International Conference on Machine Learning July 2022

Tranception: Protein Fitness Prediction with Autoregressive Transformers and Inference-time Retrieval

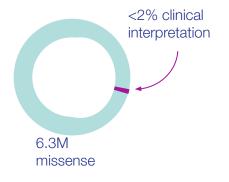
Pascal Notin, Mafalda Dias, Jonathan Frazer, Javier Marchena-Hurtado, Aidan Gomez, Debora Marks & Yarin Gal

Motivations

Accurately modeling the fitness landscape of protein sequences is critical to:

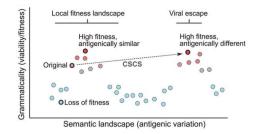
Human variant annotation

 The large majority of human variants¹ have no known interpretation



• Example: EVE², protein-specific alignment-based generative models for mutation effects prediction Viral escape prediction

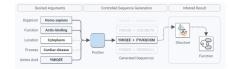
• Viral escape mutations are the ones that both maintain fitness while disrupting Ab binding



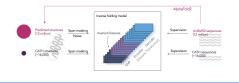
• Example: **Hie et al.**³, use a single LLM to decompose escape in terms **semantic & grammaticality changes**

Protein design

- Generating novel yet fit sequences, conditioning on:
 - Labels: Madani et al., Progen⁴



• **Structure** (Inverse folding): Ingraham et al⁵, Hsu et al⁶.



Landrum & Kattman. ClinVar at five years: Delivering on the promise. Hum Mutat 39, 1623-1630.
 Hie et al. Learning the language of viral evolution and escape. Science, 2021.

5. Ingraham et al. Generative Models for Graph-Based Protein Design. NeurIPS, 2019.

2. Frazer, Notin, Dias et al. Disease variant prediction with deep generative models of evolutionary data. Nature, 2021.

- 4. Madani et al. ProGen: Language Modeling for Protein Generation. 2020.
- 6. Hsu et al. Learning inverse folding from millions of predicted structures. 2022.

Challenges with current approaches

Alignment-based models	 Learn a distribution from sequences in a Multiple-Sequence Alignment (MSA) either at position level (e.g., Site independent¹), pairs of positions (eg., EVmutation¹) or full sequence (eg., DeepSequence², EVE³) Limitations: Unable to score insertions & deletions ('indels') Need fairly deep alignments to learn complex dependencies across positions (certain proteins are difficult to align eg., disordered proteins) Lack of information sharing across families (each model is trained from scratch)
Protein language models	 Train a (masked) language model on large quantities of aligned sequences (eg., MSA Transformer⁴) or non-aligned sequences (eg., ESM-1v⁵) across protein families Since MLMs do not learn a proba over full protein sequences, fitness is approximated via the masked-marginals heuristic:

1. Hopf et al. Mutation effects predicted from sequence co-variation. Nature Biotechnology, 2017

3. Frazer, Notin, Dias et al. Disease variant prediction with deep generative models of evolutionary data. Nature, 2021

^{5.} Meier et al. Language models enable zero-shot prediction of the effects of mutations on protein function. NeurIPS, 2021

^{2.} Riesselman, Ingraham et al. Deep generative models of genetic variation capture the effects of mutations. Nature Methods, 2018 4. Rao et al. MSA Transformer. ICML, 2021

Objectives

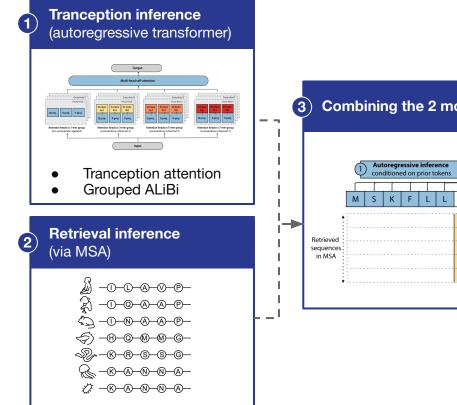
Develop a language model for fitness prediction with the following properties:

Robust to MSA depth: should perform well regardless of depth of MSA

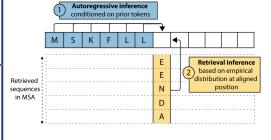
Versatile: should be able to score any mutated sequence naturally (eg., multiples & indels) and perform well across taxa

Modular: should provide independent components that can be turned on/off or improved based on context / available domain knowledge

Overview



Combining the 2 modes of inference



ProteinGym benchmarks (4)

