

# Understanding Contrastive Learning Requires Incorporating Inductive Biases

**Nikunj Saunshi<sup>1\*</sup>, Jordan T. Ash<sup>2</sup>, Surbhi Goel<sup>2</sup>, Dipendra Misra<sup>2</sup>, Cyril Zhang<sup>2</sup>**  
**Sanjeev Arora<sup>1</sup>, Sham Kakade<sup>2,3</sup>, Akshay Krishnamurthy<sup>2</sup>**

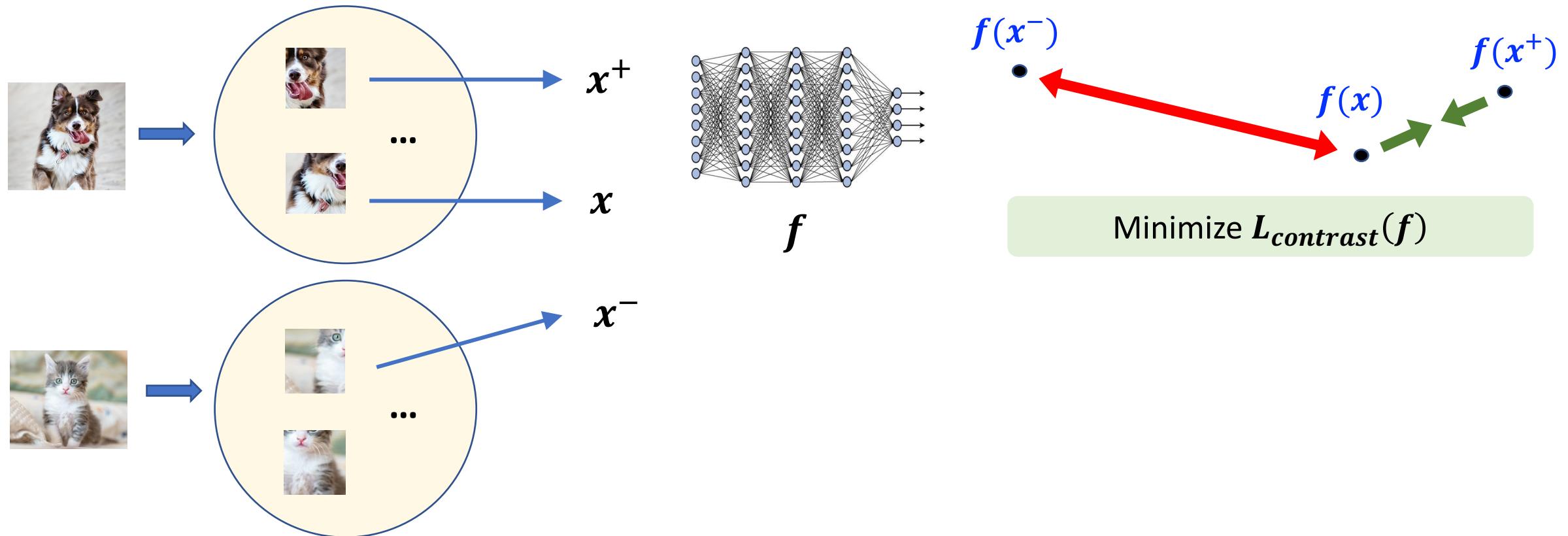
ICML 2022

<sup>1</sup>Princeton University, <sup>2</sup>Microsoft Research NYC, <sup>3</sup>Harvard University

\* [nsaunshi@cs.princeton.edu](mailto:nsaunshi@cs.princeton.edu)

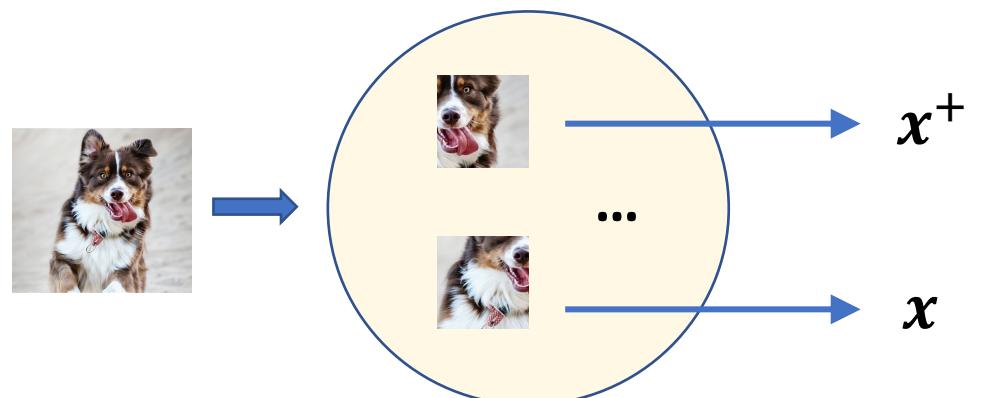
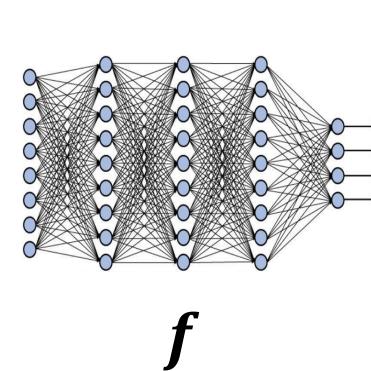
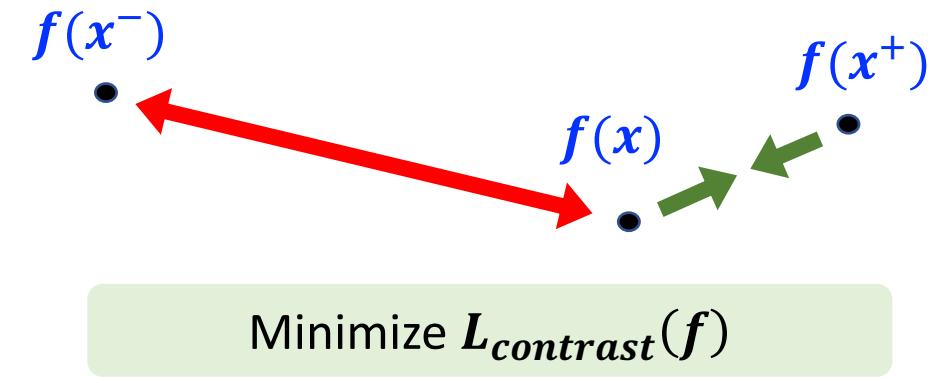
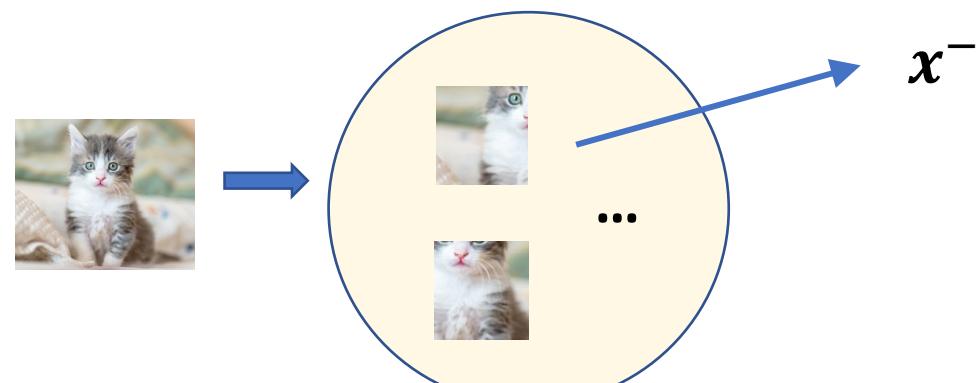
# Contrastive learning with augmentations

