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Motivations

Accurately modeling the fitness landscape of protein sequences is critical to:

Human variant annotation

Viral escape prediction

Protein design

e The large majority of human variants’
have no known interpretation

<2% clinical
interpretation

.

6.3M
missense

e Example: EVE?, protein-specific
alignment-based generative models for
mutation effects prediction

e Viral escape mutations are the ones
that both maintain fitness while
disrupting Ab binding
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Semantic landscape (antigenic variation)

e Example: Hie et al.?, use a single LLM
to decompose escape in terms
semantic & grammaticality changes

e Generating novel yet fit sequences,
conditioning on:

o  Labels: Madani et al., Progen*

Amino Acid | YMIQEE Generated Sequences

o  Structure (Inverse folding):
Ingraham et al®, Hsu et al®.
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1. Landrum & Kattman. ClinVar at five years: Delivering on the promise. Hum Mutat 39, 1623-1630.

2. Frazer, Notin, Dias et al. Disease variant prediction with deep generative models of evolutionary data. Nature, 2021.

3. Hie et al. Learning the language of viral evolution and escape. Science, 2021. 4. Madani et al. ProGen: Language Modeling for Protein Generation. 2020.
5. Ingraham et al. Generative Models for Graph-Based Protein Design. NeurlPS, 2019. 6. Hsu et al. Learning inverse folding from millions of predicted structures. 2022.



Challenges with current approaches

e Learn a distribution from sequences in a Multiple-Sequence Alignment (MSA) -- either at position level
(e.g., Site independent’), pairs of positions (eg., EVmutation') or full sequence (eg., DeepSequencez, EVE?)

. e Limitations:
Alignment-based o Unable to score insertions & deletions (‘indels’)
models o Need fairly deep alignments to learn complex dependencies across " ”
positions (certain proteins are difficult to align eg., disordered proteins) ” ”
o Lack of information sharing across families (each model is trained =
from scratch) C T e e R TR

e Train a (masked) language model on large quantities of aligned sequences (eg., MSA Transformer?) or
non-aligned sequences (eg., ESM-1v°) across protein families

e Since MLMs do not learn a proba over full protein sequences, fitness is approximated via the
masked-marginals heuristic:

Protein language i ot
models Zlogp xt = xt |$\T) - logp(a:t = CBt |x\T)
teT

e Limitations (MLMs):
o Unable to score insertions & deletions (‘indels’)
o Approximation for multiple mutations: ignore dependencies across mutations
o Mismatch between training Vs inference: mask 15% tokens during training Vs 1+ token(s) at inference

1. Hopf et al. Mutation effects predicted from sequence co-variation. Nature Biotechnology, 2017 2. Riesselman, Ingraham et al. Deep generative models of genetic variation capture the effects of mutations. Nature Methods, 2018
3. Frazer, Notin, Dias et al. Disease variant prediction with deep generative models of evolutionary data. Nature, 2021 4. Rao et al. MSA Transformer. ICML, 2021
5. Meier et al. Language models enable zero-shot prediction of the effects of mutations on protein function. NeurIPS, 2021



Objectives

Develop a language model for fithess prediction with the following properties:

Robust to MSA depth: should perform well regardless of
depth of MSA

Versatile: should be able to score any mutated sequence
naturally (eg., multiples & indels) and perform well across taxa

Modular: should provide independent components that
can be turned on/off or improved based on context /
available domain knowledge




Overview

Tranception inference
(autoregressive transformer)

ProteinGym benchmarks

Measure Category DeepSequence ProteinGym
Human 9 33
Number of assays e e Syocss 9 "
by taxon Vieus s 2
All taxa 37 93
e Combining the 2 modes of inference | e DI o
Number of variants Multiple substitutions 0.55M 1.26M
by type Indels 0 0.27M
All variants 0.67M 1.89M

e  Substitution benchmark
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The two key components of the Tranception autoregressive transformer:
Tranception attention and Grouped ALiBi

