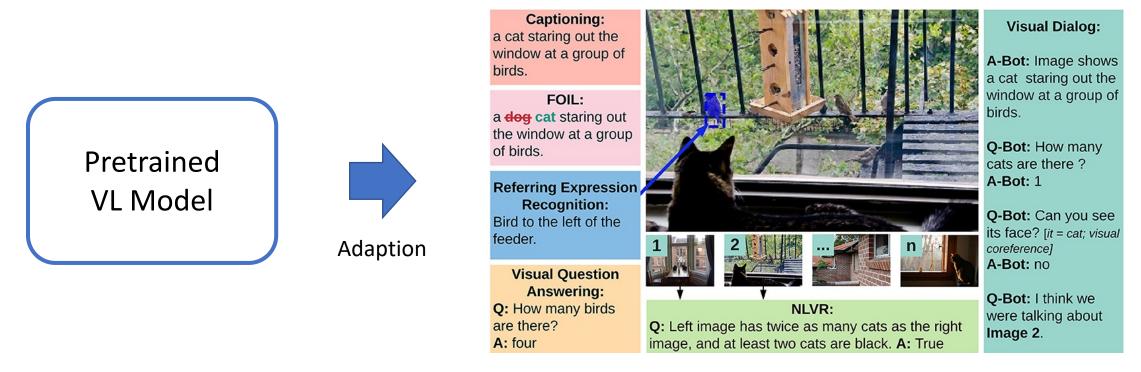


VLMixer: Unpaired Vision-Language Pre-training via Cross-Modal CutMix

Teng Wang¹², Wenhao Jiang³, Zhichao Lu¹, Feng Zheng¹, Ran Cheng¹, Chengguo Yin³, Ping Luo²

¹ Southern University of Science and Technology ² The University of Hong Kong


³ Data Platform, Tencent

Vision-Language Pre-training (VLP)

Diverse Vision-Language Tasks [Kushal et al.]

[1] Kafle, Kushal, et al. "Challenges and prospects in vision and language research." Frontiers in Artificial Intelligence 2 (2019): 28.

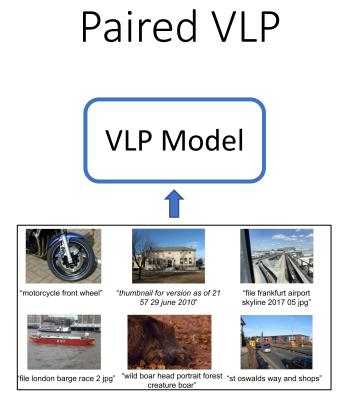
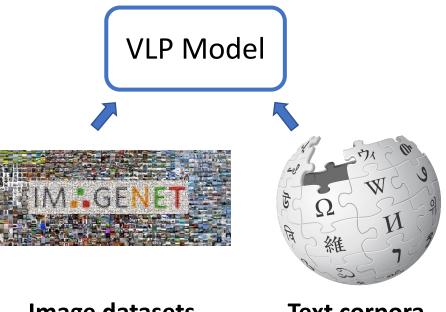



Image-text pairs (eg., COCO, CC3M)

- Human-annotated (COCO, Visual Genome)
 - Hard to scale-up
 - Language bias

- Auto-crawled from Internet (Conceptual Captions)
 - Complicated data cleaning
 - Weak Alignment
 - Unfriendly to minority language

Unpaired VLP

Image datasets (eg., ImageNet)

Text corpora (eg. Wikipedia)