Representations contrast **similar points** (data augmentations) against random points, e.g. SimCLR [CKNH 20]

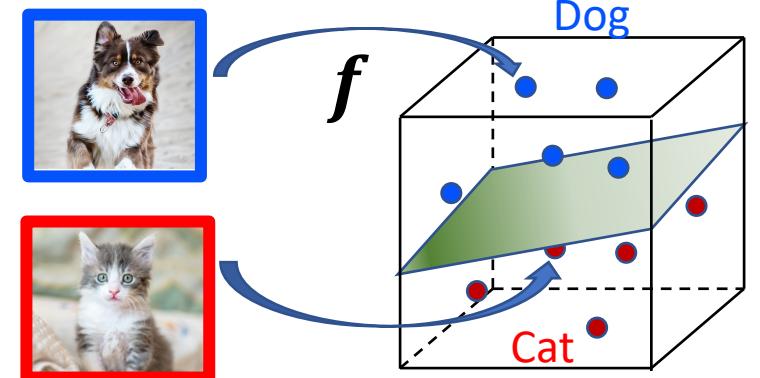


# Contrastive learning with augmentations

Representations contrast **similar points** (data augmentations) against random points, e.g. SimCLR [CKNH 20]

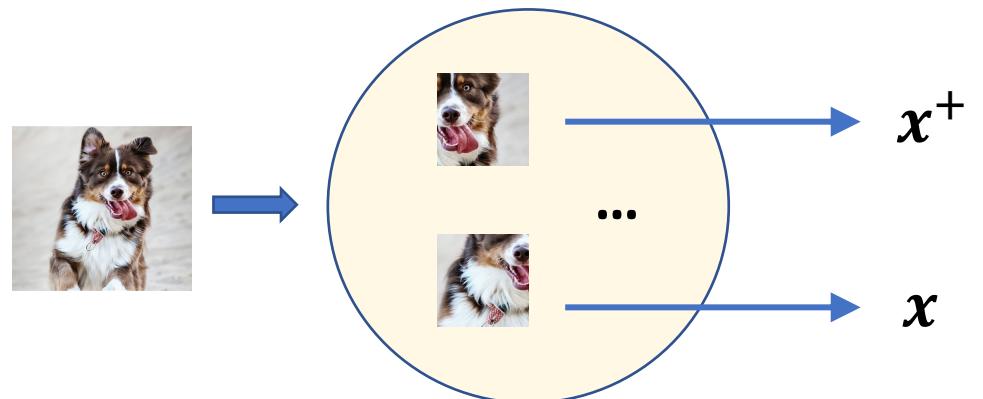
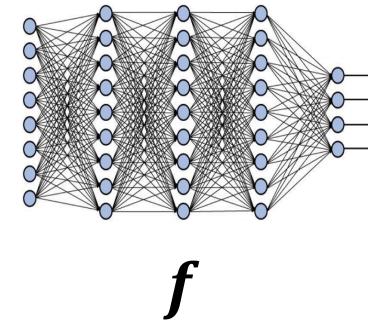
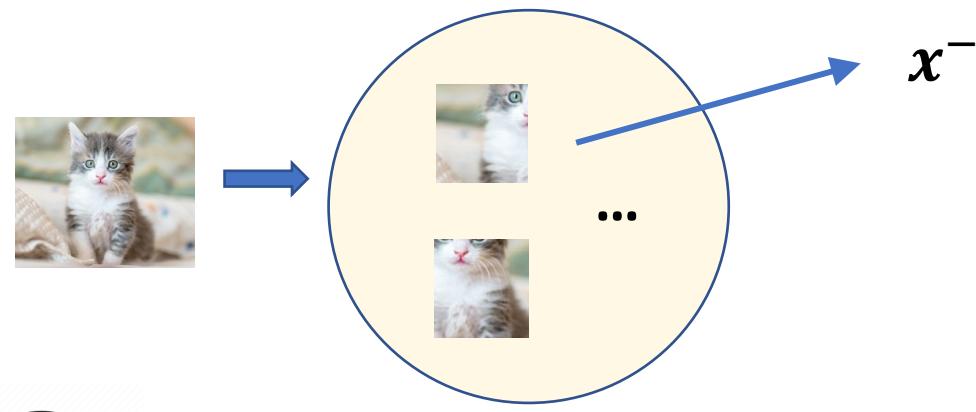
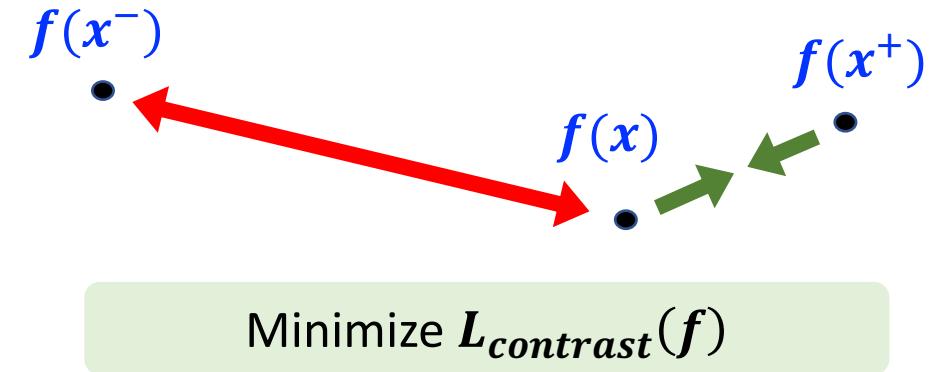


