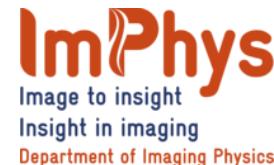


SpaceMAP: Visualizing High-dimensional Data by Space Expansion

Xinrui Zu

Qian Tao

Department of Imaging Physics, Delft University of Technology, the Netherlands



NASA/ESA/CSA/STScI

SMACS 0723: Red arcs in the image trace light from galaxies in the very early Universe

Image credit: James Webb Space Telescope, 2022

High-dimensional data visualization by SpaceMAP

What's SpaceMAP?

- **SpaceMAP** is a visualization / dimensionality reduction (DR) method that can see data of arbitrarily high dimension on a 2D map.
- It is based on understanding the capacity of **SPACE**.
- **MAP** refers to “manifold approximation and projection”.

Why is Visualization Interesting for ML?

- ML works based on the fundamental assumption that data lies on a low-dimensional manifold – otherwise “curse of dimensionality” holds
- **Seeing is believing** – as human we only can “see” well in 2 or 3 dimension, hence data visualization is super interesting for ML’ers!

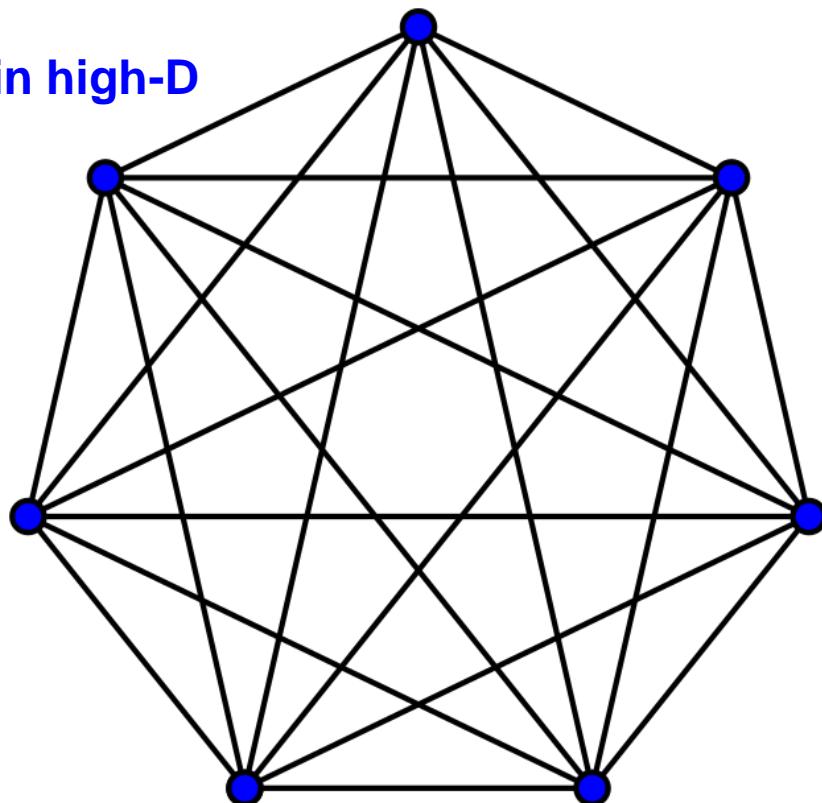
What's New in SpaceMAP?

- The discrepancy between high-D and low-D spaces is **analytically** studied, leading to transformation of similarity in a **principled** and explainable way.
- In contrast, previous methods such as t-SNE and UMAP transformed similarity implicitly.

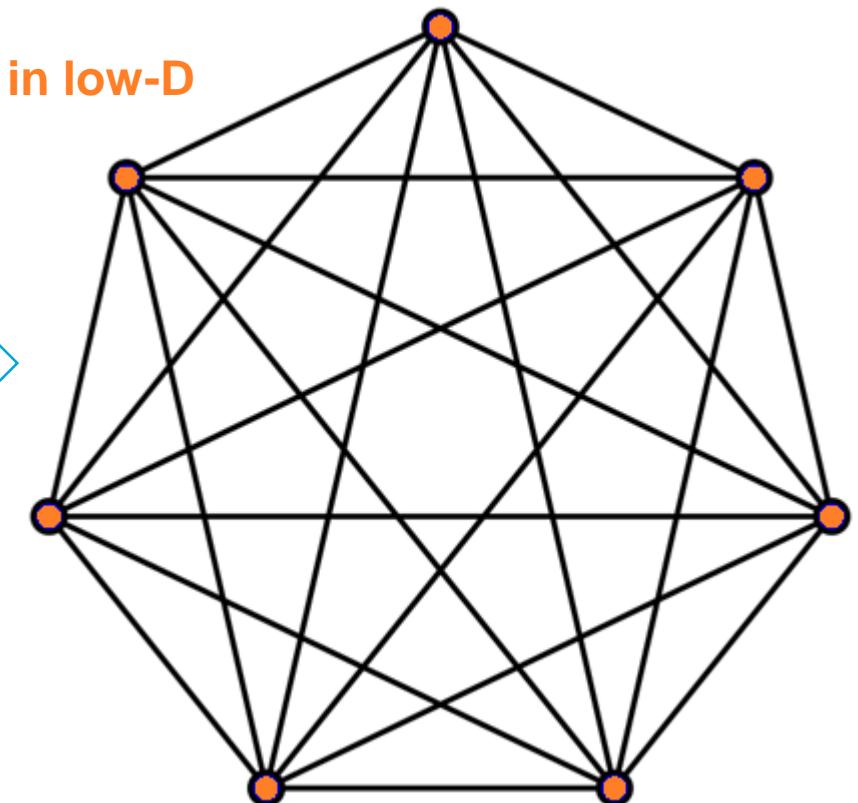
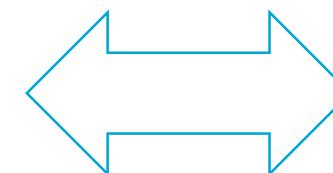
The Essence of Dimensionality Reduction