Tranception attention Grouped ALiBi
i
( Multi-head self-attention ) e 2
92k g2 - ka -1 0
g3 ki1 q3 Kz g3 k3 + S -1 0 ] mh
s K1 g4 k> s k3 QaKa = -2 -1 0
oot seeds it s resshink ook g ds ks qs Kz qs - ks G -Ka s - ks B - > 1 o
e  Our scheme differs from the standard autoregressive e ALiBi*is a relative position embedding method (used in
architecture (eg. GPT-2") by promoting: lieu of learned / sinusoidal position embeddings)
o  extraction of sequence patterns of different e m, is an attention head-specific constant. For a
lengths (ie., k-mers) transformer with n attention heads:
. . . 8.h .
o hegd speC|aI|zat|pn , . mp =2+ ,with h € [1,n]
e Combines ideas from Primer® (D-conv after attention
linear projections) and Inception® (split attention heads e Leads to faster training convergence & memory savings
into 4 groups and apply a convolution w/ different e Weintroduce Grouped ALiBi, in which we split attention
kernel size to each group) heads in 4 groups and apply ALiBi to each group
1. Radford, Wu et al. Language Models are Unsupervised Multitask Learners. 2019 2. So et al. Primer: Searching for Efficient Transformers for Language Modeling. 2021
3. Szegedy et al. Going deeper with convolutions. CVPR, 2015 4. Press et al. Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation. 2021



o The two changes combined lead to faster loss convergence and superior
downstream performance

Training loss convergence Downstream task performance

3.01 — GPT2
—— Primer

w 227 Tranception (learned embedding) Model variant Training data  Position encoding S!)ear.man Spearman
a T ) N o validation set full set
O 2.8 — Tranception (grouped ALB) (Vv " "
> v GPT2 S Uniref100 Learned embedding 0.324 0.320 I
el ! PrimerS Unirefl00  Learned embedding 0314 0315 |
c 2.6 | Tranception LS Uniref100 Learned embedding 0.330 0.333 '
[} 1
2 251 _ Tranception S ___ Unirefl00 ____Grouped ALiBi _____0344 ____ | 0335 __!
2 .l Tranception S Uniref90 Grouped ALiBi 0.264 0.275
L Tranception S Uniref50 Grouped ALiBi 0.248 0.247

23] Tranception M Uniref100 Grouped ALiBi 0.358 0.376

5 55 5 5 50 it0 a6 140 Tranception L Uniref100 Grouped ALiBi 0.399 0.404

Gradient updates (thousands)

e Spearman’s rank correlation p between model
scores and experimental measurement

e  Tranception w/ grouped ALiBi reaches higher fitness
prediction performance Vs other autoregressive
architectures

e Training loss Vs # of gradient steps for GPT2, Primer,
Tranception with learned position embeddings and
Tranception with grouped ALiBi
All models have similar number of parameters
Tranception converges faster and to a lower loss
compared with other architectures

Other ablations in Appendix: —
- Uniref clustering: Uniref100 is optimal for AR
- Model size: scale improves performance



9 Inference-time retrieval

We retrieve a Multiple Sequence Alignment (MSA)
for each protein sequence to be scored ...

... and compute weighted pseudocounts at each
position to infer a distribution over AA at that position
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e Pseudocounts at each position of the alignment
computed via weighted Laplace smoothing (Jurafsky &
Martin, 2008), with a small smoothing parameter (107°)

e  Substitution scoring: one MSA retrieval amortized
across all substitutions (singles and multiples)
e Indel scoring: we tailor the retrieved MSA to each

mutated sequence by a) deleting columns in the MSA e  We fully ignore gaps in the MSA when computing the
corresponding to deleted positions and b) adding pseudocounts
zero-filled columns in the MSA at inserted positions in e  Sequence are weighted as per the procedure described

the mutated protein in Hopf et al., 2017




9 At test time, we combine the autoregressive inference with retrieval inference

Autoregressive inference
conditioned on prior tokens

[ [ [ [ [ |

Retrieved R
sequences.
INMSA 77" T T

____________________

Retrieval inference
’ Cz based on empirical
distribution at aligned
position

_________________________

_________________________

l
log P(z) Z (1 — ) log Pa(zi|z<;) + alog Pr(x;)]
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e During training of Tranception
we apply random sequence
mirroring as a data
augmentation

e That allows us at inference to
score the sequence from
both directions (left to right
and from right to left) and
average the two scores