Evaluate  $f$  on  $L_{classify}(f)$

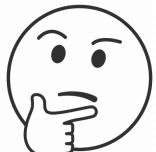


# Contrastive learning with augmentations

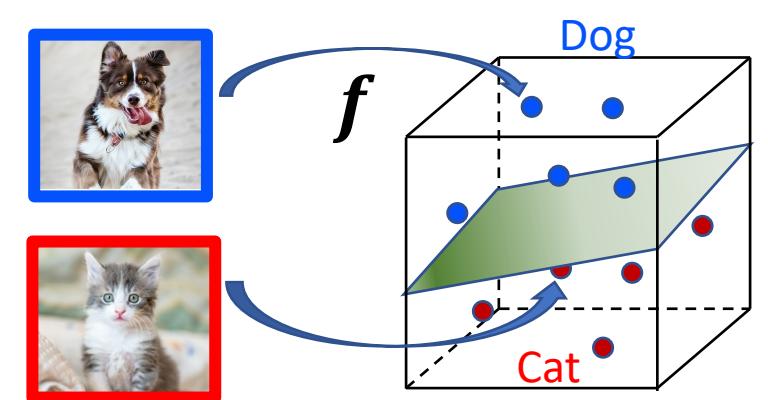
Representations contrast **similar points** (data augmentations) against random points, e.g. SimCLR [CKNH 20]



