per iteration, as well as good practical behavior, SGD is becoming ubiquitous
in the big data era.
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® Existing literature provides a quite comprehensive understanding regarding the expected
guarantees of SGD. However, expectation bounds do not capture the behavior of SGD
within a single or few runs, which is related to the probabilistic nature of SGD.

® Many recent works suggest that SGD exhibits heavier noise than light sub-Gaussian tails.
It is significant to investigate the high probability theoretical guarantees of nonconvex
SGD in a heavy-tailed noise setting since it is towards a more realistic analysis.

® Moreover, existing learning guarantees of SGD are mainly derived separately either from
the point of optimization performance or generalization performance. Optimization
performance concerns how the learning algorithm minimizes the empirical risk, while
generalization performance concerns how the predictive models learned from training
samples behave on the testing samples.
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® | et P be a probability measure defined on a sample space Z, we focus on the following
stochastic optimization problem with a hypothesis space indexed by W C R¢
in F =K, p[f(w; z2)],
min F(w) i= B plf(w; 2)]

where the objective f : W x Z — R is possibly non-convex and E,.p denotes the
expectation with respect to (w.r.t.) the random variable z drawn form P.

® |n practice, we often sample a set of i.i.d. training data S = {z, ..., z,} from P and
minimize the following empirical risk

Fs(w) := % Z f(w; z).
i=1

® Let B(wp, R) := {w € R : ||[w — wg|| < R} denote a ball with center wg € RY and
radius R. In this paper, we mainly assume that the set W satisfies W := B(0, R),

denoted by Bg. Let w(S) € argminyeyy Fs(w) and w* € arg minyy, F(w). .



Sub-Weibull Distribution

® \We now introduce the definition of sub-Weibull random variables, which is characterized
by the moment generating function (MGF).

® Definition: A random variable X, satisfying

E[exp ((|X|/K)%)] <2 (1)

for some positive K and 6, is called a sub-Weibull random variable with tail parameter 6,
which is denoted by X ~ subW(6, K).

® Sub-Weibull distributions are parameterized by a positive tail index ¢ and reduced to
sub-Gaussian distributions for # = 1/2 and to sub-Exponential distributions for § = 1.

® The higher tail parameter 8 corresponds to the heavier tails.
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We introduce some standard assumptions.

¢ [Assumption 1: Sub-Weibull Noise] Conditioned on the previous iterates, we assume
the gradient noise Vf(wy; zj,) — VFs(w¢) is centered and
[V f(wy; z;,) — VFs(we)|| ~ subW (0, K) such that 6 > 1, i.e,,
Ej: [Vf(wt; th) - VFs(Wt)] = 0,
and

Ej, | exp ((IVF(we; 2i) — VFs(we)/K)?)| < 2.

e [Assumption 2: Smoothness] Let 5 > 0. For any sample z € Z and w,w’ € W, a
differentiable function w — f(w; z) is 8-smooth if

IVF(w;z) = V(W' 2)]| < Bllw — w'l].
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We introduce some standard assumptions.

e [Assumption 3] There exists G > 0 such that for all S € Z",
ne||VFs(we)|| < G,Vt € N.

¢ [Assumption 4] There exists G, > 0 such that for all 2 < k < n,
E, HVf(w*,z)Hk] <27 KIE, [||Vf(w*,z)||2] G2,

e [Assumption 5: PL condition] Assume that for any S € Z”, there exists an pus > 0
such that

Fs(w) — Fs(w(S)) < (4us) ™|V Fs(w)].
Additionally, we assume F satisfies the PL condition for some positive constant u:

F(w) — F(w*) < ;uHVF(w)H,Vw eW.
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Main Results

We study heavy-tailed SGD with joint consideration of optimization and generalization
performance.

® 1: General Nonconvex Learning.
® 2: Nonconvex Learning with PL Condition.

® 3: Towards Sharper Learning Guarantees.
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Main Results: General Nonconvex Learning

Optimization Bounds: Suppose Assumptions 1 and 2 hold. Let w; be the iterate produced

by Algorithm SGD. Assume n; = nlt_% with n1 < 1/(28). For any ¢ € (0,1), with probability
1-96,(a) if6= % then we have the following inequality

;
1 log(1/0)log T
—= > mllVFs(w) > = O —-"5——);
VT = ( VT )
(b.) if 6 € (3,1] and Assumption 3 holds, then we have
T 26
1 log=’(1/6) log T
—= > il VFs(wy)|? =0 ;
VT = ( VT )

(c.) if @ > 1 and Assumption 3 holds, then we have

1 & ) log? (T /5) log(1/6) + log?’(1/5) log T
77 2 Vsl -o( = ).
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Main Results: General Nonconvex Learning

