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What's SpaceMAP?

= SpaceMAP Is a visualization / dimensionality reduction
(DR) method that can see data of arbitrarily high
dimension on a 2D map.

= |t Is based on understanding the capacity of SPACE.

« MAP refers to "manifold approximation and projection”.
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Why is Visualization Interesting for ML?

= ML works based on the fundamental assumption that data
lies on a low-dimensional manifold — otherwise “curse of

dimensionality” holds

= Seeing Is believing — as human we only can “see” well in 2
or 3 dimension, hence data visualization Is super
interesting for ML'ers!
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What’s New in SpaceMAP?
= The discrepancy between high-D and low-D spaces is

analytically studied, leading to transformation of similarity
In a principled and explainable way.

* In contrast, previous methods such as t-SNE and UMAP
transformed similarity implicitly.
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The Essence of Dimensionality Reduction

= Matching two graphs

Data points in high-D

T
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The Essence of Dimensionality Reduction

= Matching two graphs

Data points in high-D
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The Crowding Problem of Dimensionality Reduction

® high-dimensional geometry: “concentration on a crust”
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The Crowding Problem of Dimensionality Reduction

® high-dimensional geometry: “‘concentration on a crust”

=
>

total mass

=
N

fraction

l
I
I
I
[ ] [ | l
| I
]
crust mass 'l

=
]

Distance defined the same way In two spaces lead to problems!
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SpaceMAP: the Theoretic Framework
= Space Capacity Vp(R;))

= A Hausdorff measure - volume of a D-dim ball

= Equivalent Extended Distance (EED) R;; p_.q

* Transform the distance in low-D space such that capacity
matches to low-D space: V;(R;; p-a) = Vp(R;;)
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SpaceMAP: the Theoretic Framework

= Space Capacity Vp(R;))

= A Hausdorff measure - volume of a D-dim ball

» Equivalent Extended Distance

Definition 3.1 (Space Capacity). Let R;; = l(z;,x;) € R
be the distance between data point x; and x; in the D-
dimensional space. The space capacity Vp(R;;) from point
i to point j is defined as the volume of a D-dimensional ball
with a radius of R;;.

= Transform the distance in Iow:D space such that capacity
matches to low-D space: V;(R;; p-a) = Vp(R;;)
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Definition 3.2 (Equivalent Extended Distance: EED). Let
R;; = l(z;, x;) € R be the distance between data point x;
and x ; in the D-dimensional space. The equivalent extended
distance (EED) ?N?,!- i.D—d 15 defined as the equivalent dis-
tance between x; and x; in d-dimensional space such that
the Space Capacity matches: Vd(?:?,r.-' j.p—d) = Vp(Rij)



SpaceMAP: the Theoretic Framework
» Intrinsic Dimension (ID)

= Inherent degrees of freedom of data

 EED provably transforms 1D

= By applying EED Vd(iéij,p_)d) = Vp(R;;), the ID of data Is
transformed to be visualizable with mitigated “crowding problem”
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SpaceMAP: the Theoretic Framework

 Intrinsic Dimension (ID) Estimation
= Inherent degrees of freedom of data

d.l.(le = ( __IZ]UE “L)

Levina & Bickel 2004

 EED provably transforms 1D

= By applying EED Vd(ﬁij,pﬁd) = Vp(R;;), the ID of data Is
transformed to be visualizable with mitigated “crowding problem”

Pro forepl gmer anhh EED-t trmed

Proposition 3.1 (EED transforms ID provably). For any ™o Gautiond)inEqution s, e
neighborhood size k, if the MLE of the intrinsic dimension

around point x; under the distance metric R is (fk.(:l:;;; R) = (25 Roa) (;b — Z' og ; ; )
(; D, the MLE of the intrinsic dimension after applying EED 1 Z
to the distance metric is d: nfk( i Rp d) = d. (* 12 1R, )
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SpaceMAP: the Method
B Definitions in SpaceMAP:

Space Capacity Estimation of ID
Vp (Rij) Volume of a D-dim ball dy  k: number of neighbors

¥ ¥

4 A
Equivalent Extended Distance (EED) Local/Global ID
Rp-a s-t. Vp(Rij) =Vi(Rpoa) diocai(Xi; k) = dy,
Y kdglobal Harmonic mean of dlocal)
\\ ,I
B Algorithm: R o
4 )
(D Calculate (2) Use ID to obtain (3) Shape the similarity
local/global =P EED among the data [==P>| functions (P/Q) to achieve
ID points EED using local/global ID
- J
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SpaceMAP: the Method
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SpaceMAP: Illustrating Data-specific ID

Cluster of digit 1
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SpaceMAP Results