Evaluate  $f$  on  $L_{classify}(f)$



Why should small  $L_{contrast}(f) \rightarrow$  small  $L_{classify}(f)$



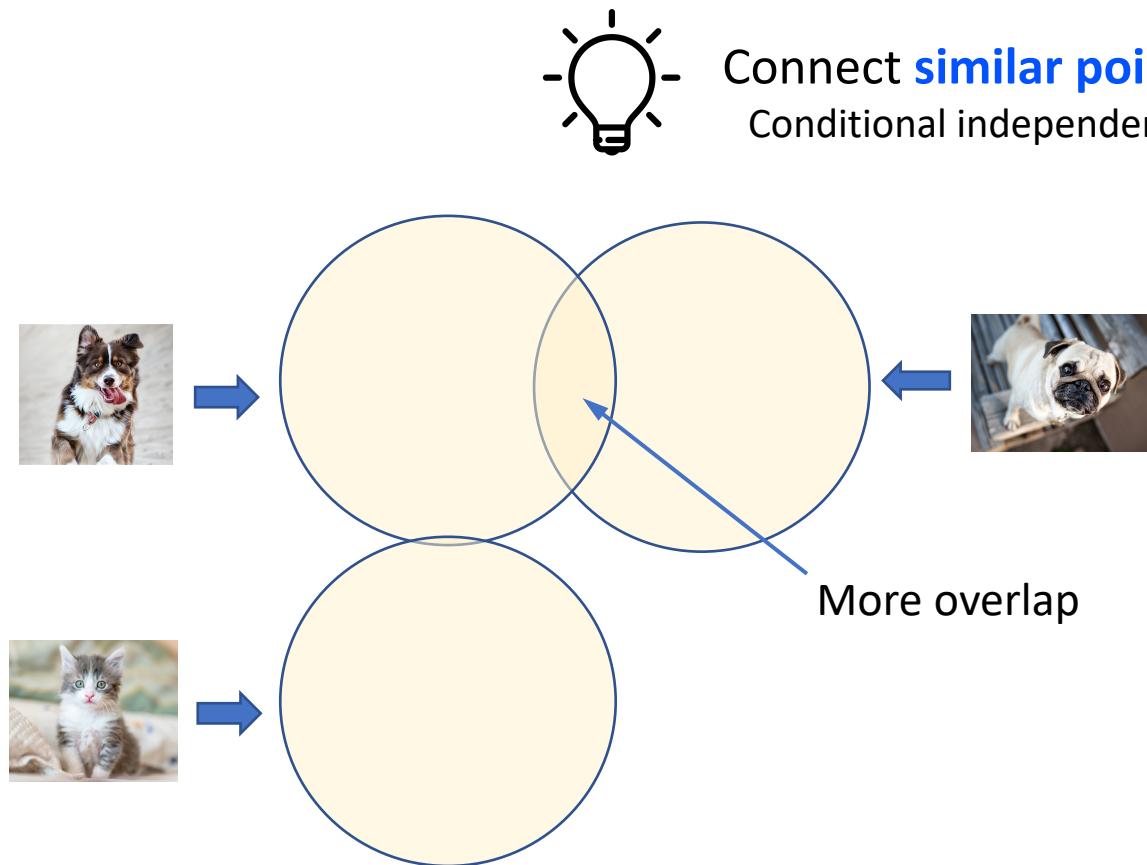
# Theory for contrastive learning



Connect **similar point** distributions to downstream classes

Conditional independence [AKKPS 19] is unrealistic for augmentations

# Theory for contrastive learning



Connect **similar point** distributions to downstream classes

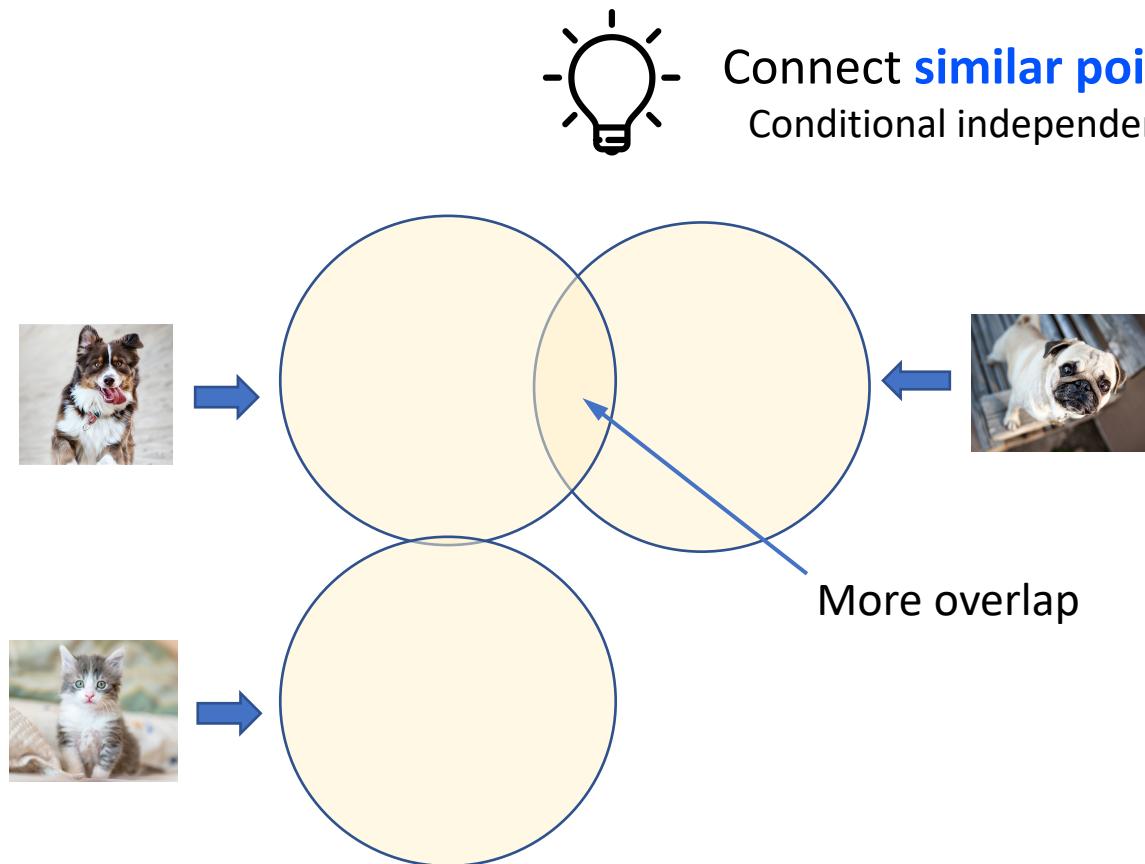
Conditional independence [AKKPS 19] is unrealistic for augmentations

**Spectral CL [HWGM 21]**

**Assumption:** Augmentation overlap within class

**Guarantees:**  $L_{classify}(f) \leq a L_{contrast}(f) + b, \forall f$

# Theory for contrastive learning



Connect **similar point** distributions to downstream classes

Conditional independence [AKKPS 19] is unrealistic for augmentations

**Spectral CL [HWGM 21]**

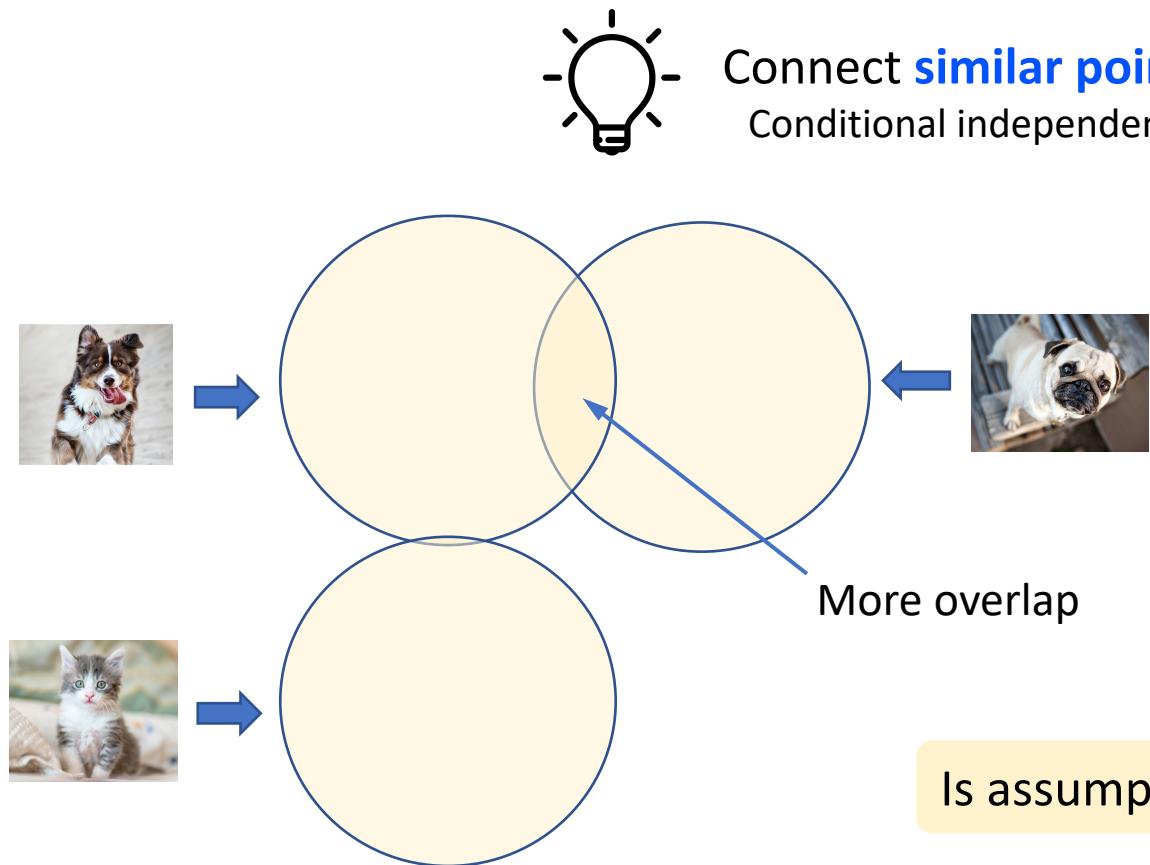
**Assumption:** Augmentation overlap within class

**Guarantees:**  $L_{classify}(f) \leq a L_{contrast}(f) + b, \forall f$

Treats  $f$  as “black-box”