- Matching two graphs

Data points in high-D



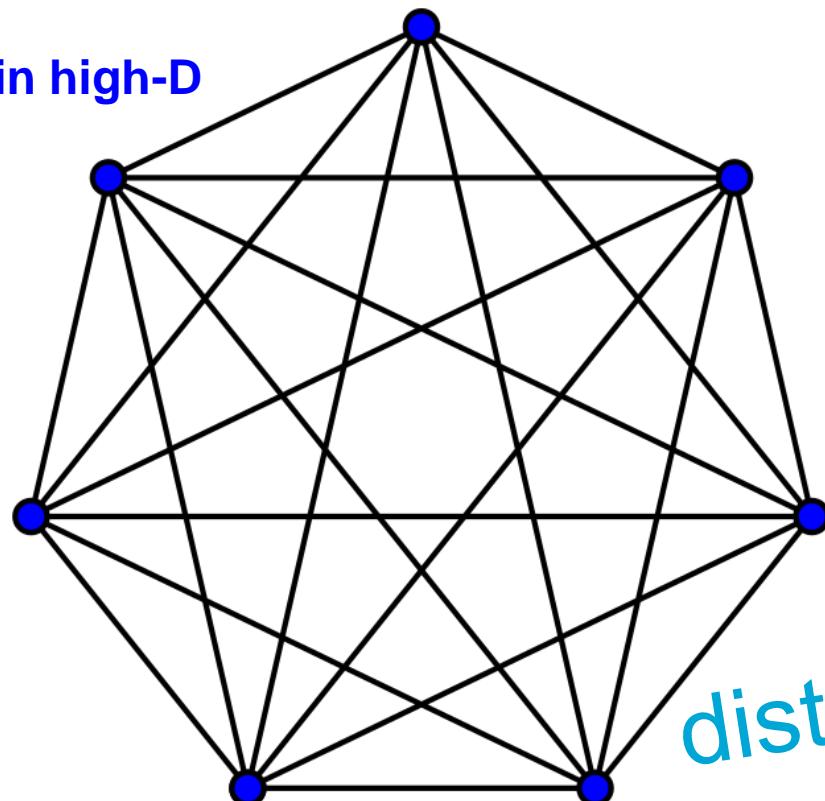
Data points in low-D



The Essence of Dimensionality Reduction

- Matching two graphs

Data points in high-D



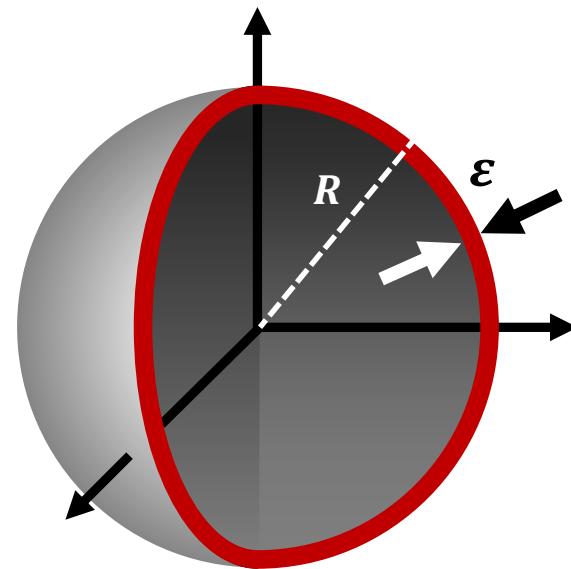
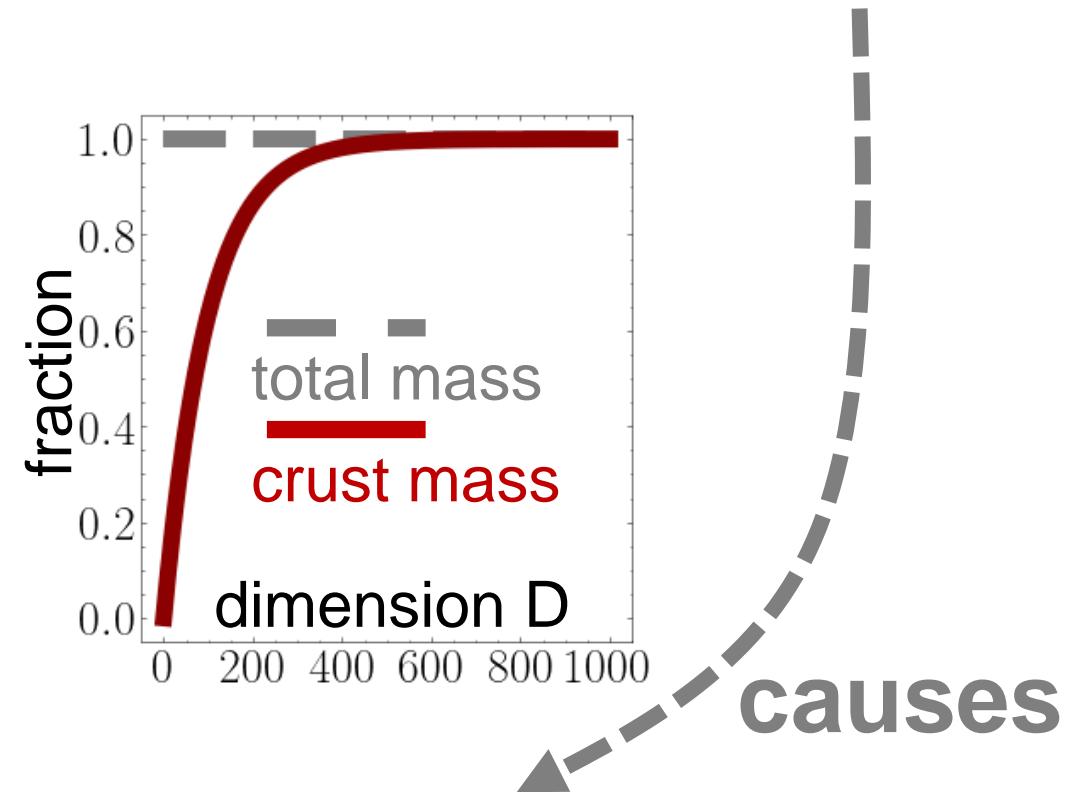
Data points in low-D

edge
distance
similarity

A graph with 6 orange nodes arranged in a hexagonal pattern. Every node is connected to every other node by a black edge, representing a fully connected graph in low-dimensional space.

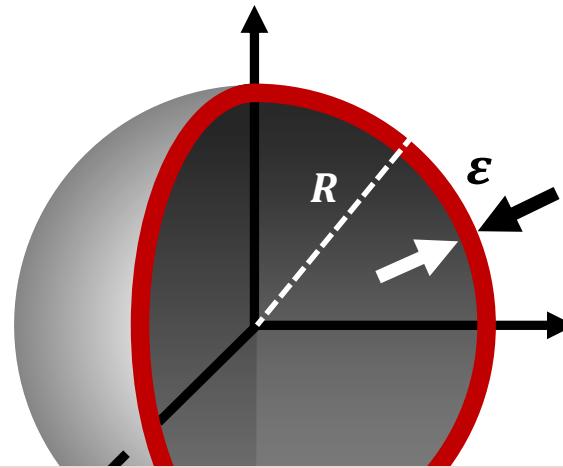
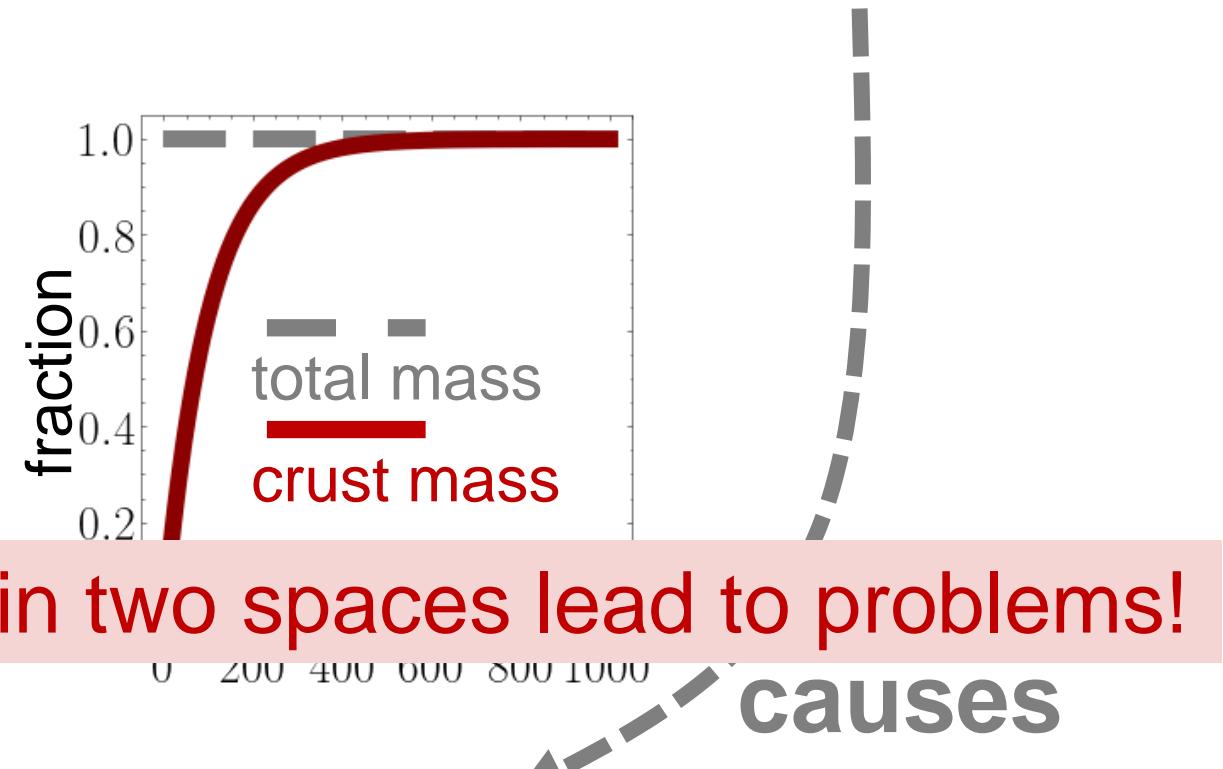
The Crowding Problem of Dimensionality Reduction

- high-dimensional geometry: “concentration on a crust”



The Crowding Problem of Dimensionality Reduction

- high-dimensional geometry: “concentration on a crust”



Distance defined the same way in two spaces lead to problems!

SpaceMAP: the Theoretic Framework

- Space Capacity $\mathcal{V}_D(R_{ij})$
 - A Hausdorff measure - volume of a D-dim ball
- Equivalent Extended Distance (EED) $\tilde{\mathcal{R}}_{ij,D \rightarrow d}$
 - Transform the distance in low-D space such that capacity matches to low-D space: $\mathcal{V}_d(\tilde{\mathcal{R}}_{ij,D \rightarrow d}) = \mathcal{V}_D(R_{ij})$

SpaceMAP: the Theoretic Framework

- Space Capacity $\mathcal{V}_D(R_{ij})$
 - A Hausdorff measure - volume of a D-dim ball
- Equivalent Extended Distance
 - Transform the distance in low-D space such that capacity matches to low-D space: $\mathcal{V}_d(\tilde{\mathcal{R}}_{ij,D \rightarrow d}) = \mathcal{V}_D(R_{ij})$

Definition 3.1 (Space Capacity). Let $R_{ij} = l(\mathbf{x}_i, \mathbf{x}_j) \in \mathbb{R}$ be the distance between data point \mathbf{x}_i and \mathbf{x}_j in the D -dimensional space. The space capacity $\mathcal{V}_D(R_{ij})$ from point i to point j is defined as the volume of a D -dimensional ball with a radius of R_{ij} .