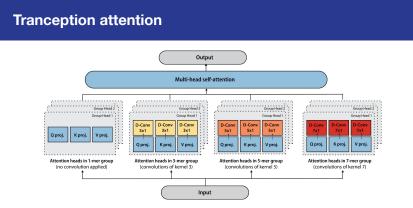
Measure	Category	DeepSequence	ProteinGym
	Human	9	33
N 1 6	Other eukaryotes	10	14
Number of assays	Prokaryotes	13	24
by taxon	Virus	5	22
	All taxa	37	93
	Single substitutions	0.12M	0.36M
Number of variants	Multiple substitutions	0.55M	1.26M
by type	Indels	0	0.27M
	All variants	0.67M	1.89M

- Substitution benchmark
- Indel benchmark

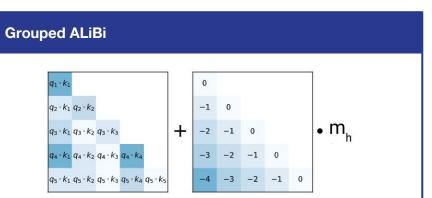
(5) **Detailed performance analysis**

Model	Model	Spe	AUC ↑			
type	name	Low	Low Medium Hig		All	All
	Site indep	0.428	0.403	0.350	0.397	0.725
Alignment-	Wavenet	0.319	0.398	0.469	0.398	0.725
based models	DeepSequence	0.375	0.397	0.506	0.415	0.733
	EVmutation	0.401	0.421	0.468	0.427	0.738
	EVE	0.408	0.440	0.507	0.448	0.751
n	ESM-1v	0.321	0.348	0.484	0.371	0.713
Protein language models	MSA Transformer	0.373	0.418	0.482	0.422	0.737
	Tranception (w/o retrieval)	0.394	0.398	0.439	0.406	0.728
	Tranception (w/ retrieval)	0.453	0.438	0.488	0.451	0.754

1 The two key components of the Tranception autoregressive transformer: Tranception attention and Grouped ALiBi



- Our scheme differs from the standard autoregressive architecture (eg. GPT-2¹) by promoting:
 - extraction of sequence patterns of different lengths (ie., k-mers)
 - head specialization
- Combines ideas from Primer² (D-conv after attention linear projections) and Inception³ (split attention heads into 4 groups and apply a convolution w/ different kernel size to each group)



- **ALiBi**⁴ is a relative position embedding method (used in lieu of learned / sinusoidal position embeddings)
- m_h is an attention **head-specific constant.** For a transformer with n attention heads:

$$m_h=2^{rac{8.h}{n}}, with \ h\in [1,n]$$

- Leads to faster training convergence & memory savings
- We introduce **Grouped ALiBi**, in which we split attention heads in 4 groups and apply ALiBi to each group

^{1.} Radford, Wu et al. Language Models are Unsupervised Multitask Learners. 2019 3. Szegedy et al. Going deeper with convolutions. CVPR, 2015

^{2.} So et al. Primer: Searching for Efficient Transformers for Language Modeling. 2021

^{4.} Press et al. Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation. 2021

The two changes combined lead to faster loss convergence and superior downstream performance

Training loss convergence

- Training loss Vs # of gradient steps for GPT2, Primer, Tranception with learned position embeddings and Tranception with grouped ALiBi
- All models have similar number of parameters
- Tranception converges faster and to a lower loss compared with other architectures

Downstream task performance

Model variant	Training data	Position encoding	Spearman validation set	Spearman full set
GPT2 S	Uniref100	Learned embedding	0.324	0.320
Primer S	Uniref100	Learned embedding	0.314	0.315
Tranception LS	Uniref100	Learned embedding	0.330	0.333
Tranception S	Uniref100	Grouped ALiBi	0.344	0.335
Tranception S	Uniref90	Grouped ALiBi	0.264	0.275
Tranception S	Uniref50	Grouped ALiBi	0.248	0.247
Tranception M	Uniref100	Grouped ALiBi	0.358	0.376
Tranception L	Uniref100	Grouped ALiBi	0.399	0.404

- Spearman's rank correlation p between model scores and experimental measurement
- Tranception w/ grouped ALiBi reaches higher fitness prediction performance Vs other autoregressive architectures

Other ablations in Appendix:

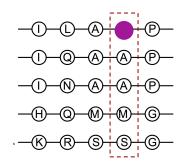
- Uniref clustering: Uniref100 is optimal for AR
- Model size: scale improves performance

2 Inference-time retrieval

We retrieve a **Multiple Sequence Alignment (MSA)** for each protein sequence to be scored ...