Minimize  $L_{contrast}$  any way possible

# Theory for contrastive learning



Connect **similar point** distributions to downstream classes

Conditional independence [AKKPS 19] is unrealistic for augmentations

**Spectral CL [HWGM 21]**

**Assumption:** Augmentation overlap within class

**Guarantees:**  $L_{classify}(f) \leq a L_{contrast}(f) + b, \forall f$

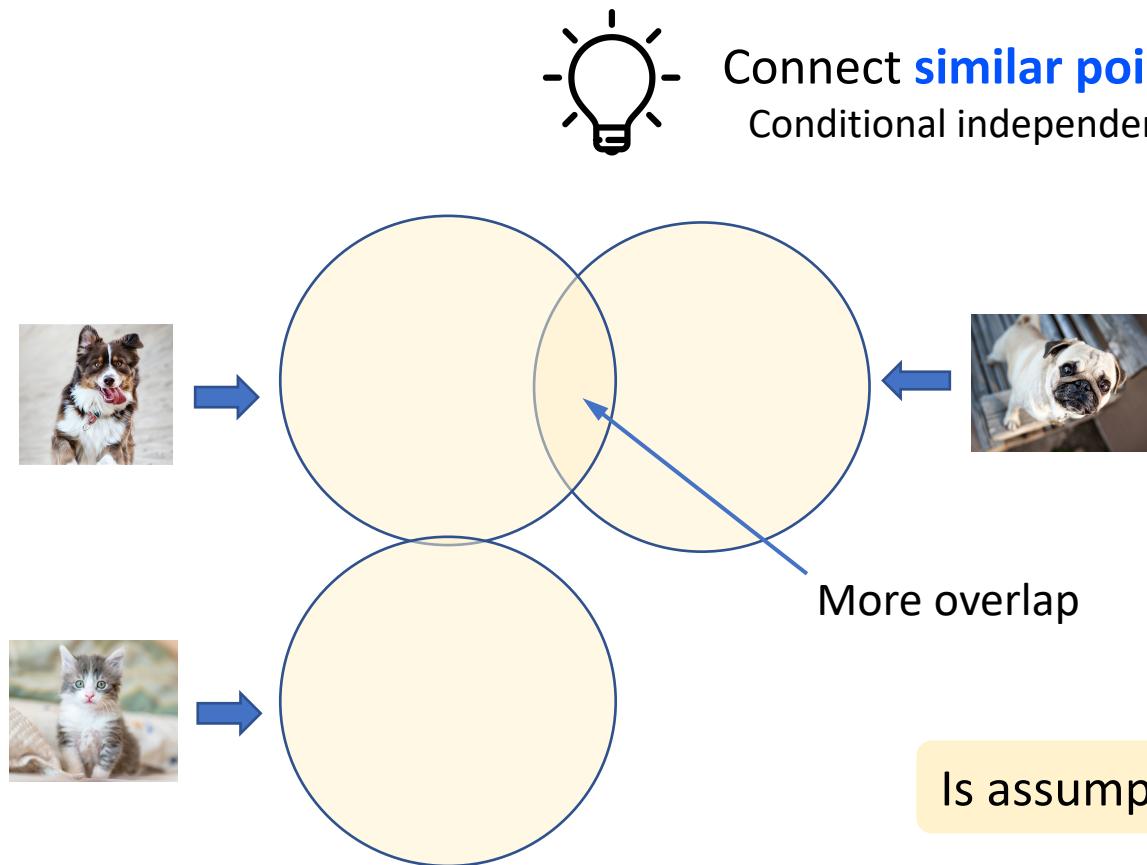
Treats  $f$  as “black-box”

Minimize  $L_{contrast}$  any way possible

Is assumption satisfied in practice?

Maybe not

# Theory for contrastive learning



Can contrastive learning work without overlap?

Yes!

Is assumption satisfied in practice?

Maybe not

**Spectral CL [HWGM 21]**

**Assumption:** Augmentation overlap within class

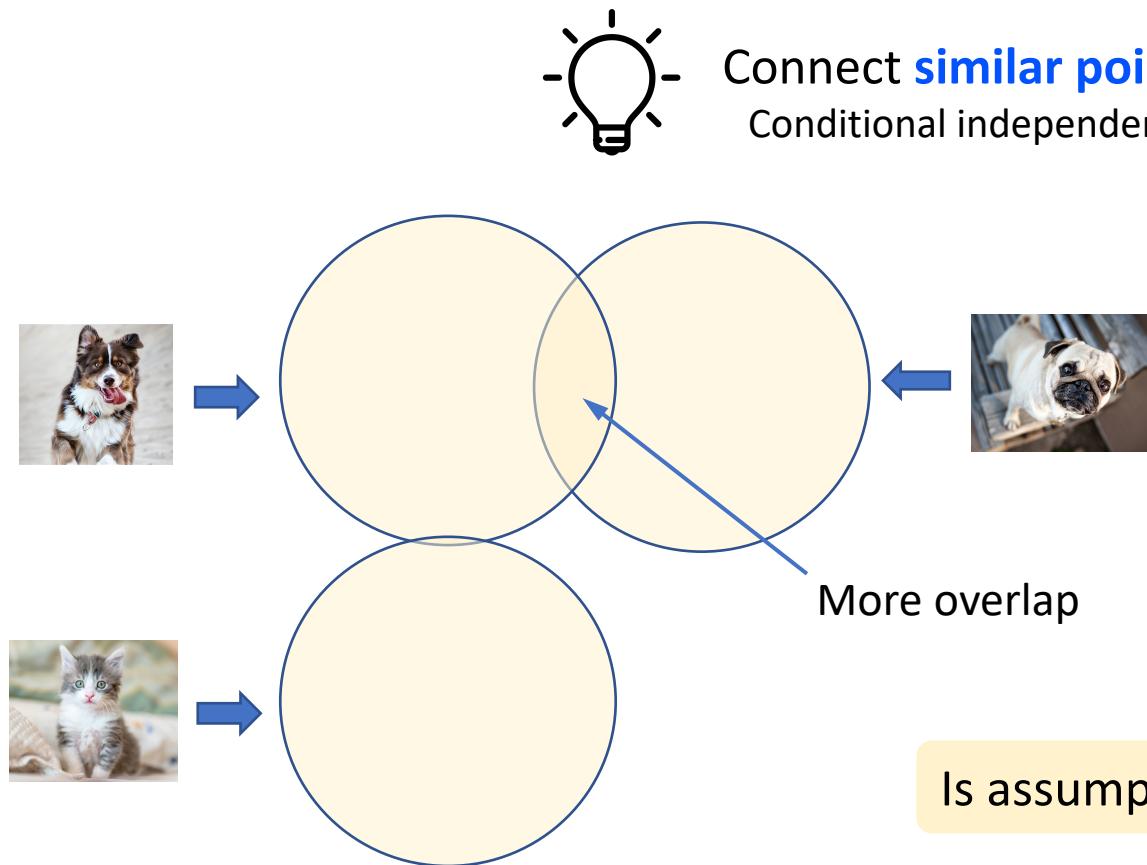
**Guarantees:**  $L_{classify}(f) \leq a L_{contrast}(f) + b, \forall f$

Treats  $f$  as “black-box”

Minimize  $L_{contrast}$  any way possible

Connect **similar point** distributions to downstream classes  
Conditional independence [AKKPS 19] is unrealistic for augmentations