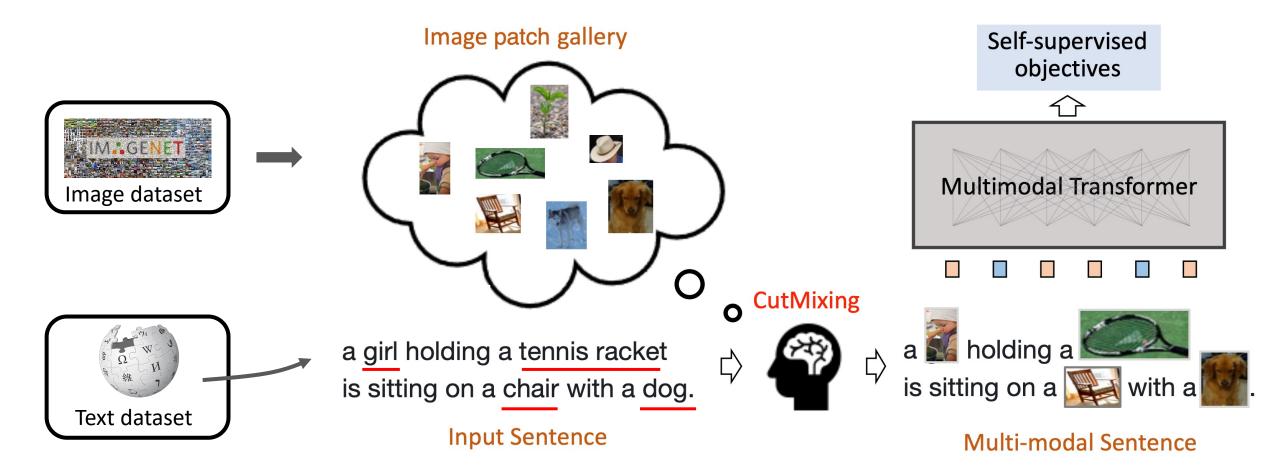
Stand-alone images and texts

- Easy to scaling-up
- Diverse visual/language patterns
- Less bias

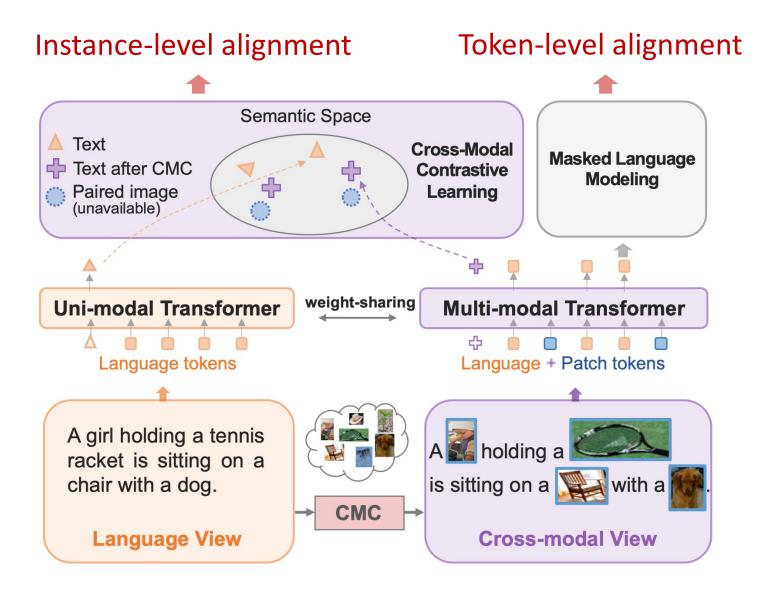
Alignment Matters!

Paired VLP

• Instance-level alignment

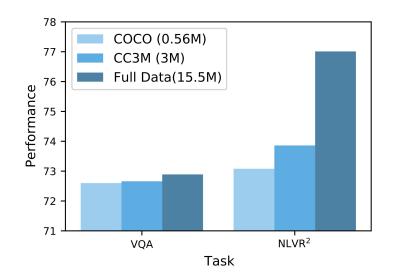

- Text-Image contrastive learning
- Text-Image matching

Unpaired VLP


- Instance-level alignment
 - Contrast between a sentence and its <u>multimodal view</u>

- Token-level alignment
 - Masked language/image modeling (MLM/MIM)
- Token-level alignment
 - MLM on the multimodal sentence

