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Contrastive learning with augmentations

Representations contrast similar points (data augmentations) against random points, e.g. SimCLR [CKNH 20]
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Function class sensitive guarantees
Theorem: For a linear representation function
class, i.e. F = {f(x) = W ¢p(x)}, we have

Lclassify(f) < a(F) Leontrast(f) + b(F)
VfeETF

Only need overlap in the view of F
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For the same augmentation some function
classes/algorithms transfer well but others fail miserably







