Neural Implicit Dictionary Learning via Mixture-of-Expert Training

Peihao Wang, Zhiwen Fan, Tianlong Chen, Zhangyang Wang University of Texas at Austin

Implicit Neural Representations

- 1. Implicit Neural Representation (INR) is served as a powerful tool to solve inverse problems in computational photography.
 - a. Parameterize signals using fully connected layers with sinusoidal activations.
 - b. Construct differentiable forward function to simulate rendering/imaging process.
 - c. Minimize the difference between simulated results and captured measurements via gradient descent on the network parameters.

[Tancik et al., 2021]

Opportunities and Challenges

1. **Pros**:

- a. Continuous modeling of real-world signals
- b. More compactness and unlimited resolution
- c. Closed-form computation of derivatives

2. Cons:

- a. Fitting INR requires tedious per-scene training
- b. Solving inverse problems with INR relies on densely captured measurements
- c. INR representation is vulnerable to noisy inputs.

Classic Solution: Dictionary Learning

- 1. Dictionary learning learns an over-complete basis from data and represent each sample as a sparse combination of the basis.
- 2. Pros:
 - a. Efficient recovery of signals
 - b. Robust to sparse and noisy measurements
- 3. Problem: Previous dictionaries are only designed in the regime of discrete signals.

Best of two worlds: Neural Implicit Dictionary (NID)

- We represent an INR as a sparse combination of a function dictionary
- 2. Each basis function is parameterized by a small coordinate-based network.
- 3. During training, we inverse problem *R* by jointly optimizing the basis functions and sparse coefficients.
- 4. When transferring to new data, we re-use the learned dictionary and only fit the coefficients.

$$f(\boldsymbol{x}) = \alpha_1 b_1(\boldsymbol{x}) + \dots + \alpha_n b_n(\boldsymbol{x}) \quad \forall \boldsymbol{x} \in \mathbb{R}^m$$

$$\begin{split} \operatorname*{arg\,min}_{\boldsymbol{\alpha}^{(1)},\cdots,\boldsymbol{\alpha}^{(T)}} \sum_{i=1}^{T} \sum_{j=1}^{t_i} \mathcal{L}\left(\mathcal{R}(f^{(i)}|\boldsymbol{\Omega}_j^{(i)}),\boldsymbol{Y}_j^{(i)}\right) \\ + \lambda \mathcal{P}\left(\boldsymbol{\alpha}^{(i)},\cdots,\boldsymbol{\alpha}^{(T)}\right), \end{split}$$
subject to $f^{(i)}(\boldsymbol{x}) = \sum_{j=1}^{n} \alpha_j^{(i)} b_{\theta_j}(\boldsymbol{x}) \quad \forall \boldsymbol{x} \in \mathbb{R}^m$

Implementation: Mixture-of-Expert

- To implement sparse training of NID, we borrow the computational paradigm from mixture-of-expert layers.
- 2. Each expert corresponds to a function basis in the NID.
- 3. The gating network outputs the sparse coefficients for input sample.
- 4. We balance the load of experts via:

$$\mathcal{P}_{CV}\left(oldsymbol{lpha}^{(i)},\cdots,oldsymbol{lpha}^{(T)}
ight) = rac{ ext{Var}(ar{oldsymbol{lpha}})}{\left(\sum_{i=1}^n ar{oldsymbol{lpha}}_i/n
ight)^2},$$
 where $ar{oldsymbol{lpha}} = \sum_{i=1}^T oldsymbol{lpha}^{(i)}.$

Application: Instant Image Regression

- We fit an NID on the CelebA dataset.
- We choose a 4-layer ResNet as the gating network.
- 3. When fitting a new image, we first let gating network output the coefficients, and fine-tune them for three steps.

Methods	PSNR (†)	SSIM (†)	LPIPS (\downarrow)	# Params	FLOPs	Throughput
FFM (Tancik et al., 2020)	22.60	0.636	0.244	147.8	20.87	0.479
SIREN (Sitzmann et al., 2020b)	26.11	0.758	0.379	66.56	4.217	0.540
Meta + 5 steps (Tancik et al., 2021)	23.92	0.583	0.322	66.69	4.217	0.536
Meta + 10 steps (Tancik et al., 2021)	29.64	0.651	0.182	66.69	4.217	0.536
NID + init. $(k = 128)$	28.75	0.892 0.941	0.061	8.972 8.972	23.30 23.30	30.37 30.37
NID + 5 steps ($k = 128$) NID + 10 steps ($k = 128$)	33.57 35.10	0.941	0.027 0.021	8.972 8.972	23.30	30.37
NID + init. $(k = 256)$	30.26	0.919	0.045	8.972	29.55	21.23
NID + 5 steps ($k = 256$)	35.09	0.960	0.019	8.972	29.55	21.23
NID + 10 steps ($k = 256$)	37.75	0.971	0.012	8.972	29.55	21.23

Application: Facial Image Inpainting

- With the NID pre-trained on CelebA, we re-fit a group of coefficients on the NID for an image corrupted by a patch.
- 2. We adopt L1 error as the loss function where we assume noises are sparsely distributed.

Clean

Corrupted

SIREN

Meta

NID

Application: Robust PCA on Surveillance Video

- We train an NID on a clip of surveillance video by imposing a structured sparsity on the coefficients.
- 2. Then we visualize the principal components to decompose the background from the the video.

$$\arg \min_{\theta_1, \dots, \theta_n, \atop \alpha(t)} \sum_{t=1}^T \sum_{(x,y)} \left\| \sum_{i=1}^n \alpha_i(t) b_{\theta_i}(x,y) - \boldsymbol{Y}_{xy}^{(t)} \right\|_1 + \lambda \sum_{t=1}^T \sum_{i=1}^n \frac{|\alpha_i(t)|}{\exp(-\beta i)},$$

Reference Frame

Annotated Transient Noises

Decomposed Background

Decomposed Transient Noise

Application: Computed Tomography (CT) Reconstruction from Sparse Views

- 1. We fit an NID on the synthetic Shepp-Logan phantoms dataset.
- 2. Then given a sparse set of CT measurements, we fit sparse coefficients to inverse the imaging problem below:

$$Y(r,\phi) = \int_{\mathbb{D}^2} f(x,y) \delta(r - x \cos \phi - y \sin \phi) \mathrm{d}x \mathrm{d}y$$

Application: Signed Distance Function (SDF) Reconstruction from Sparse Point Clouds

- We fit an NID on the SDFs from a category of objects in the ShapeNet.
- 2. Then given a sparse point cloud, we fit sparse coefficients to minimize the following objective to reconstruct SDF:

$$rg \min_{f} \int_{m{x} \in \Omega} |f(m{x})| \mathrm{d}m{x} + \int_{m{x} \in \mathbb{R}^3 \setminus \Omega} |f(m{x}) - d(m{x}, \Omega)| \mathrm{d}m{x}$$

Thanks for Listening