GROUP

Multi-Slots Online Matching With High Entropy

Xingyu Lu Qintong Wu Wenliang Zhong

ANT
GROUP

Multi-slots Online Matching Applications

- Multiple Ads are presented under resource constraints
- User pays the most attention onto particular ads slots
- Diversity shall be maintained across different slots

$$
\begin{gathered}
\max _{\mathbf{X} \in \mathscr{X}} \sum_{t=1}^{T} \mathbf{r}_{t}^{\top} \mathbf{X}_{t} \mathbf{c}+\alpha \mathscr{H}\left(\mathbf{X}_{t} \mathbf{c}\right) \\
\sum_{t=1}^{T} \mathbf{M}_{t}^{\top} \mathbf{X}_{t} \mathbf{c} \leq T \mathbf{B}
\end{gathered}
$$

Here, c characterizes slots' impression capacity. Correspondingly, cinfluences both the objective as well as the consumption of resources.
$\mathscr{H}(x)$ refers to the entropy regularizer, which is designed to promote diversity.

Problem Formulation

Original Problem

$\max _{\mathbf{X} \in \mathscr{X}} \sum_{t=1}^{T} \mathbf{r}_{t}^{\top} \mathbf{X}_{t} \mathbf{c}+\alpha \mathscr{H}\left(\mathbf{X}_{t} \mathbf{c}\right)$

$$
\sum_{t=1}^{T} \mathbf{M}_{t}^{\top} \mathbf{X}_{t} \mathbf{c} \leq T \mathbf{B}
$$

Our Two-Steps Approach
$\max _{\mathbf{y} \in \mathscr{Y}} \sum_{t=1}^{T} \mathbf{r}_{t}^{\top} \mathbf{y}_{t}+\alpha \mathscr{H}\left(\mathbf{y}_{t}\right)$
s.t. $\sum_{t=1}^{T} \mathbf{M}_{t}^{\top} \mathbf{y}_{t} \leq T \mathbf{B}$
$\hat{\mathbf{X}}_{t}=\arg _{\mathbf{X}_{t} \in x}\left\{\mathbf{X}_{t} \mathbf{c}=\hat{\mathbf{y}}_{t}\right\}$

Directly solving \mathbf{X}_{t} requires $\mathcal{O}\left(N^{3} A_{t}^{3}\right)$ complexity!

Unacceptable for real-world applications in general

Introduce the intermediate variable $\mathbf{y}_{\mathbf{t}}:=\mathbf{X}_{\mathbf{t}} \mathbf{c}$ representing the total expected impressions in all slots.

First, we optimize a simpler problem by reducing the number of variable.

Next, we solve a linear system to recover the decision matrix.

Algorithm 1 Online subGradient descent for Multi-slots

 Allocation (OG-MA)Input: User set \mathbb{T}, the step-size η; and initialize dual variables $\boldsymbol{\lambda}_{0}=\mathbf{0}$
for $t=1$ to T do
Receive a stochastic request with $\left(\mathbf{r}_{t}, \mathbf{M}_{t}\right)$.
Solve the expected impressions $\hat{\mathbf{y}}_{t}$ for all advertisements using efficiency pooling projection;
Update the allocated impressions under the remaining resources:
$\widetilde{\mathbf{y}}_{t}= \begin{cases}\hat{\mathbf{y}}_{t}, & \text { if } \sum_{s=1}^{t-1} \mathbf{M}_{s}^{\top} \widetilde{\mathbf{X}}_{s} \mathbf{c}+\mathbf{M}_{t}^{\top} \hat{\mathbf{y}}_{t} \leq T \mathbf{B}, \\ \mathbf{0}, & \text { otherwise. }\end{cases}$
Make the realization $\widetilde{\mathbf{X}}_{t}$ of primal solution \mathbf{X}_{t} with given $\widetilde{\mathbf{y}}_{t}$ by roulette swapping allocation.
Compute gradients $\mathbf{g}\left(\boldsymbol{\lambda}_{t}\right)$ of $\boldsymbol{\lambda}_{t}$ where:

$$
\mathbf{g}\left(\boldsymbol{\lambda}_{t}\right):=\mathbf{B}-\mathbf{M}_{t}^{\top} \hat{\mathbf{y}}_{t} .
$$

Update $\boldsymbol{\lambda}$ by projected subgradient descent

$$
\begin{equation*}
\boldsymbol{\lambda}_{t+1}=\operatorname{Proj}_{\boldsymbol{\lambda} \geq 0}\left\{\boldsymbol{\lambda}_{t}-\eta \mathbf{g}\left(\boldsymbol{\lambda}_{t}\right)\right\} \tag{12}
\end{equation*}
$$

end for

- Efficiency Pooling Projection estimates $\hat{\mathbf{y}}_{t}$
- Roulette Swapping Allocation samples $\tilde{\mathbf{X}}_{t}$
- Projected subGradient Descent updates λ_{t}