Definition 3.2 (Equivalent Extended Distance: EED). Let $R_{ij} = l(\mathbf{x}_i, \mathbf{x}_j) \in \mathbb{R}$ be the distance between data point \mathbf{x}_i and \mathbf{x}_j in the D -dimensional space. The equivalent extended distance (EED) $\tilde{\mathcal{R}}_{ij,D \rightarrow d}$ is defined as the equivalent distance between \mathbf{x}_i and \mathbf{x}_j in d -dimensional space such that the Space Capacity matches: $\mathcal{V}_d(\tilde{\mathcal{R}}_{ij,D \rightarrow d}) = \mathcal{V}_D(R_{ij})$

SpaceMAP: the Theoretic Framework

- Intrinsic Dimension (ID)
 - Inherent degrees of freedom of data
- EED provably transforms ID
 - By applying EED $\mathcal{V}_d(\tilde{\mathcal{R}}_{ij,D \rightarrow d}) = \mathcal{V}_D(R_{ij})$, the ID of data is transformed to be visualizable with mitigated “crowding problem”

SpaceMAP: the Theoretic Framework

- **Intrinsic Dimension (ID) Estimation**

- Inherent degrees of freedom of data

$$\hat{d}_k(x_i; R) = \left(\frac{1}{k-1} \sum_{j=1}^{k-1} \log \frac{R_{ik}}{R_{ij}} \right)^{-1}$$

Levina & Bickel 2004

- **EED provably transforms ID**

- By applying EED $\mathcal{V}_d(\tilde{\mathcal{R}}_{ij,D \rightarrow d}) = \mathcal{V}_D(R_{ij})$, the ID of data is transformed to be visualizable with mitigated “crowding problem”

Proposition 3.1 (EED transforms ID provably). *For any neighborhood size k , if the MLE of the intrinsic dimension around point x_i under the distance metric R is $\hat{d}_k(x_i; R) = D$, the MLE of the intrinsic dimension after applying EED to the distance metric is d : $\hat{d}_k(x_i; \tilde{\mathcal{R}}_{D \rightarrow d}) = d$.*

Proof. By replacing metric R with the EED-transformed metric $\tilde{\mathcal{R}}_{D \rightarrow d}$ (Equation 4) in Equation 5, we have:

$$\begin{aligned} \hat{d}_k(x_i; \tilde{\mathcal{R}}_{D \rightarrow d}) &= \left(\frac{1}{k-1} \sum_{j=1}^{k-1} \log \frac{\alpha R_{ik}^{D/d}}{\alpha R_{ij}^{D/d}} \right)^{-1} \\ &= \left(\frac{1}{k-1} \sum_{j=1}^{k-1} \frac{D}{d} \log \frac{R_{ik}}{R_{ij}} \right)^{-1} \\ &= \frac{d}{D} \hat{d}_k(x_i; R) = \frac{d}{D} D = d \end{aligned} \quad (7)$$

SpaceMAP: the Method

■ Definitions in SpaceMAP:

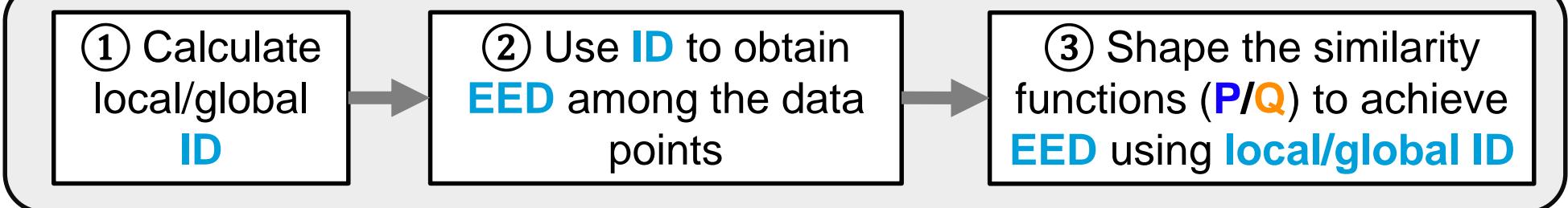
Space Capacity
 $\mathcal{V}_D(R_{ij})$ Volume of a D-dim ball

Estimation of ID
 \hat{d}_k k: number of neighbors

Equivalent Extended Distance (EED)
 $\tilde{\mathcal{R}}_{D \rightarrow d}$ s. t. $\mathcal{V}_D(R_{ij}) = \mathcal{V}_d(\mathcal{R}_{D \rightarrow d})$

Local/Global ID
 $d_{local}(x_i; k) = \hat{d}_k$
 d_{global} Harmonic mean of d_{local}

■ Algorithm:



SpaceMAP: the Method

② Use **ID** as the dimensionality to obtain **EED**:

$$R_{ij}$$

EED

$$\tilde{\mathcal{R}}_{ij,D \rightarrow d} = \alpha R_{ij}^{D/d}$$

③ Shape the similarity functions (**P/Q**) to achieve **EED** by minimizing the loss:

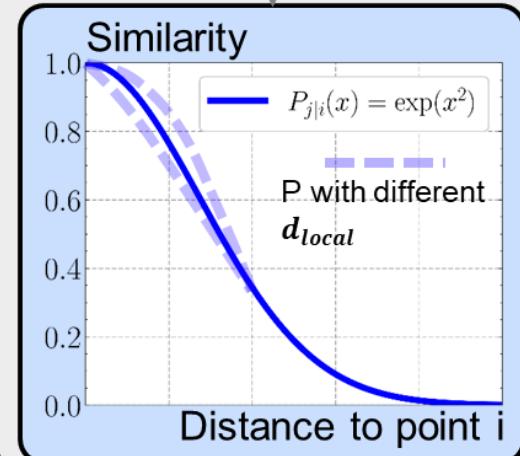
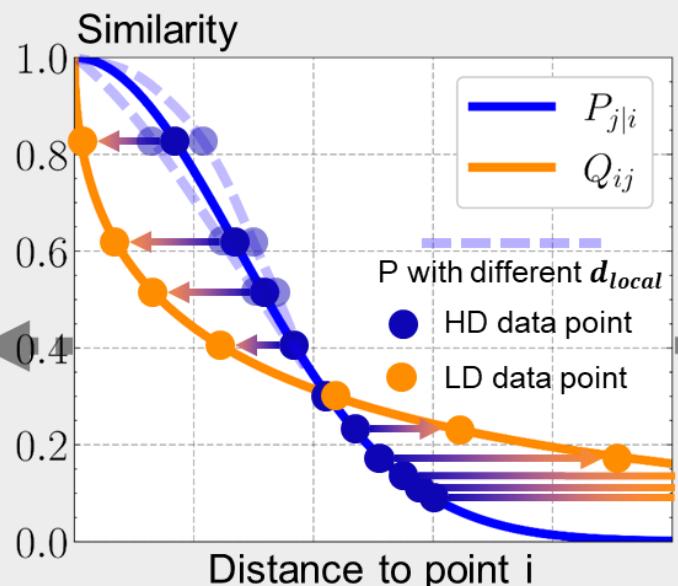
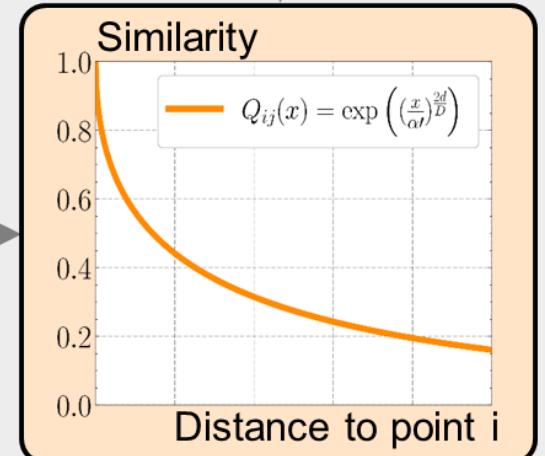
$$f(R_{ij})$$

Distort the function

$$\tilde{\mathcal{F}}_{D \rightarrow d} = f\left(\left(\|\mathbf{y}_i - \mathbf{y}_j\|/\alpha\right)^{d/D}\right)$$