Generalization Bounds: Suppose Assumptions 1 and 2 hold. Let w; be the iterate produced

by Algorithm SGD. Assume n; = 77175_% with n1 < 1/(283). Selecting T =< n/d. For any
0 € (0,1), with probability 1 — 4,
(a.) if @ = %, then we have the following inequality

-
1 > dii n 3,10\
7 2 IVFwal = 0(()* 1oe(Q) og’(7)):
(b.) if 6 € (3,1] and Assumption 3 holds, then we have
1 n 1
*Z IVEwOI? = 0((%)? 1og( 1) 10g®+(5));

(c.) if 6 >1 and Assumptlon 3 holds, then we have

:
F D IVFo = 0( () (lst 1eg™ () + g G o))
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Main Results: Nonconvex Learning with PL Condition

Otimization Bounds: Suppose Assumptions 1, 2, and 5 hold. Let w; be the iterate produced

by Algorithm SGD. Assume n; =
probability 1 — ¢,
(a.) if 6= % then we have the following inequality

Fs(wri1) — Fs(w(S)) = (9('0%(_;/5));

(b.) if 6 € (3,1] and Assumption 3 holds, then we have

0g"*+2) (1) |og2
Fo(wr.) — Fs(w(s)) = 0Bt T,

(c.) if @ > 1 and Assumption 3 holds, then we have

Fo(wr 1) — Fs(w(s) = O &

(9+%)(%)Iog 2 (T/(S)Iogz T)

m with tp > max{i—f, 1}. Then for any 6 € (0, 1), with
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Main Results: Nonconvex Learning with PL Condition

Generalization Bounds: Suppose Assumptions 1, 2, and 5 hold. Let w; be the iterate
produced by Algorithm SGD. Assume 7; = m with to > max{i—f, 1}. Selecting T =< n.
Then for any § € (0, 1), with probability 1 — 4,

(a.) if @ = %, then we have the following inequality

d+ |og(%)

F(wri1) — F(w") = o( Iogz(%) log n):

(b.) if 6 € (3,1] and Assumption 3 holds, then we have
. d + log(} 1
Fwri1) — F(w*) = (’)((5) Iog(29+1)(7) log n);
n 1)
(c.) if @ > 1 and Assumption 3 holds, then we have
. d + log(3) 1, s0-n,n
F(wrs1) = F(w?) = (=222 1og®*D(2)log™ > (3) log n).
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Main Results: Towards Sharper Learning Guarantees

Generalization Bounds: Suppose Assumptions 1, 2, 4, and 5 hold. Let w; be the iterate

produced by Algorithm SGD. Assume 7; = with tp > max{i—f, 1}. Selecting T < n?.

CBZ(C/-HOg( 8 Iog(2§nR+2) ))
2

2
ps(t+to)

When n >
probability 1 — ¢,
(a.) if @ = %, then we have the following inequality

Flwr.a) ~ Fw) = o 18] | VIO ) les(3),

(b.) if 6 € (3,1] and Assumption 3 holds, then we have

(0+3) 5N W' 2 o
Flwr) - Fw) = 02 ;”% Ellvé(w, 2)I Jlog(1/0)y,

(c.) if @ > 1 and Assumption 3 holds, then we have

(E[|yw(w*,z)u2] 0g(1/3) | los %7 (n/6) logl?+3 )(g)logén)_

n n?

where ¢ is an absolute constant, for any § € (0, 1), with

F(wri1) — F(w') =0
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Main Results: Towards Sharper Learning Guarantees

Generalization Bounds: Suppose Assumptions 1, 2, 4, and 5 hold. Let w; be the iterate
produced by Algorithm SGD. Assume n; = m with tg > max{i—f, 1}. Assume that

> 8log(2nR+2)
Flw) = O(%) Selecting T = 2. When n > e (d—i—logEL2 )

constant, for any § € (0, 1), with probability 1 — 4,
(a.) if 0= % we have the following inequality

where ¢ is an absolute

og?(%
Flwr.) - Fw') = 0(2E15)),

(b.) if 6 € (3,1] and Assumption 3 holds, then we have

F(wry1) — F(w*) = o(

(c.) if # > 1 and Assumption 3 holds, then we have

Iog(0+%)(%) Iog% n
n? )

3(0—-1)
log~ 2 (g)log<9+§)(;)|og%n)
S .
n

Flwr1) — F(w') = O
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Conclusion

This paper establishes high probability learning guarantees for nonconvex SGD.

® |n contrast to most theoretical studies, we consider the stochastic gradient noise following
a novel class of heavy-tailed sub-Weibull distribution.

Our analysis involves joint consideration of optimization and generalization performance.

Under different assumptions, we push the learning guarantees to different orders.

We also study clipped SGD to remove a very commonly used assumption (see the main
paper). Additionally, in this case, the stepsize of SGD is completely oblivious to the
knowledge of smoothness.
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