[ dataset
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SpaceMAP Results

/" synthetic manifold t-SNE UMAP SpaceMAP
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S P | PCA Laplacian SpaceMAP
paCQIVIA . k< o ®0
- (R
_ o P e2
5 \ oi
= ki
< v ¢ 33
Y e
~ ®9
. .
R * o o ®T-shirt
b .k‘\\{ [ »  eTrouser
2 Pl ! “ % ePrullover
2 /‘\—_ ‘:; \t S i*  ®Dress
- s sy QCot
. E:
g | s P ®Sandal
e N 4% @Shirt
Z iR \ '.Sneaker
b a2 Ba
::‘ ®Ankle boot
i @ B )
| 0 e .
o | - e 3
& ’ ? g (9 c"’) o0
i i O 7 kO oo °
= e J e® 5
S .. ¢ 07N esg
& o0 °
\¥ L L
7 ' \ ' :N
3 ~, = on-neu
o ¥ + Z ) B e
8 -’J’ .. o .
'
(; <zt | o o~ o' ' : GABA
” A ' o
TUDelft © % - & s
elrt 7 , & o
-{ —— s



I A
= T~
~ -
~
o
o
o
e P L g
=3
L
-
i
w
" o b
e
L ovae 0 Ve
iy W
e
0

t-SNE result

v
i
Lo inn

FRLTAR
o,k
agh?
L Ly

W Y
0 v o
wite <

£ 0 A
2 o
Gy

UMAP result

TUDelft

(]

Ve
e

I

23
°8%a Y
Q Q..
Qe
S9!
-9
Soc0:
RO
oG 2




SpaceMAP Results: the Word Map
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Google News
word2vec 3M dataset
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SpaceMAP Results

l odd M 1 even
numbers numbers

Divisibility by prime numbers:

* A binary vector showing the
divisibility of positive integer
from 1 to 1,000,000 by prime
number 2, 3, 5,..., 999983

UMAP Mclnnes et al. 2018

« 78498-dimensional binary

vector

* Visualized in 2D SpaceMAP

SpaceMAP



SpaceMAP Results
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Dimensionality Reduction (DR) and Intrinsic Dimension (ID)

B Dimensionality Reduction (DR) translates high-dimensional data
into low-dimensional space <2-D/3-D for visualization>.

W |ntrinsic dimension (ID) is the internal degrees of freedom of data
<usually larger than 3-D>.

‘Concentration on a Crust’ and the ‘Crowding Problem’

® high-dimensional geometry: ‘concentration on a crust’:
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The distances between high-dimensional data points are concentrated,
which are difficult to preserve in low-dimensional spaces.

Our Main Contribution

B Analytically alleviate the crowding problem in a data-specific manner.

W Hierarchical manifold approximation by estimating local/global ID.

Proposition (EED transforms ID provably)

W For any dataset with ID = D, if we apply EED R_4, then ID = 4.

High-dimensional Dataset with EED distances:

dataset with EED Py — op D
distances: Ri,- ij,D~d ij
ID:D ID: d

v The extended distances are easier to embed in the d-dimensional space!

M Definations in SpaceMAP:

Space Capacity
Vp(R;;) Volume of a D-dim ball

Estimation of ID )
dj. ki number of neighbors |

Local/Global ID

Equivalent Extended Distance (EED)
dygeqi(xi; k) = ‘ik

Rp.q st VD(REJ-)=V¢(5E—D—:¢)

Y dg1obar Harmonic mean of dica
\\ ’I
H Algorithm: Y »
~,
@ Calculate @ Use ID to obtain @ Shape the similarity
local/global = EED among the data = functions (P/Q) to achieve
ID points EED using local/global ID
. J
M |llustration:
(@ Use ID as the dimensionality to obtain EED:
] ij,D—d ij
& EED J
~

((3 Shape the similarity functions (P/.) to achieve EED by minimizing the loss:
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Alleviate the ‘crowding problem’ analytically

Methodology Results

dataset t-SNE SpaceMAP
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B Visualization
results:

UMAP

Synthetlc manllold

0

0 1 ‘ iy i
_1020 wF %’
Swiss roll with a whole

e o

.0

g &. ¥ ~ 9l

F . 3

L B o 43 j o, A ]

o 51 . “ Gy & b

e \ &~ A '

o o 9

M 1 odd M 1

numbers

- —
even M
numbers

1 odd
numbers

even
numbers

SpaceMAP

>
=
o
o

Morocco
Libya d’o
Egypt
Kenya
Ve b Angola

nzhi
Fhiaueiogia’

Google News
word2vec 3M dataset

SpaceMAP

Conclusion

B We introduce the definitions of space ity, intrinsic di (ID) and equivelant extended distance (EED)
and utilize them to transform distances between high- and low-dimensional spaces and alleviate the ‘crowding
problem’ analytically.

® We model the hierarchical structure in a dataset-specific manner based on the lecal and global IDs of data.
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