Use
 d_{local} to
shape **P**

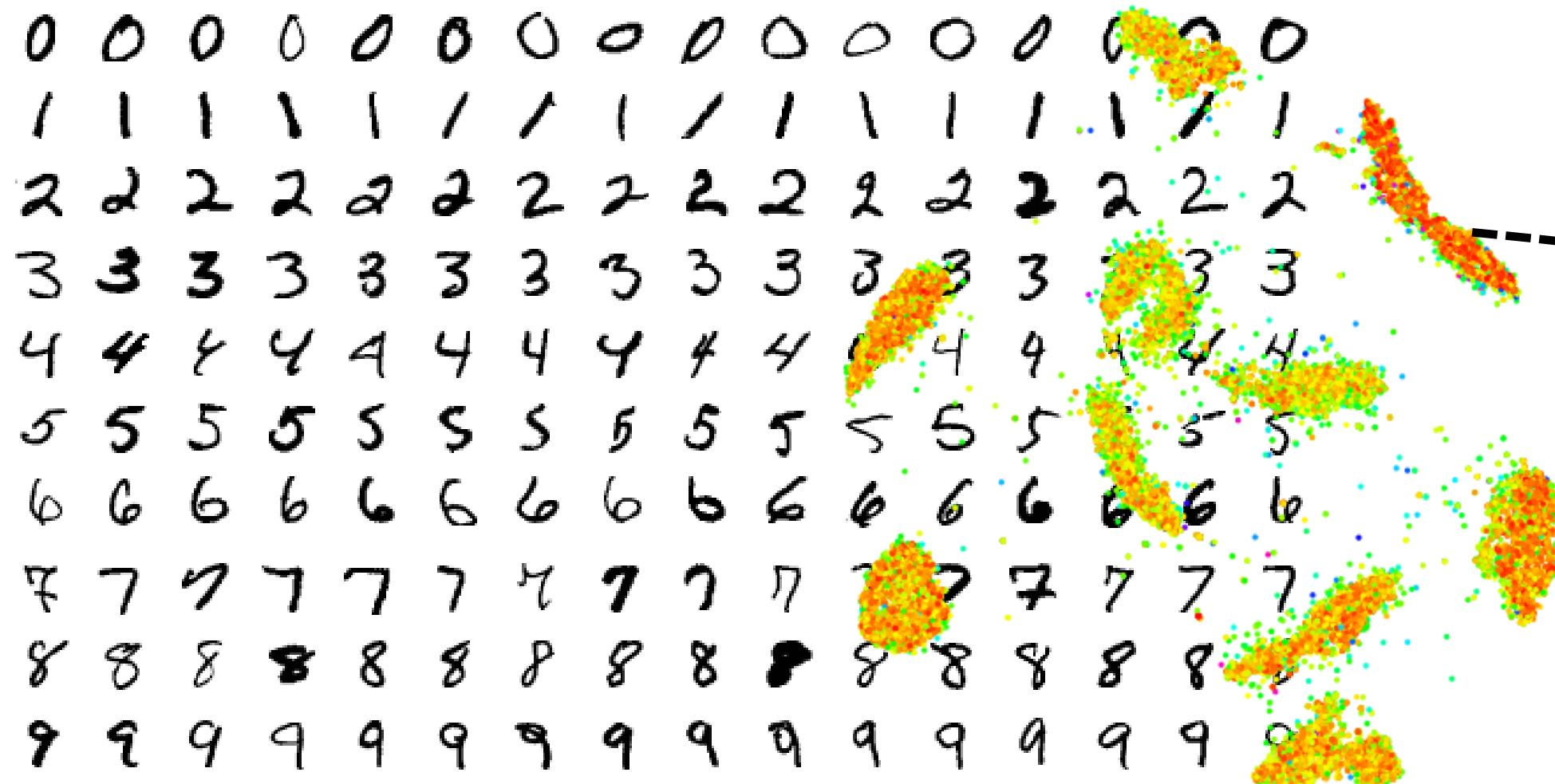
Minimize the loss: $\mathcal{L}(\mathbf{P}||\mathbf{Q})$