# Theory for contrastive learning



Connect **similar point** distributions to downstream classes  
Conditional independence [AKKPS 19] is unrealistic for augmentations

**Spectral CL [HWGM 21]**

**Assumption:** Augmentation overlap within class

**Guarantees:**  $L_{classify}(f) \leq a L_{contrast}(f) + b, \forall f$

Treats  $f$  as “black-box”

Minimize  $L_{contrast}$  any way possible

# Questions

**Assumption:** Augmentation overlap within class

**Guarantees:**  $L_{classify}(f) \leq a L_{contrast}(f) + b, \forall f$

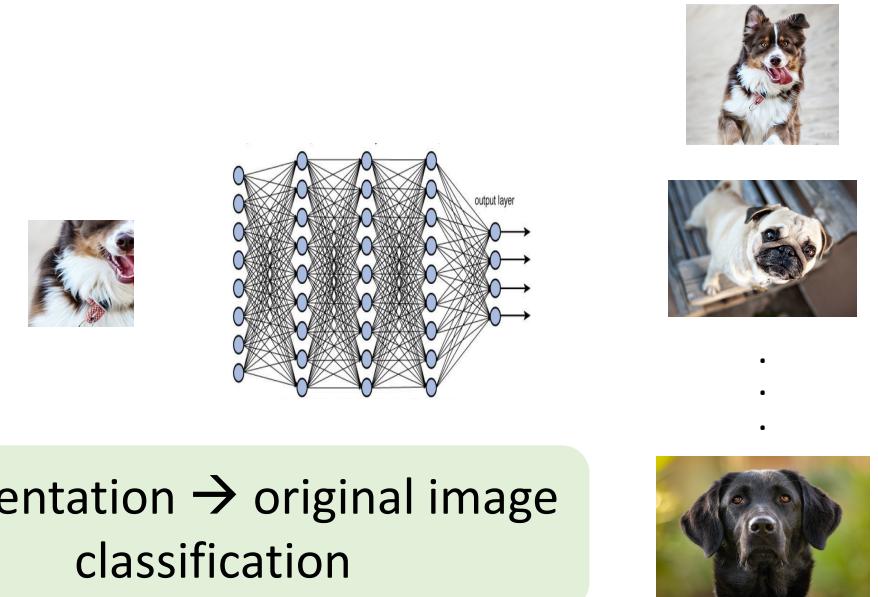
Is assumption satisfied in practice?

# Is there overlap?

**Assumption:** Augmentation overlap within class

**Guarantees:**  $L_{classify}(f) \leq a L_{contrast}(f) + b, \forall f$

Is assumption satisfied in practice?



Augmentation → original image classification

**99.6% Accuracy on 5000-way classification!**

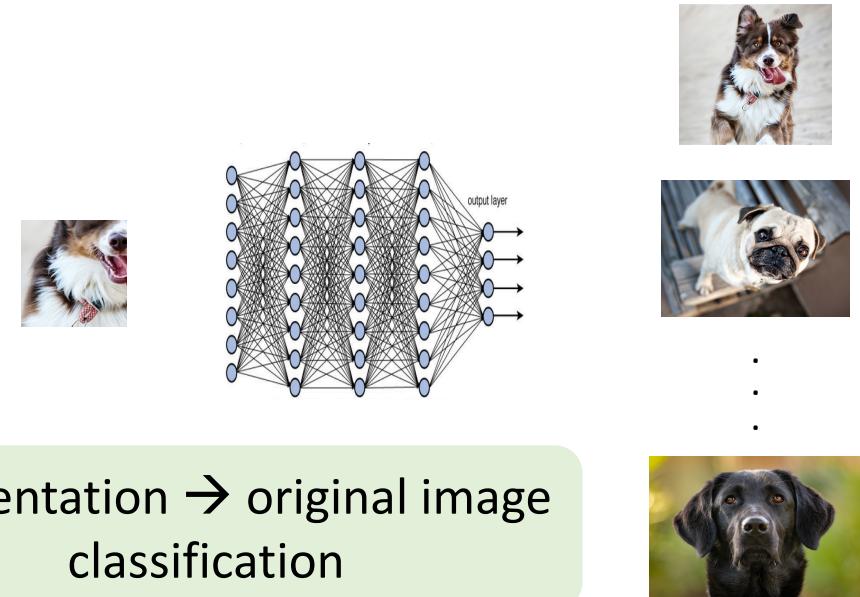
# Is there overlap?

**Assumption:** Augmentation overlap within class

**Guarantees:**  $L_{classify}(f) \leq a L_{contrast}(f) + b, \forall f$

Is assumption satisfied in practice?

**Not in the train set. Overlap in population? (still open)**



Augmentation → original image  
classification

**99.6% Accuracy on 5000-way classification!**

# Contrastive learning without overlap

**Assumption:** Augmentation overlap within class

**Guarantees:**  $L_{classify}(f) \leq a L_{contrast}(f) + b, \forall f$

Is assumption satisfied in practice?

**Not in the train set. Overlap in population? (still open)**

Can contrastive learning work without overlap?

# Contrastive learning without overlap

**Assumption:** Augmentation overlap within class

**Guarantees:**  $L_{classify}(f) \leq a L_{contrast}(f) + b, \forall f$

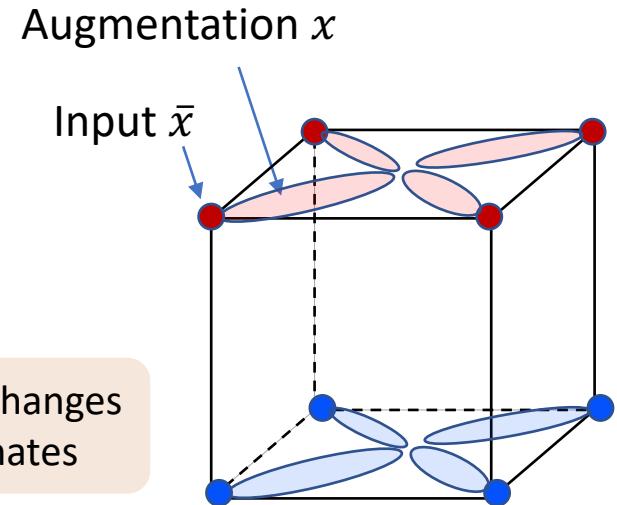
Is assumption satisfied in practice?

**Not in the train set. Overlap in population? (still open)**

Can contrastive learning work without overlap?

Label depends  
on this coordinate

Augmentation changes  
these coordinates



# Contrastive learning without overlap

**Assumption:** Augmentation overlap within class

**Guarantees:**  $L_{classify}(f) \leq a L_{contrast}(f) + b, \forall f$

Is assumption satisfied in practice?

