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Motivation




Graph Neural Networks

Many real-world data are graphs.
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Social Network Knowledge Graph Drugs and New materials

* Graph Neural Networks (GNNs) have achieved great success in many graph-based
applications.

* The handcrafted GNN architectures can not behave well in all scenarios.




Automated Graph NAS

* Rich human expertise is required

* Exploring a suitable GNN architecture in each scenario requires tremendous

laborious trials and rich human expertise.

e Graph Neural Architecture Search (G-NAS) methods are emerged to enable

automatic design of the best graph neural architecture.
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Drawbacks

Drawbacks of current G-NAS methods
1) Fixed Pipeline Pattern.

Existing methods adopt a fixed message-passing pipeline to organize two operations: propagating (P)
representations of its neighbors and applying transformation (T) on the representations.
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P-T-P-T : most G-NAS methods adopt the tight entanglement of applying transformation after propagation in each layer.
P-P-T-T or T-T-P-P : Several methods do the transformation or propagation first.

Specific P-T permutations and combinations are still fixed pipeline designs, limiting the expressive

power of macro-architecture search space!
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Drawbacks

Drawbacks of current G-NAS methods
2) Restricted Pipeline Depth

* The performance decreases as the layers become deeper
* the existing G-NAS methods fix the number of layers to a small constant
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Both AutoGNN and GraphNAS pre-define a very restricted GNN layer number (e.g., < 3)




Observation

* The meaning of deep GNN

* |In fact, there are two potential benefits for deep GNN.

* 1) Information Propogation: Shallow architecture can not involve the full graph information
due a few propagations. (especially when the label, feature or edges is sparse)

* 2) Nonlinear Transformation: The expressive power is low due to a few nonlinear
transformation.
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Figure 1. The framework of a two-layer GCN models.




Observation

The characteristicsof Pand T

e Different kind of datasets needs different pipeline patterns.
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Table 1. Test accuracy of GNNs with different PT orders. PTPT

Methods Cora Citeseer PubMed

PPTT 83.44+0.3 72.2+04 78.5+0.5
TTPP 82.8+0.2 71.8+0.3 79.840.3 042
PTPT 81.24+0.6 71.2+04 79.1+0.2 . 2 3 4
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Figure 2. Smoothness of different PT orders.

* the smoothness increases, i.e., the node embedding becomes similar, by
applying the P operation

* the smoothness decreases by applying the T operation, which implies that
the T operation has the ability to alleviate the over-smoothing issue.




Method




Design Space

A new paradigm and design space

* The design space includes P-T permutations and combinations, and the number of P-T operations.
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Figure 3. GNN pipeline example in the search space of DFG-NAS.
Propagation Connection: if the next operation is T, we assign a node-adaptive combination weight for the
node embeddings propagated by all previous P operations.

Transformation Connection: the input of each T operation is the sum of the output of the last layer and the
outputs of all previous T operations before the last layer.
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Search Method

We adopt the evolutionary algorithm for G-NAS.

* Each GNN architecture is encoded as a sequence consisting of the P and T operations.
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Figure 4. Overview of four different mutations.

Case 1 + P: Add a propagation operation.
Case 2 + T: Add a transformation operation.
Case 3 P - T: Replace a propagation operation by a transformation operation.

Case 4 T - P: Replace a transformation operation by a propagation operation.
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Experiments




Comparison with Existing GNNSs

* DFG-NAS obtains the deepest architectures with high expressive power and
achieves the best performance on all four datasets

* DFG-NAS consistently outperforms the compared G-NAS methods

Table 2. Test accuracy on the node classification task.

Methods Cora Citeseer PubMed ogbn-arxiv
Alternate P and T
GCN 81.3+0.6 71.1£0.1 78.8+04  71.7+0.3

GAT 82.94+0.2 70.840.5 79.1+0.1 71.94+0.2
GraphSAGE  79.24+0.6 71.6+0.5 77.4+0.5 71.54+0.3
T before P

APPNP 83.1£0.5 71.8+0.4 80.1+£0.2  72.0+£0.1
AP-GCN 83.44+03 71.3£0.5 79.7£0.3  71.94+0.2
DAGNN 84.3+0.2 73.3+0.6 80.5£0.5 72.0+0.3
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Best:Tes:t Ac:cuagy _

P before T B T T e T B N - T S R
SGC 8 1,7i02 7 1.3 :tO,Z 78,8j:0. 1 7 1 6j:03 Search Time (s) Sean:-h Time (s) Search Time (s) Search T\me(s).
SIGN 82.140.3 724+0.8 79.5+0.5  71.940.1 (a) Cora (b) Citeseer (c) Pubmed (d) ogbn-arxiv
S2GC 82.7+0.3 73.04+0.2 79.940.3 71.840.3
G-NAS Methods Figure 5. Test results during neural architecture search on four datasets.
GraphNAS 83.7+0.4 73.5+0.3 80.5+0.3 71.7+£0.2
AutoGNN 83.6+0.3 73.84+0.7 79.7+0.4 /

GraphGym  83.5+£0.2 73.4+0.3 80.3£0.2 71.6+0.3
DFG-NAS  85.24+0.2 74.1£04 81.1£0.3 72.3+0.2




Interpretability

* Though graph datasets differ in the requirement of smoothness, both two
curves are generally saturating.

* The average number of P in top-10 architectures increases when the
dataset grows sparser.

* The average number of T is similar in Core and Citeseer, and the number
further on larger datasets PubMed and ogbn-arxiv.
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Figure 7. Left: Average number of P operations along with the
Figure 6. Average smoothness over iterations on two datasets. increased sparsity on PubMed. Right: Average number of T opera-

tions along with the increased nodes of different datasets.




Conclusion




Conclusion

1. By decoupling the P and T operations, DFG-NAS suggests a transition from studying
specific fixed GNN pipelines to studying the GNN pipeline design space.

2. By further adding gating and skip-connection mechanisms, DFG-NAS could support
both deep propagation and transformation, which has the ability to explore the best
architecture design to push forward the GNN performance boundary.

3. Empirical results demonstrate that DFG-NAS achieves an accuracy and efficiency
improvement over state-of-the-art G-NAS methods.