$$d_{global} = D$$

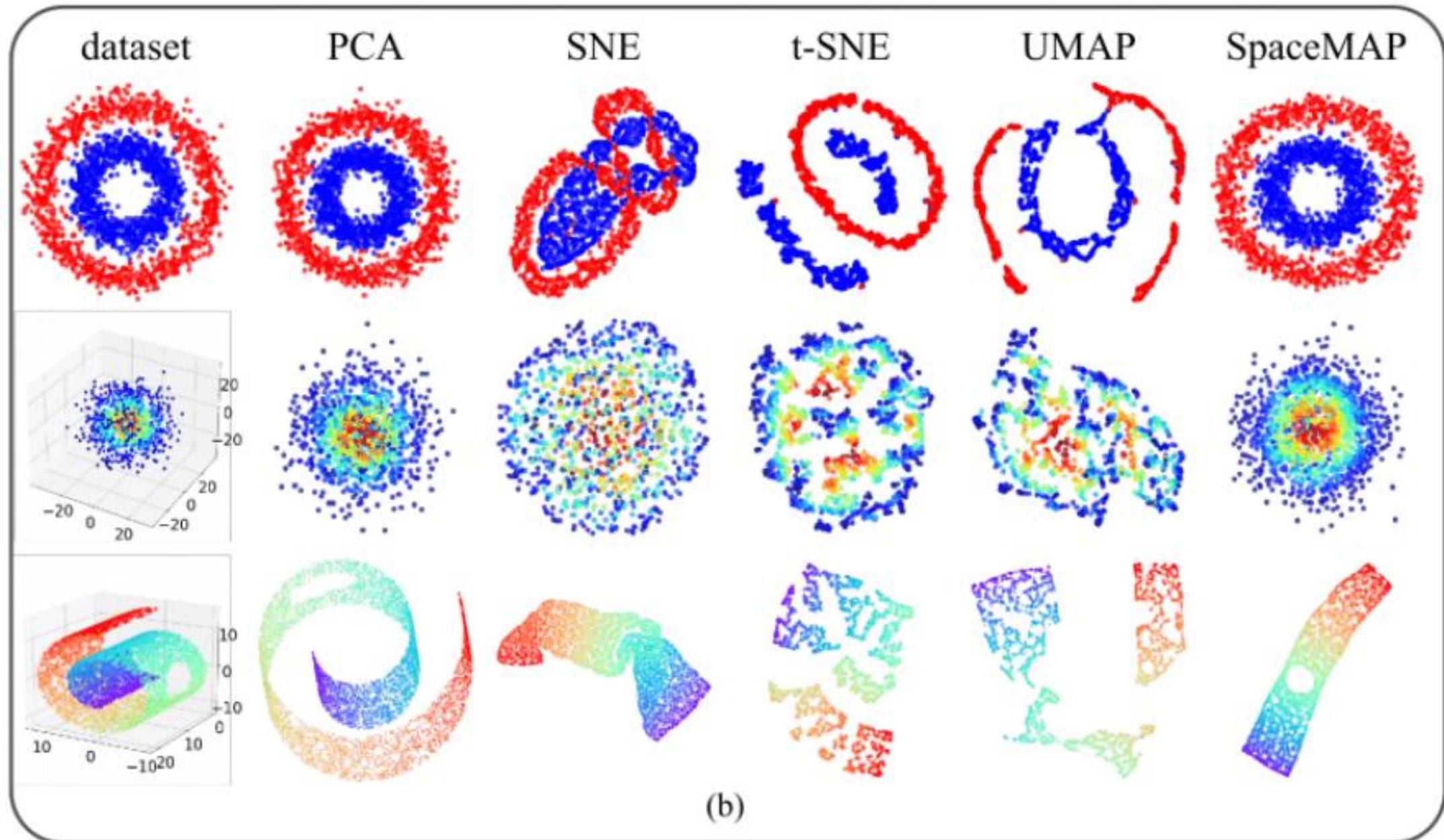
$$\mathbf{Q}$$

SpaceMAP: Illustrating Data-specific ID

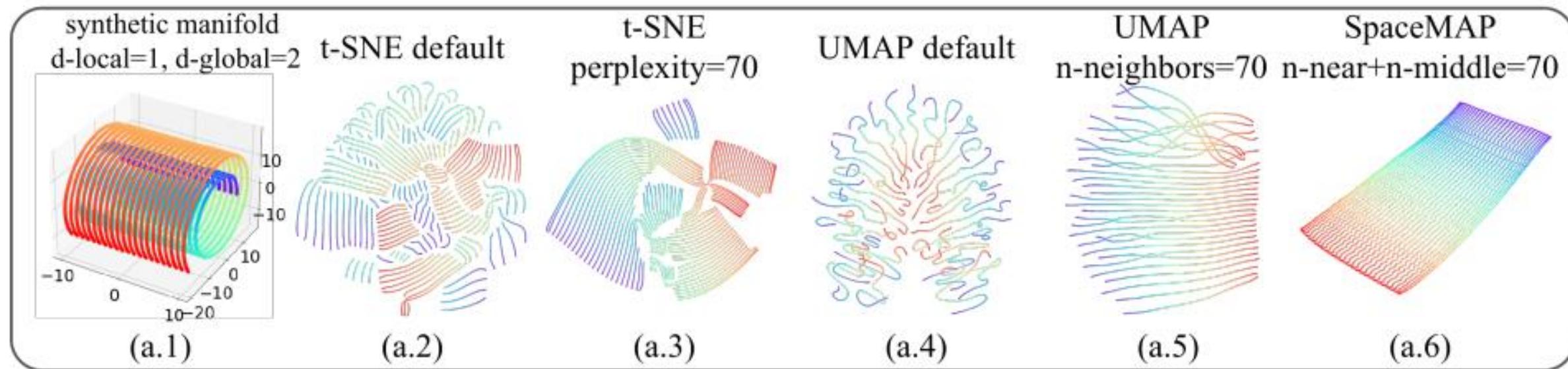
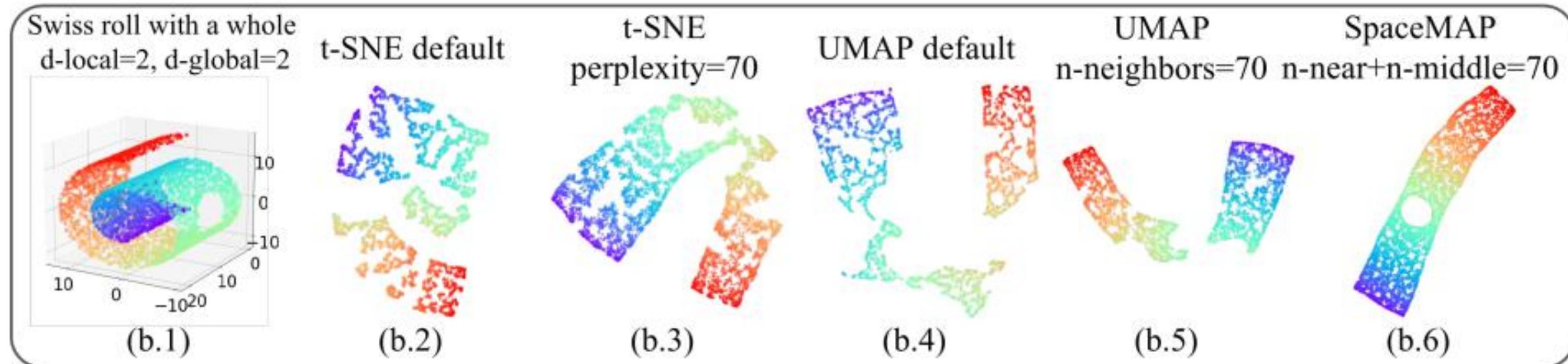