**Not in the train set. Overlap in population? (still open)**

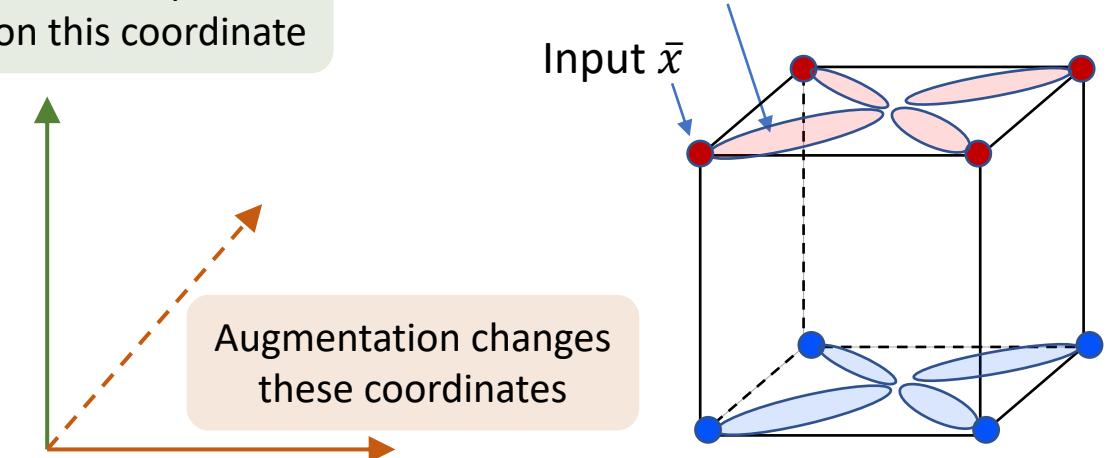
Can contrastive learning work without overlap?

Label depends  
on this coordinate

Augmentation changes  
these coordinates

Augmentation  $x$

Input  $\bar{x}$



| Representation         | $L_{cont}(f)$ | Acc (%) |
|------------------------|---------------|---------|
| Linear                 | 5.13          | 99.5    |
| MLP + Adam             |               | 74.1    |
| MLP + Adam + wd        | 5.04          | 89.5    |
| $\exists f$ (spurious) | 4.94          | 50      |

# Contrastive learning without overlap

**Assumption:** Augmentation overlap within class

**Guarantees:**  $L_{classify}(f) \leq a L_{contrast}(f) + b, \forall f$

Is assumption satisfied in practice?

Not in the train set. Overlap in population? (still open)

Can contrastive learning work without overlap?

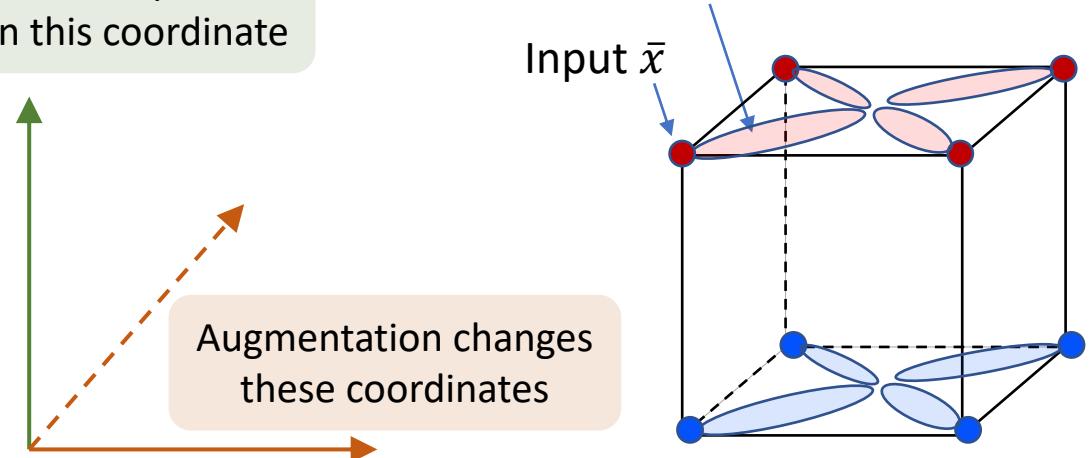
Yes! For the "right" function class but not all

Label depends  
on this coordinate

Augmentation changes  
these coordinates

Augmentation  $x$

Input  $\bar{x}$



| Representation         | $L_{cont}(f)$ | Acc (%) |
|------------------------|---------------|---------|
| Linear                 | 5.13          | 99.5    |
| MLP + Adam             |               | 74.1    |
| MLP + Adam + wd        | 5.04          | 89.5    |
| $\exists f$ (spurious) | 4.94          | 50      |

# Lower bound

**Assumption:** Augmentation overlap within class

**Guarantees:**  $L_{\text{classify}}(f) \leq a L_{\text{contrast}}(f) + b, \forall f$

Is assumption satisfied in practice?

**Not in the train set. Overlap in population? (still open)**

Can contrastive learning work without overlap?

**Yes! For the "right" function class but not all**

Can inductive bias *agnostic* analysis explain this success?

**Provably no!**

# Lower bound

**Assumption:** Augmentation overlap within class

**Guarantees:**  $L_{\text{classify}}(f) \leq a L_{\text{contrast}}(f) + b, \forall f$

Is assumption satisfied in practice?

**Not in the train set. Overlap in population? (still open)**

Can contrastive learning work without overlap?

**Yes! For the "right" function class but not all**

Can inductive bias *agnostic* analysis explain this success?

**Provably no!**

**Lower bound (general)**

**Theorem:** If **augmentations do not overlap**, then any function class agnostic guarantee for contrastive learning will be vacuous.

Spurious minimizers of  $L_{\text{contrast}}$  can be constructed

# Upper bound

**Assumption:** Augmentation overlap within class

**Guarantees:**  $L_{\text{classify}}(f) \leq a L_{\text{contrast}}(f) + b, \forall f$

Is assumption satisfied in practice?

**Not in the train set. Overlap in population? (still open)**

Can contrastive learning work without overlap?

**Yes! For the "right" function class but not all**

Can inductive bias *agnostic* analysis explain this success?

**Provably no!**

Can inductive bias *sensitive* analysis explain this success?

**Lower bound (general)**

**Theorem:** If **augmentations do not overlap**, then any function class agnostic guarantee for contrastive learning will be vacuous.