9 ProteinGym benchmarks

e ProteinGym is a set of DMS-based benchmarks for fitness prediction

e Two benchmarks: substitutions and indels

e Significant increase in terms of numbers of assays, number of mutants,
diversity of assays (more balanced share of human & viral proteins, more
multiple assays) compared with prior benchmarks (eg., DeepSequence)

Measure Category DeepSequence ProteinGym Fold increase
Human 9 33 3.7
o Other eukaryotes 10 14 1.4
g“?‘ﬁ; oLassays Prokaryotes 13 24 1.8
Lo Virus 5 22 4.4
All taxa 37 93 2.5
Single substitutions 0.12M 0.36M 2.9
Number of variants Multiple substitutions 0.55M 1.26M 23

by type Indels 0 0.27M -

All variants 0.67M 1.89M 2.8

Comparison of the ProteinGym and DeepSequence benchmarks




6 Performance analysis: Robustness to MSA depth and gain of scope (1/3)

Model Model Spearman’s rank correlation by MSA depth 1
type name Low Medium High All
Performance by Site indep 0.428 0.403 0.350 0.397
MSA depth Alignment- Wavenet 0.319 0.398 0.469 0.398
based DeepSequence 0.375 0.397 0.506 0.415
Avg. Spearman’s models EVmutation 0.401 _0.421_ 0.468 0.427
rank correlation w/ EVE 0.408 |_0._44_0_| 0.507 0.448
experimental _— ESM-1v 0.321 0.348 0.484 0.371
measurements laneuage MSA Transformer 0.373 0.418 0.482 0.422
moﬁel sg Tranception (w/o retrieval) 0394 _ _ _0.398 0439 _0.406_
Tranception (w/ retrieval) | 0_4_53_ _ _0.:13§ _: 0.488 I_0;4§1_I
Robustness to MSA All proteins in ProteinGym Example for the P53 protein
depth analysis 020 2
0.45 S 2000
Avg. Spearman’s 040 ] 1
. 0.35 * 0
rank correlation w/ 5 -
. £ 0.30 e—t—ta__.
experimental % 0,25 3 . P
measurements when ? 20 =i | T
progressively filtering 0.15| — Tranception \ E;) e 'IIE':/aEnception -\.\.\,‘;\\ .
the MSA (based on 00| i pertnsrmer o = VA ransformer j
min similarity to the 5 55 m =0 50 00 "0 Z A @ e 10
wild type sequence) Minimum % similarity inimum 7 similarity




6 Performance analysis: Versatility of usage (2/3)

ProteinGym substitution benchmark
Avg. Spearman’s rank correlation w/ experimental measurements

