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Implicit Neural Representations

1. Implicit Neural Representation (INR) is served as a powerful tool to solve inverse
problems in computational photography.
a.  Parameterize signals using fully connected layers with sinusoidal activations.
b.  Construct differentiable forward function to simulate rendering/imaging process.

c.  Minimize the difference between simulated results and captured measurements via gradient
descent on the network parameters.
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Opportunities and Challenges

1. Pros:
a. Continuous modeling of real-world signals
b. More compactness and unlimited resolution
c. Closed-form computation of derivatives

2. Cons:
a. Fitting INR requires tedious per-scene training
b. Solving inverse problems with INR relies on densely captured measurements
c. INR representation is vulnerable to noisy inputs.



Classic Solution: Dictionary Learning

1. Dictionary learning learns an over-complete basis from data and represent each
sample as a sparse combination of the basis.
2. Pros:

a. Efficient recovery of signals
b. Robust to sparse and noisy measurements

3. Problem: Previous dictionaries are only designed in the regime of discrete signals.
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Best of two worlds: Neural Implicit
Dictionary (NID)

1.

We represent an INR as a sparse
combination of a function dictionary
Each basis function is parameterized
by a small coordinate-based network.
During training, we inverse problem R
by jointly optimizing the basis
functions and sparse coefficients.
When transferring to new data, we
re-use the learned dictionary and only
fit the coefficients.
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Implementation: Mixture-of-Expert

1. Toimplement sparse training of NID,
we borrow the computational
paradigm from mixture-of-expert
layers.

2. Each expert corresponds to a function
basis in the NID.

3. The gating network outputs the
sparse coefficients for input sample.

4. We balance the load of experts via:
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Application: Instant Image Regression

: B
1. Wefitan NID on the CelebA dataset. &
. =
2.  We choose a 4-layer ResNet as the gating
network. S
3.  When fitting a new image, we first let gating =
network output the coefficients, and
fine-tune them for three steps. é
Methods \ PSNR (1) SSIM (1) LPIPS (}) | #Params FLOPs Throughput a
FFM (Tancik et al., 2020) 22.60 0.636 0.244 ‘ 147.8 20.87 0.479 5
SIREN (Sitzmann et al., 2020b) 26.11 0.758 0.379 66.56 4217 0.540 .
Meta + 5 steps (Tancik et al., 2021) 23.92 0.583 0.322 66.69 4217 0.536 D
Meta + 10 steps (Tancik et al., 2021) 29.64 0.651 0.182 ‘ 66.69 4217 0.536 2
NID + init. (k = 128) 28.75 0.892 0.061 8.972 23.30 30.37
NID + 5 steps (k = 128) 33.57 0.941 0.027 8.972 23.30 30.37
NID + 10 steps (k = 128) 35.10 0.954 0.021 8.972 23.30 30.37 A
NID + init. (k = 256) 30.26 0.919 0.045 8.972 29.55 21.23 E
NID + 5 steps (k = 256) 35.09 0.960 0.019 8.972 29.55 21.23
NID + 10 steps (k = 256) 37.75 0.971 0.012 8.972 29.55 21.23
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Application: Facial Image Inpainting

1. With the NID pre-trained on CelebA, we re-fit a .

o ) arg min Z
group of coefficients on the NID for an image a€R™ ( Ve[0,D)?
corrupted by a patch.

2.  We adopt L1 error as the loss function where we
assume noises are sparsely distributed.
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Application: Robust PCA on Surveillance
Video

1. Wetrain an NID on a clip of surveillance

video by imposing a structured sparsity on argmmz Z Zaz(t Yoo, (2, y) ch?

the coefficients. s 51, Vgl i
2. Then we visualize the principal components

to decompose the background from the the + A\ Z Z |a, t)l

video. t=1 i=1 exp(—
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Application: Computed Tomography (CT)
Reconstruction from Sparse Views

1. Wefit an NID on the synthetic Shepp-Logan
phantoms dataset.

2. Then given a sparse set of CT measurements,
we fit sparse coefficients to inverse the
imaging problem below:

Yirg) = A f(x,y)d(r — x cos ¢ — ysin ¢)dzdy




Application: Signed Distance Function (SDF)
Reconstruction from Sparse Point Clouds

Input SIREN NID

1. Wefit an NID on the SDFs from a category of
objects in the ShapeNet.

2. Then given a sparse point cloud, we fit sparse
coefficients to minimize the following objective
to reconstruct SDF:
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