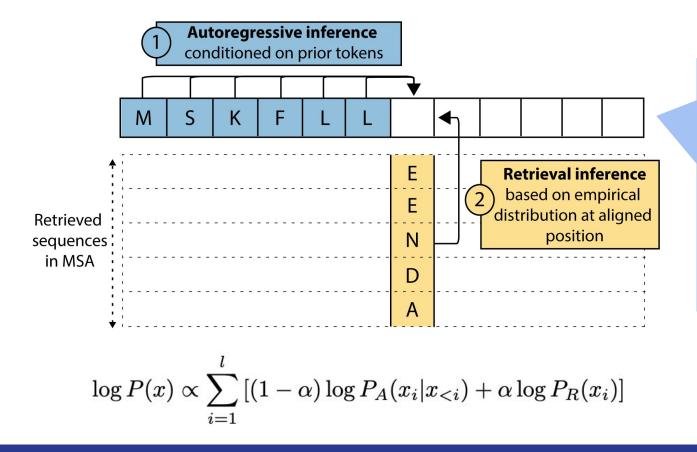
- **Substitution scoring:** one MSA retrieval amortized across all substitutions (singles and multiples)
- Indel scoring: we tailor the retrieved MSA to each mutated sequence by a) deleting columns in the MSA corresponding to deleted positions and b) adding zero-filled columns in the MSA at inserted positions in the mutated protein

... and compute **weighted pseudocounts** at each position to infer a distribution over AA at that position



- Pseudocounts at each position of the alignment computed via weighted Laplace smoothing (Jurafsky & Martin, 2008), with a small smoothing parameter (10⁻⁵)
- We fully **ignore gaps** in the MSA when computing the pseudocounts
- Sequence are **weighted** as per the procedure described in Hopf et al., 2017

3 At test time, we combine the autoregressive inference with retrieval inference



- During training of Tranception we apply random sequence mirroring as a data augmentation
- That allows us at inference to score the sequence from both directions (left to right and from right to left) and average the two scores

4 ProteinGym benchmarks

- **ProteinGym** is a set of DMS-based benchmarks for fitness prediction
- Two benchmarks: substitutions and indels
- Significant increase in terms of numbers of assays, number of mutants, diversity of assays (more balanced share of human & viral proteins, more multiple assays) compared with prior benchmarks (eg., DeepSequence)

Measure	Category	DeepSequence	ProteinGym	Fold increase
	Human	9	33	3.7
N. 1 C	Other eukaryotes	10	14	1.4
Number of assays	Prokaryotes	13	24	1.8
by taxon	Virus	5	22	4.4
	All taxa	37	93	2.5
	Single substitutions	0.12M	0.36M	2.9
Number of variants	Multiple substitutions	0.55M	1.26M	2.3
by type	Indels	0	0.27M	-
	All variants	0.67M	1.89M	2.8

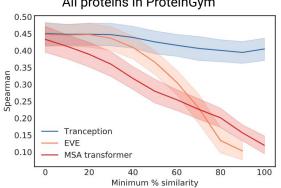
Comparison of the ProteinGym and DeepSequence benchmarks

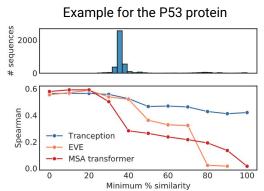
5 Performance analysis: Robustness to MSA depth and gain of scope (1/3)

	Model	Model	Spe	arman's rank	correlation b	y MSA depth ↑
	type	name	Low	Medium	High	All
rmance by		Site indep	0.428	0.403	0.350	0.397
depth	Alignment-	Wavenet	0.319	0.398	0.469	0.398
	based	DeepSequence	0.375	0.397	0.506	0.415
Spearman's	models	EVmutation	0.401	_0.421_	0.468	0.427
correlation w/		EVE	0.408	0.440	0.507	0.448
mental	Ductoin	ESM-1v	0.321	0.348	0.484	0.371
urements	Protein	MSA Transformer	0.373	0.418	0.482	0.422
	language	Tranception (w/o retrieval)	0.394	0.398	0.439	0.406
	models	Tranception (w/ retrieval)	0.453	0.438	0.488	0.451
stness to MSA	All p	roteins in ProteinGym		F	Example for th	ne P53 protein

Robustness to MSA depth analysis

Avg. Spearman's rank correlation w/ experimental measurements when progressively filtering the MSA (based on min similarity to the wild type sequence)