Cluster of digit 1

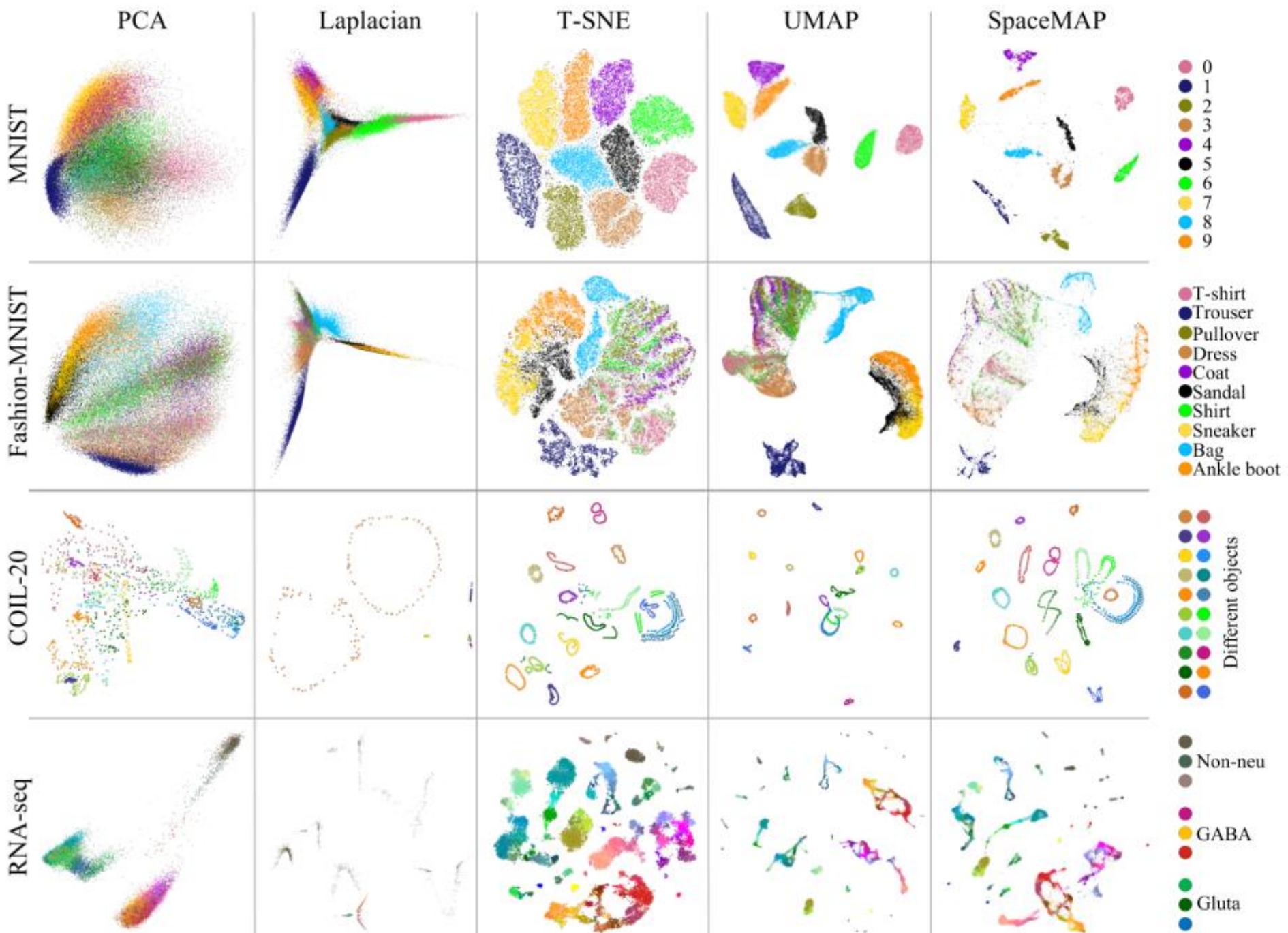
SpaceMAP Results



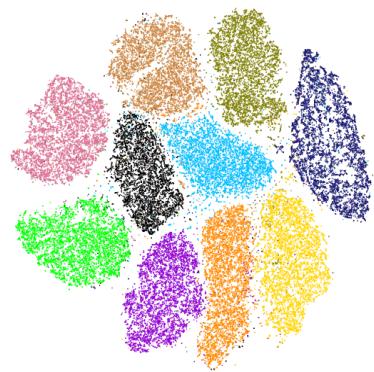
SpaceMAP Results



SpaceMAP

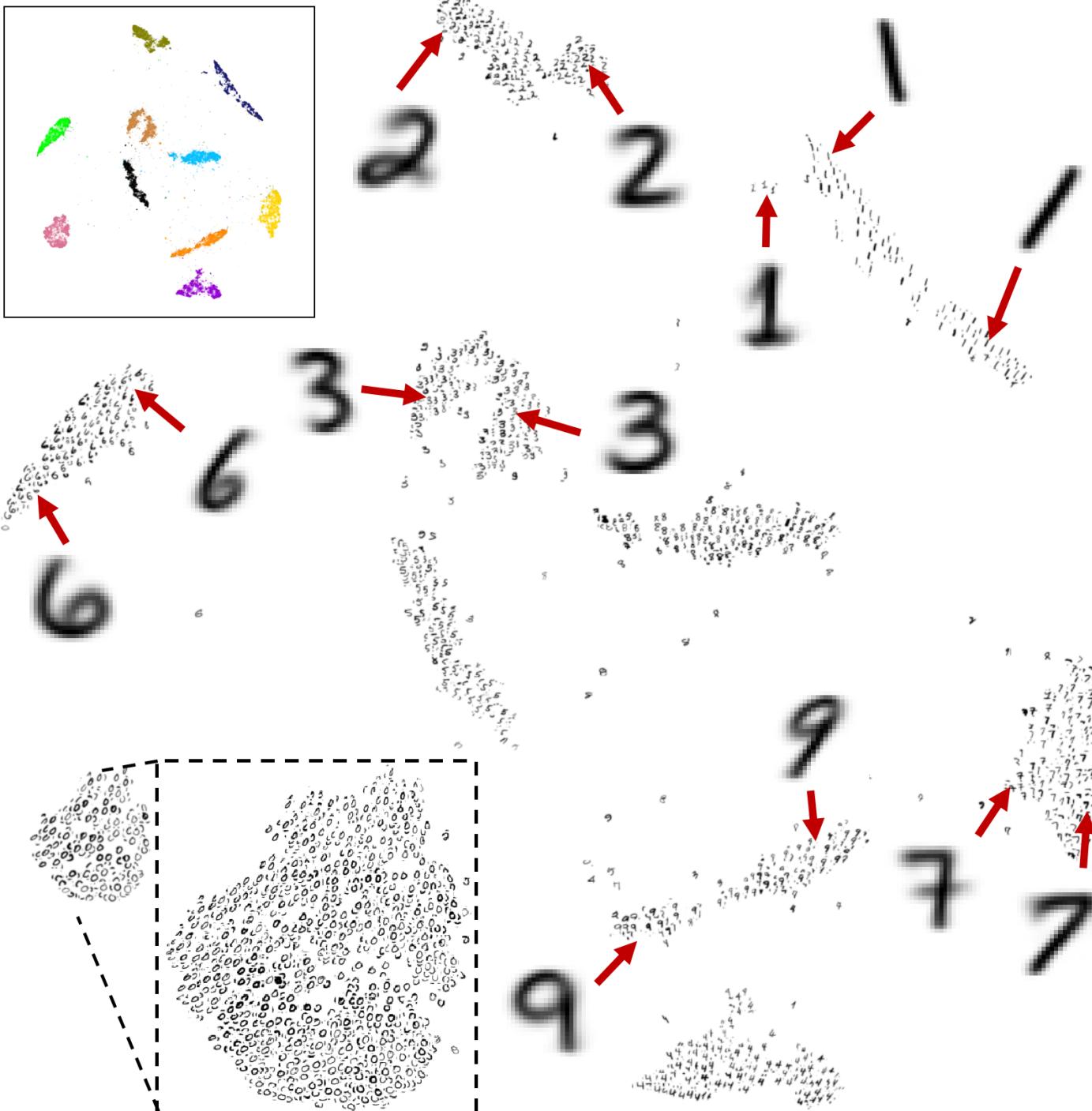


SpaceMAP Results



t-SNE result

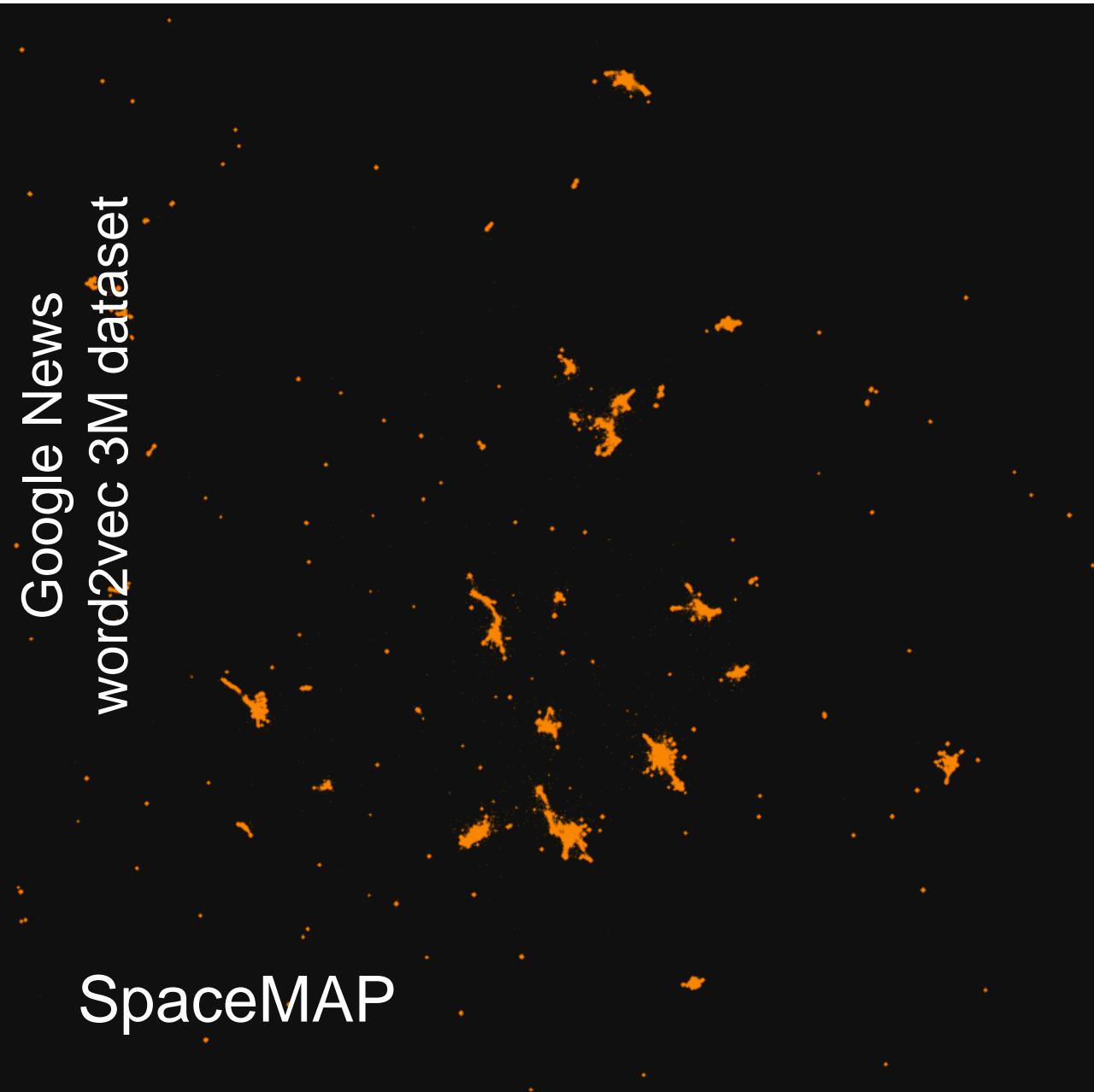
UMAP result