Spurious minimizers of  $L_{\text{contrast}}$  can be constructed

# Upper bound

**Assumption:** Augmentation overlap within class

**Guarantees:**  $L_{\text{classify}}(f) \leq a L_{\text{contrast}}(f) + b, \forall f$

Is assumption satisfied in practice?

**Not in the train set. Overlap in population? (still open)**

Can contrastive learning work without overlap?

**Yes! For the "right" function class but not all**

Can inductive bias *agnostic* analysis explain this success?

**Provably no!**

Can inductive bias *sensitive* analysis explain this success?

**Yes! For linear representation class**

**Lower bound (general)**

**Theorem:** If **augmentations do not overlap**, then any function class agnostic guarantee for contrastive learning will be vacuous.

Spurious minimizers of  $L_{\text{contrast}}$  can be constructed

# Upper bound

**Assumption:** Augmentation overlap within class

**Guarantees:**  $L_{\text{classify}}(f) \leq a L_{\text{contrast}}(f) + b, \forall f$

Is assumption satisfied in practice?

**Not in the train set. Overlap in population? (still open)**

Can contrastive learning work without overlap?

**Yes! For the "right" function class but not all**

Can inductive bias *agnostic* analysis explain this success?

**Provably no!**

Can inductive bias *sensitive* analysis explain this success?

**Yes! For linear representation class**

**Lower bound (general)**

**Theorem:** If **augmentations do not overlap**, then any function class agnostic guarantee for contrastive learning will be vacuous.

Spurious minimizers of  $L_{\text{contrast}}$  can be constructed

**Function class sensitive guarantees**

**Theorem:** For a linear representation function class, i.e.  $\mathcal{F} = \{f(x) = W\phi(x)\}$ , we have

$$L_{\text{classify}}(f) \leq a(\mathcal{F}) L_{\text{contrast}}(f) + b(\mathcal{F}) \quad \forall f \in \mathcal{F}$$

Only need overlap in the view of  $\mathcal{F}$

# Inductive biases in practice

**Assumption:** Augmentation overlap within class

**Guarantees:**  $L_{classify}(f) \leq a L_{contrast}(f) + b, \forall f$

Is assumption satisfied in practice?

**Not in the train set. Overlap in population? (still open)**

Can contrastive learning work without overlap?

**Yes! For the "right" function class but not all**

Can inductive bias *agnostic* analysis explain this success?

**Provably no!**

Can inductive bias *sensitive* analysis explain this success?

**Yes! For linear representation class**

Effect of inductive biases observable in practice

# Inductive biases in practice

**Assumption:** Augmentation overlap within class

**Guarantees:**  $L_{\text{classify}}(f) \leq a L_{\text{contrast}}(f) + b, \forall f$

Is assumption satisfied in practice?

**Not in the train set. Overlap in population? (still open)**

Can contrastive learning work without overlap?

**Yes! For the "right" function class but not all**

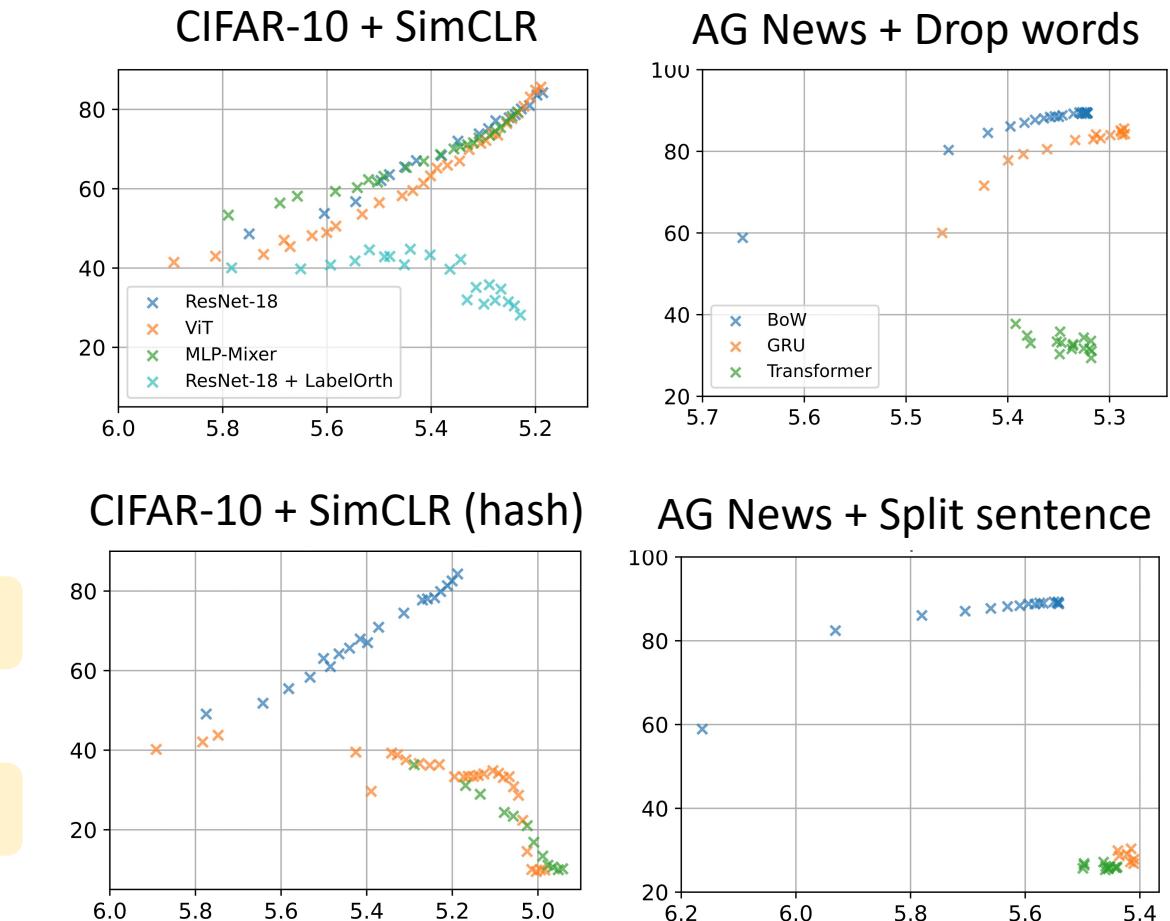
Can inductive bias *agnostic* analysis explain this success?

**Provably no!**

Can inductive bias *sensitive* analysis explain this success?

**Yes! For linear representation class**

Effect of inductive biases observable in practice



**For the same augmentation some function classes/algorithms transfer well but others fail miserably**