5 Performance analysis: Versatility of usage (2/3)

ProteinGym substitution benchmark

Avg. Spearman's rank correlation w/ experimental measurements

By mutation depth

Model	Model	Spearman's rank correlation by mutation depth \uparrow					
type	name	1	2	3	4	5+	All
	Site indep	0.396	0.325	0.286	0.319	0.421	0.397
Alignment-	Wavenet	0.394	0.344	0.329	0.281	0.396	0.398
based	DeepSequence	0.415	0.394	0.372	0.304	0.418	0.415
models	EVmutation	0.427	0.392	0.379	0.319	0.433	0.427
	EVE	0.448	0.392	0.375	0.334	0.420	0.448
Duratain	ESM-1v	0.372	0.291	0.190	0.160	0.245	0.371
Protein	MSA Transformer	0.423	0.359	0.390	0.327	0.431	0.422
language	Tranception (w/o retrieval)	0.397	0.412	0.425	0.335	0.479	0.406
models	Tranception (w/ retrieval)	0.448	0.435	0.443	0.368	0.499	0.451

By taxon

Model	Model		Spearman cor	relation by tax	a category 1	1
type	name	Human	Other Eukaryote	Prokaryote	Virus	All
	Site indep	0.398	0.446	0.350	0.410	0.397
Alignment-	Wavenet	0.388	0.453	0.480	0.308	0.398
based	Deepsequence	0.391	0.482	0.487	0.350	0.415
models	EVmutation	0.405	0.475	0.484	0.380	0.427
	EVE	0.411	0.485	0.497	0.435	0.448
Protein	ESM-1v	0.394	0.420	0.482	0.216	0.371
	MSA Transformer	0.379	0.491	0.494	0.380	0.422
language	Tranception (w/o retrieval)	0.369	0.441	0.453	0.396	0.406
models	Tranception (w/ retrieval)	0.426	0.502	0.485	0.429	0.451

ProteinGym indel benchmark Avg. AUC & Spearman's rank correlation w/ experimental measurements

Model name	Spearman \uparrow	AUC \uparrow
Wavenet	0.412	0.724
Tranception (w/o retrieval)	0.430	0.740
Tranception (w/ retrieval)	0.463	0.759

5 Performance analysis: Flexibility and modularity (3/3)

If we have additional knowledge about the protein, we may use it to create better MSA (eg., domain-level)

Avg. Spearman's rank correlation w/ experimental measurements; BRCA1 example

Domain	Tranception	Tranception	Tranception
	(w/o retrieval)	(retrieval full MSA)	(retrieval domain MSA)
RING	0.567	0.588	0.607
BRCT	0.354	0.490	0.504
DRCI	0.554	0.490	0.504

- Since the Tranception autoregressive transformer and retrieval are **two modular components**, we have the flexibility to **not use retrieval**, for example if MSA depth is **too shallow**
- If we have additional knowledge about the protein (eg., separate domains), we can manually craft better MSA leading to better performance

We may combine Tranception with more complex models of the retrieved MSA at inference

Avg. Spearman's rank correlation w/ experimental measurements

Model pair ensembled	Spearman
Tranception w/o retrieval	0.406
Tranception + ESM-1v	0.427
Tranception + MSA Transformer	0.449
Tranception + EVE	0.473

- Ensembling Tranception (w/o retrieval) with an EVE model trained on the retrieved MSA at inference yields even higher performance
- Trade-off between performance and compute budget needed to train additional model
- Flexibility to train a complex model on MSA when its depth is sufficient Vs keep simpler retrieval mechanism otherwise

Conclusion

Summary

- State-of-the-art performance on both substitutions and indels predictions
- Higher performance on **multiple mutants**, which increases with depth
- One model for all proteins -- performs well
 across taxa
- Performance robust to MSA depth / out performs other models in shallow regime
- Flexibility to use or not MSAs; to curate MSAs to particular application based on domain knowledge (eg., BRCA1) and to ensemble Tranception w/ more powerful alignment-based models to be trained on the retrieved MSA

Future directions

Model improvements

- Scaling model size (scaling laws for protein LLMs¹)
- Training /w more data (eg., MGnify, GISAID)
- Taking phylogeny into account²
- Retrieval at train time (eg., as in RETRO³)
- Leverage protein structure more explicitly

Applications

- Supporting clinical annotations in humans, in particular for disordered proteins / regions
- Predicting viral escape mutants
- Inverse folding problem

Paper: https://arxiv.org/abs/2205.13760 **Code:** https://github.com/OATML-Markslab/Tranception

^{1.} Hesslow et al. RITA: a Study on Scaling Up Generative Protein Sequence Models. 2022

^{2.} Weinstein, Amin et al. Non-identifiability and the Blessings of Misspecification in Models of Molecular Fitness and Phylogeny. 2022

^{3.} Borgeaud, Mensch, Hoffmann et al. Improving language models by retrieving from trillions of tokens. 2021