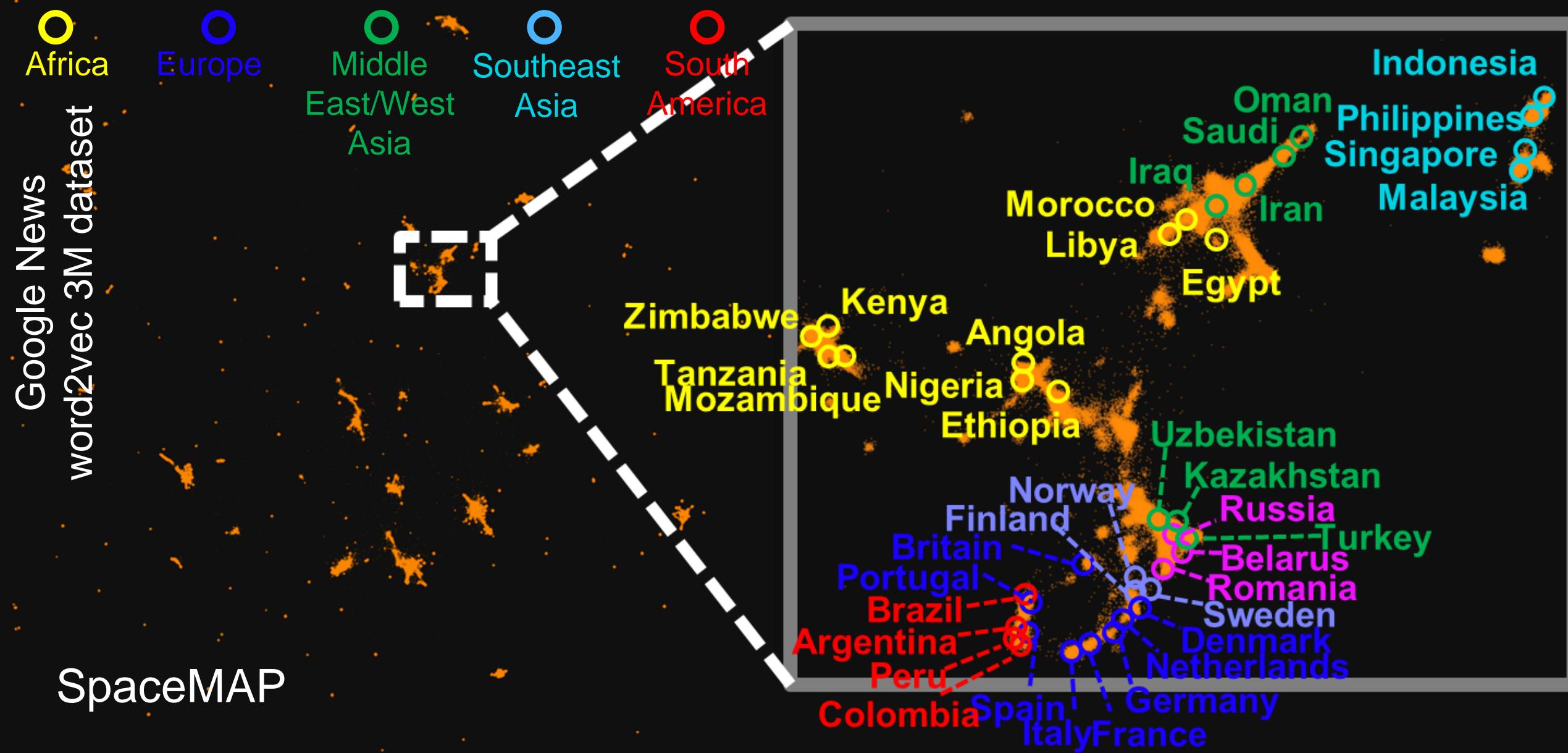
SpaceMAP Results: the Word Map

Google News
word2vec 3M dataset

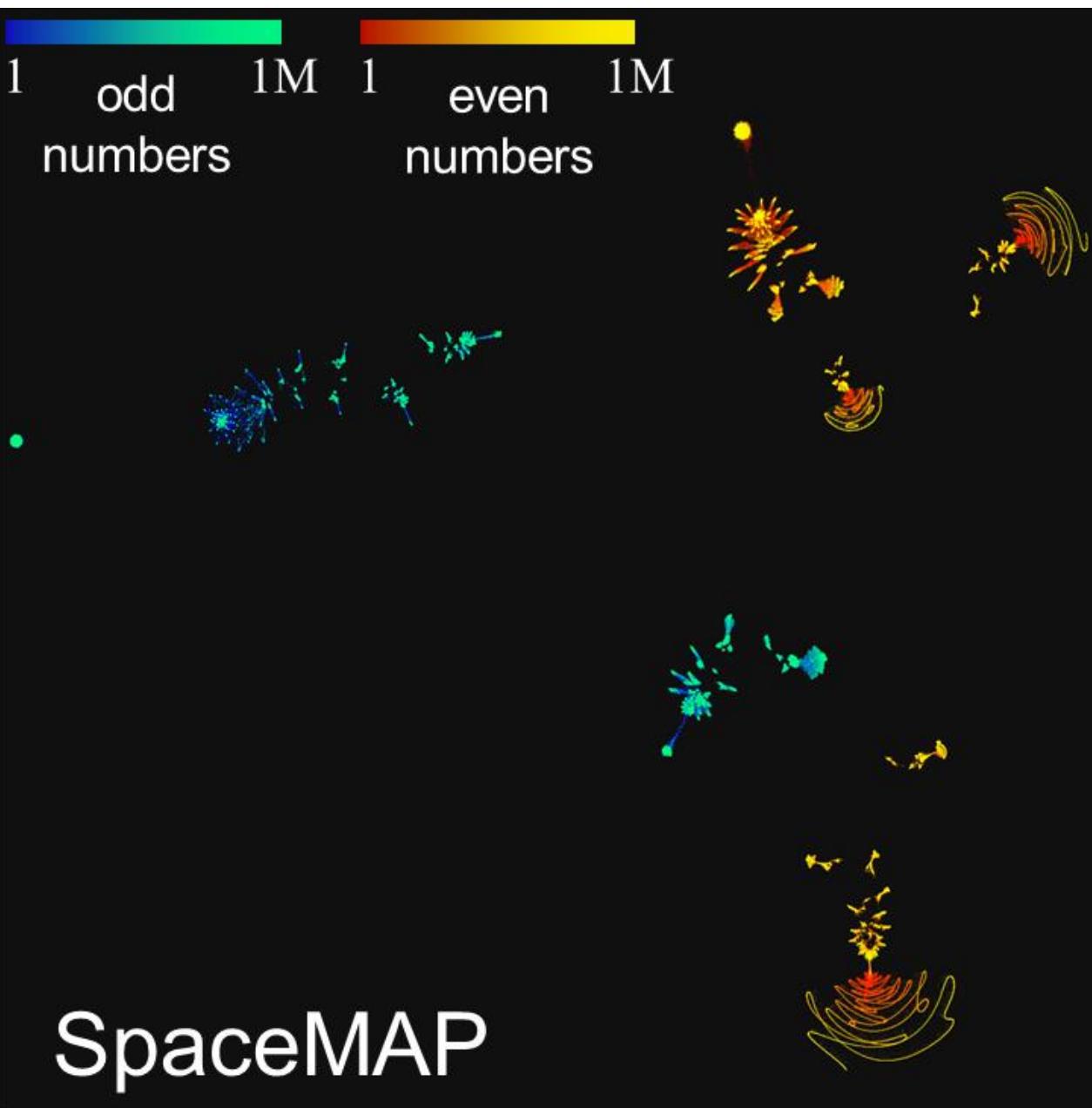
SpaceMAP



SpaceMAP Results: the Word Map – World Map



SpaceMAP Results

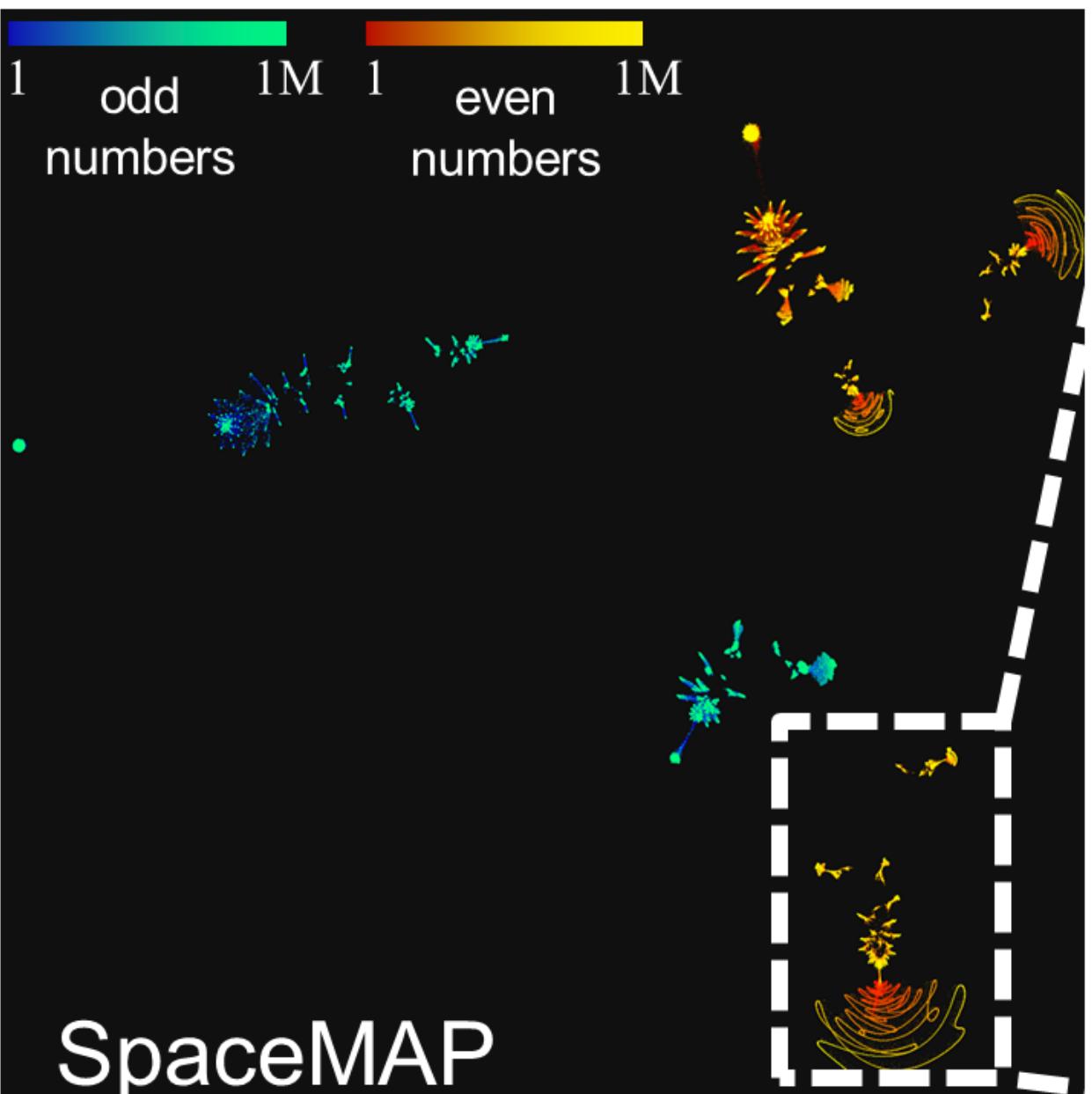
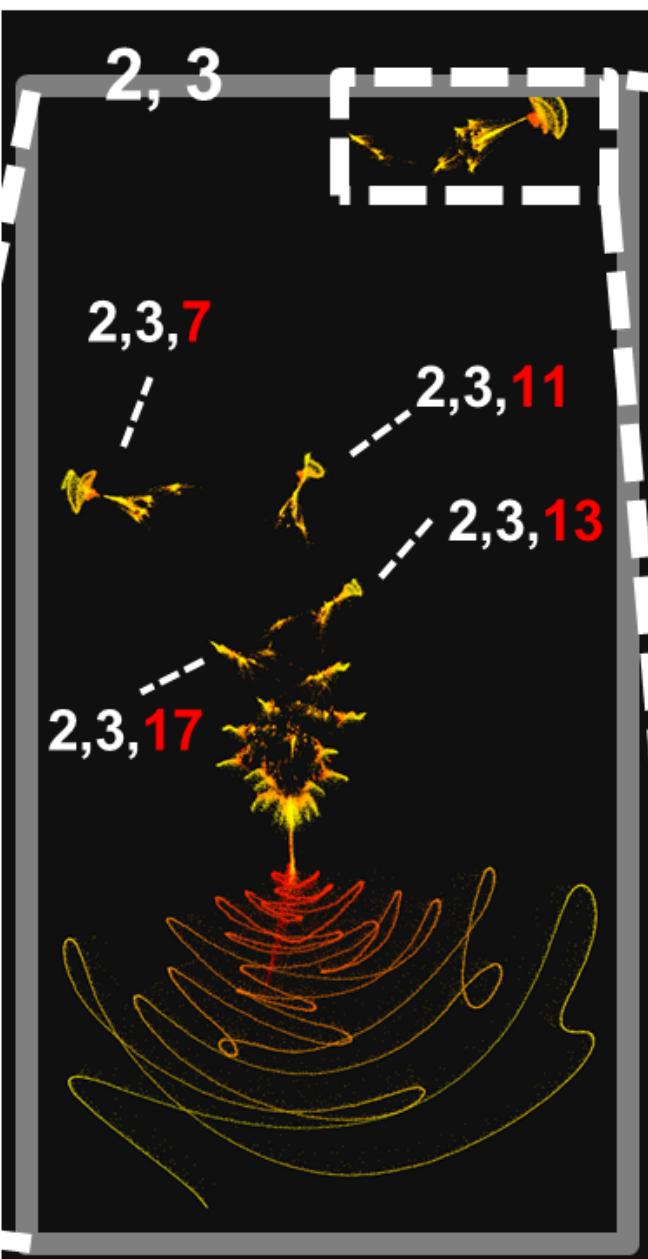