By mutation depth

Model Model Spearman’s rank correlation by mutation depth 1
type name 1 2 3 4 5+ All
Site indep 0.396 0.325 0.286 0.319 0.421 0.397
Alignment- Wavenet 0.394 0.344 0.329 0.281 0.396 0.398
based DeepSequence 0.415 0.394 0.372 0.304 0.418 0.415 ProteinGym indel benchmark
models EVmutation 0.427 0.392 0.379 0.319 0.433 0.427 , .
EVE 0448 0392 0375 0334 0420 0.448 Avg. AUC & Spearman’s rank correlation
. ESM-1v 0372 0291 0190 0160 0245 0.371 w/ experimental measurements
—— MSA Transformer 0.423 0.359 0.390 0.327 0.431 0.422
models Trancept}on (wlo ret.neval) 0.397 ._O.i 12 0425 _ 0335 _ 0479_ 0.406 Model name Spearmant AUC 1
Tranception (w/ retrieval) 0.448 | 0.435 0.443 0.368 0.499 | 0.451
Wavenet 0.412 0.724
By taxon Tranception (w/o retrieval) 0.430 0.740
Model Model Spearman correlation by taxa category 1 Tranception (w/ retieval) 463 0.759
type name Human Other Eukaryote Prokaryote Virus All
Site indep 0.398 0.446 0.350 0.410 0.397
Alignment-  Wavenet 0.388 0.453 0.480 0.308 0.398
based Deepsequence 0.391 0.482 0.487 0.350 0.415
models EVmutation 0.405 0.475 0.484 0.380_ 0.427
EVE 0.411 0.485 0.497 ..'-0'435 1 0.448
Protein ESM-1v 0.394 0.420 0.482 0.216 0.371
laneuage MSA Transformer 0.379 0.491 0.494 0.380 0.422
mo%lzlsg Tranception (w/o retrieval) 0369 _ _ _0441 0.453 0.396_ 0.406
Tranception (W/ retrieval) :'0.426 0502 | 0.485 __"0.429 1 0.451




If we have additional knowledge about the protein, we

may use it to create better MSA (eg., domain-level)

6 Performance analysis: Flexibility and modularity (3/3)

We may combine Tranception with more complex
models of the retrieved MSA at inference

Avg. Spearman’s rank correlation w/ experimental
measurements; BRCA1 example

Domain  Tranception Tranception Tranception
(w/o retrieval)  (retrieval full MSA) (retrieval domain MSA)

RING 0.567 0.588 0.607
BRCT 0.354 0.490 0.504

Avg. Spearman’s rank correlation w/ experimental
measurements

Model pair ensembled Spearman
Tranception w/o retrieval 0.406
Tranception + ESM-1v 0.427
Tranception + MSA Transformer 0.449
Tranception + EVE 0.473

- Since the Tranception autoregressive transformer
and retrieval are two modular components, we
have the flexibility to not use retrieval, for example if
MSA depth is too shallow

- If we have additional knowledge about the protein
(eg., separate domains), we can manually craft
better MSA leading to better performance

- Ensembling Tranception (w/o retrieval) with an EVE
model trained on the retrieved MSA at inference
yields even higher performance

-  Trade-off between performance and compute
budget needed to train additional model

- Flexibility to train a complex model on MSA when its
depth is sufficient Vs keep simpler retrieval
mechanism otherwise



Conclusion

POSTER: Today 6:30-8:30pm; Hall E, #122

Paper: https://arxiv.org/abs/2205.13760
Code: https://github.com/OATML-Markslab/Tranception

State-of-the-art performance on both
substitutions and indels predictions

Higher performance on multiple mutants, which
increases with depth

One model for all proteins -- performs well
across taxa

Performance robust to MSA depth / out
performs other models in shallow regime
Flexibility to use or not MSAs; to curate MSAs
to particular application based on domain
knowledge (eg., BRCA1) and to ensemble
Tranception w/ more powerful alignment-based
models to be trained on the retrieved MSA

1. Hesslow et al. RITA: a Study on Scaling Up Generative Protein Sequence Models. 2022
2. Weinstein, Amin et al. Non-identifiability and the Blessings of Misspecification in Models of Molecular Fitness and Phylogeny. 2022

3. Borgeaud, Mensch, Hoffmann et al. Improving language models by retrieving from trillions of tokens. 2021

Model improvements

e Scaling model size (scaling laws for protein LLMs")

e Training /w more data (eg., MGnify, GISAID)

e Taking phylogeny into account?

e Retrieval at train time (eg., as in RETRO?)

e |Leverage protein structure more explicitly
Applications

e Supporting clinical annotations in humans, in

particular for disordered proteins / regions
e Predicting viral escape mutants
e Inverse folding problem