Cross-modal CutMix

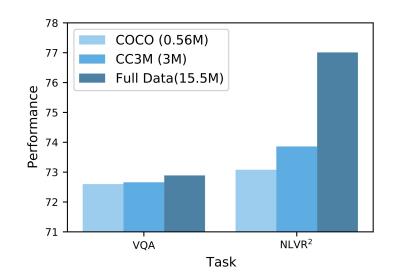

Self-supervised Pretraining Objectives

Experiments

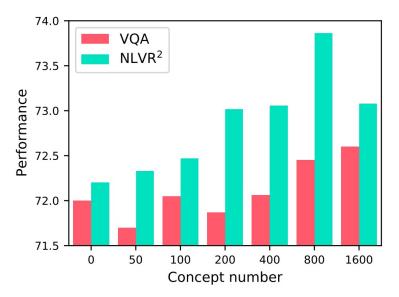
Method	Pre-training Data		VQA	VQA NLVR ²		Text Retrieval			Image Retrieval			GQA
Method	Image	Text	Test-Dev	Dev	Test	R@1	R@5	R@10	R@1	R@5	R@10	Test-Dev
Unpaired VLP												
BERT _{base} (Devlin et al., 2019)	None	None	64.85	51.30	51.34	57.44	84.00	91.58	44.03	74.12	84.06	50.20
VinVL _{unpaired} (Zhang et al., 2021)	COCO	COCO	71.78	71.14	72.01	61.92	86.90	93.08	46.90	76.18	85.53	62.24
U-VisualBERT (Li et al., 2021b)*	COCO	COCO	72.41	-	-	-	-	-	-	-	-	-
VLMixer	COCO	COCO	72.60	72.71	73.08	62.69	87.35	93.64	47.95	77.06	86.22	63.13
U-VisualBERT (Li et al., 2021b)	CC3M	CC3M+BC	70.74	71.74	71.02	-	-	-	-	-	-	-
VinVL _{unpaired} (Zhang et al., 2021)	CC3M	CC3M	72.20	68.96	68.94	62.08	86.04	93.00	47.29	76.15	85.53	63.12
VLMixer	CC3M	CC3M	72.66	74.31	73.86	62.20	86.32	92.80	47.44	76.22	85.41	62.65
VLMixer	Full	Full	72.89	76.61	77.01	64.76	88.56	94.22	50.06	78.36	86.91	63.25

Superior performance on five downstream tasks.

VLMixer benefits from the data scale.


Experiments

Method	Pre-training Data		VQA	$NLVR^2$		Text Retrieval			Image Retrieval			GQA
Method	Image	Text	Test-Dev	Dev	Test	R@1	R@5	R@10	R@1	R@5	R@10	Test-Dev
Unpaired VLP												
BERT _{base} (Devlin et al., 2019)	None	None	64.85	51.30	51.34	57.44	84.00	91.58	44.03	74.12	84.06	50.20
VinVL _{unpaired} (Zhang et al., 2021)	COCO	COCO	71.78	71.14	72.01	61.92	86.90	93.08	46.90	76.18	85.53	62.24
U-VisualBERT (Li et al., 2021b)*	COCO	COCO	72.41	-	-	-	-	-	-	-	-	-
VLMixer	COCO	COCO	72.60	72.71	73.08	62.69	87.35	93.64	47.95	77.06	86.22	63.13
U-VisualBERT (Li et al., 2021b)	CC3M	CC3M+BC	70.74	71.74	71.02	-	-	-	-	-	-	-
VinVL _{unpaired} (Zhang et al., 2021)	CC3M	CC3M	72.20	68.96	68.94	62.08	86.04	93.00	47.29	76.15	85.53	63.12
VLMixer	CC3M	CC3M	72.66	74.31	73.86	62.20	86.32	92.80	47.44	76.22	85.41	62.65
VLMixer	Full	Full	72.89	76.61	77.01	64.76	88.56	94.22	50.06	78.36	86.91	63.25


Superior performance on five downstream tasks.

VALP			TAVP	VQA	NLV	$^{\prime}R^{2}$	Г	ext Retrieva	al	Image Retrieval			
MLM	CMC C	CMCL	IAVP	Test-Dev	Dev	Test	R@1	R@5	R@10	R@1	R@5	R@10	
			\checkmark	71.16	70.52	69.23	60.18	85.50	91.72	45.87	75.39	84.96	
\checkmark				71.50	50.89	52.16	49.32	78.02	87.72	38.04	69.62	80.92	
\checkmark				72.00	72.52	72.20	59.30	85.36	91.76	45.78	74.94	84.60	
\checkmark	\checkmark			71.52	71.13	70.99	60.40	85.72	92.92	46.92	75.86	85.31	
\checkmark	\checkmark		\checkmark	71.84	73.19	72.81	60.54	86.24	92.44	47.29	76.43	85.61	
\checkmark	\checkmark	\checkmark	\checkmark	$72.60_{\pm0.10}$	$72.71_{\pm 0.61}$	$73.08_{\pm0.26}$	$62.69_{\pm0.51}$	$87.35_{\pm0.19}$	$93.64_{\pm0.14}$	$47.95_{\pm0.21}$	$\textbf{77.06}_{\pm 0.13}$	$86.22_{\pm0.08}$	
Pa	aired Pre	-trainir	ng	72.39	75.28	75.54	65.10	88.82	94.38	50.23	78.49	87.13	

- CMC improves NLVR² and retrieval tasks.
- CMC + CMCL improve VQA.
- Unpaired model is slightly inferior to the paired counterpart.

VLMixer benefits from the data scale.

Diverse patch gallery helps cross-modal alignment.

Thanks for your listening!