SpaceMAP

Divisibility by prime numbers:

- A binary vector showing the divisibility of positive integer from 1 to 1,000,000 by prime number 2, 3, 5,..., 999983
UMAP McInnes et al. 2018
- 78498-dimensional binary vector
- Visualized in 2D SpaceMAP

SpaceMAP Results

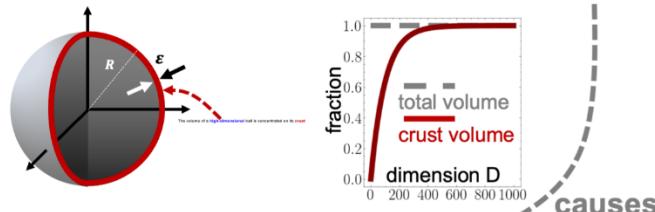


Dimensionality Reduction (DR) and Intrinsic Dimension (ID)

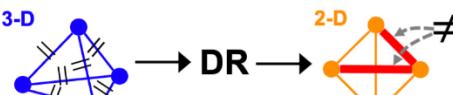
- Dimensionality Reduction (DR) translates **high-dimensional data** into **low-dimensional space** <2-D/3-D for visualization>.
- Intrinsic dimension (ID) is the internal degrees of freedom of data <usually larger than 3-D>.

'Concentration on a Crust' and the 'Crowding Problem'

- high-dimensional geometry: **'concentration on a crust'**:



- General difficulty in DR: the **'crowding problem'**:



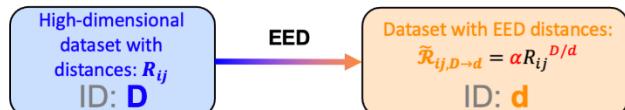
The distances between **high-dimensional data points** are **concentrated**, which are **difficult to preserve** in **low-dimensional spaces**.

Our Main Contribution

- Analytically alleviate the crowding problem in a data-specific manner.
- Hierarchical manifold approximation by estimating **local/global ID**.

Proposition (EED transforms ID provably)

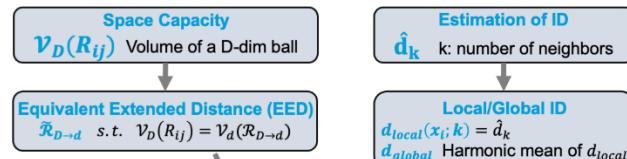
- For any dataset with **ID = D**, if we apply EED $\tilde{R}_{D \rightarrow d}$, then **ID = d**.



The extended distances are easier to embed in the d-dimensional space!

Methodology

Definitions in SpaceMAP:



Algorithm:

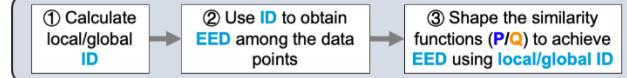
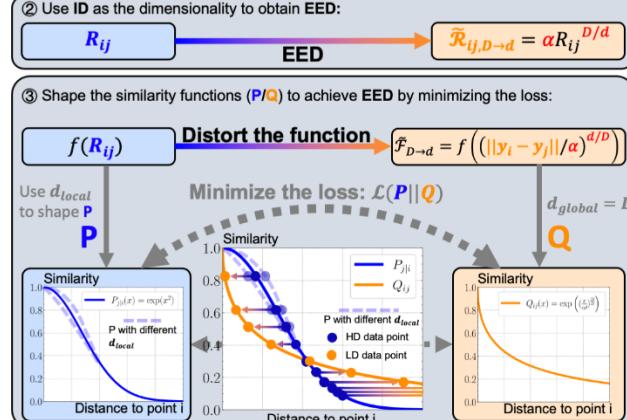
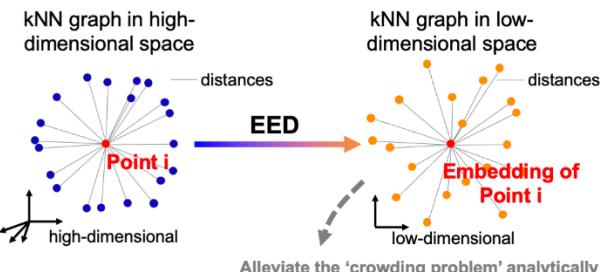


Illustration:

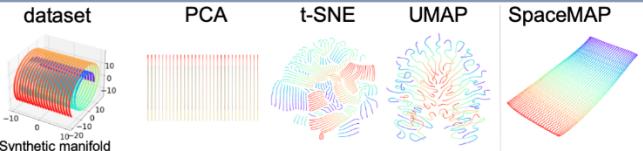


A Simple Example

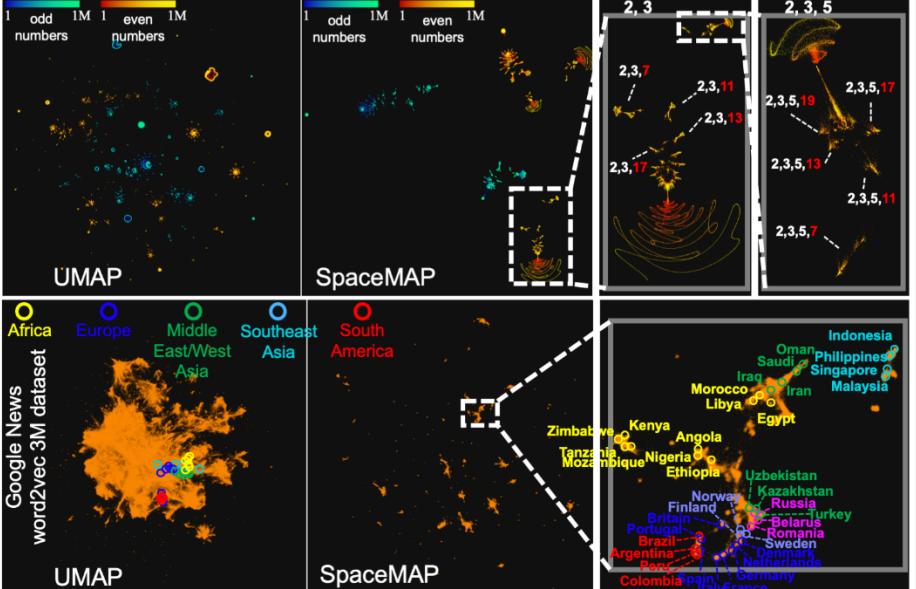


Results

Visualization dataset results:



Large dataset visualization:



Conclusion

- We introduce the definitions of **space capacity**, **intrinsic dimension (ID)** and **equivalent extended distance (EED)** and utilize them to transform distances between high- and low-dimensional spaces and alleviate the 'crowding problem' analytically.
- We model the hierarchical structure in a dataset-specific manner based on the **local and global IDs** of data.

S P A C E M A P

- Space Capacity
- Intrinsic Dimension (ID)
- Equivalent Extended Distance (EED)
- Data-specific Manifold