Results:

OG-MA achieves $\mathcal{O}\left(N+N A_{t}+A_{t} \log A_{t}\right)$ complexity
Recall that a vanilla method takes $\mathscr{O}\left(N^{3} A_{t}^{3}\right)$
OG-MA attains $\mathcal{O}(C(\sqrt{K}+\log T) \sqrt{T})$ regret
Choose the position-based click model ${ }^{[1]} c_{n}=\frac{1}{n^{\gamma}}$

- $\gamma=1$, the regret is of order $\mathcal{O}(\log N)$
- $\gamma=\frac{1}{2}$, the regret is of order $\mathcal{O}(\sqrt{N})$

Algorithm 2 Efficiency Pooling Projection (EPP)
Input: User request $\left(\mathbf{r}_{t}, \mathbf{M}_{t}\right)$, dual variable $\boldsymbol{\lambda}$. Sort \mathbf{E}_{t} in decreasing order by $v_{t, a}$.
Initialize \mathbf{E}_{t} into blocks $\left\{\mathbb{B}_{r}^{(0)}\right\}_{r=1}^{N+1}$ by (13), compute efficiency value $E\left(\mathbb{B}_{r}^{0}\right)$ by (14) and set $l=0$.
repeat
Step1. Merge $\mathbb{B}^{(l)}$-blocks if $E\left(\mathbb{B}_{r}^{(l)}\right) \leq E\left(\mathbb{B}_{r+1}^{(l)}\right)$.
Step2. Update the merged blocks $\mathbb{B}_{r}^{(l+1)}:=\mathbb{B}_{r}^{(l)}$ and efficiency value $E\left(\mathbb{B}_{r}^{(l+1)}\right)$ for all r, i.e..
Step3. If exists $E\left(\mathbb{B}_{r}^{(l+1)}\right) \leq E\left(\mathbb{B}_{r+1}^{(l+1)}\right)$, then increase $l=l+1$ and go back to Step1.
until $E\left(\mathbb{B}_{r}^{(l)}\right)>E\left(\mathbb{B}_{r+1}^{(l)}\right)$ for all block r.
Output: $\hat{y}_{t, a}=v_{t, a} / E\left(\mathbb{B}_{r}\right), \forall a \in \mathbb{B}_{r}$ and block index r.

- Define $v_{t, a}$ as the contribution value to the objective, and let $e_{t, a}:=v_{t, a} / y_{t, a}$ be the efficiency value for primal solution $y_{t, a}$
- The optimal solution \mathbf{y}_{t}^{*} and its efficiency \mathbf{e}_{t}^{*} are in the same order

Key idea:

- Follow the idea of Pool Adjacent Violators Algorithm ${ }^{[2]}$ (PAVA)
- Iteratively enforce the efficiency $e_{t, a}$ in non-increasing order by merging adjacent ads and sharing the same efficiency
- Update the expected impression $y_{t, a}$ after merging operations

$e_{b}<e_{c}$

Optimal Order

GROUP

Roulette Swapping Allocation

```
Algorithm 3 Roulette Swapping Allocation (RSA)
    Input: Expected impressions }\mp@subsup{\widetilde{\mathbf{y}}}{t}{}\mathrm{ computed by (11).
    Initialize position order }r(a)=a\mathrm{ , the expectation of
    allocated impressions }\mp@subsup{y}{t,a}{}=\mp@subsup{c}{a}{}\mathbb{I}(1\leqa\leqN),\foralla\in\mp@subsup{\mathbf{E}}{t}{
    and index set }\mathbb{S}={}
    for }j=1\mathrm{ to }\mp@subsup{A}{t}{}\mathrm{ do
        if }\mp@subsup{y}{t,j}{}>\mp@subsup{\widetilde{y}}{t,j}{}\mathrm{ then
            Put j into the index set: }\mathbb{S}=\mathbb{S}\cup{j
        else
            Swap}r(j)\mathrm{ and }r(s),s\in\mathbb{S}\mathrm{ with probability:
\[
\begin{equation*}
p_{s}=\frac{\widetilde{y}_{t, j}-y_{t, j}}{y_{t, s}-y_{t, j}} \frac{\widetilde{y}_{t, s}-y_{t, s}}{\sum_{s^{\prime} \in \mathbb{S}}\left(\widetilde{y}_{t, s^{\prime}}-y_{t, s^{\prime}}\right)} . \tag{15}
\end{equation*}
\]
Update the allocated impressions of \(j\) by \(y_{t, j}=\widetilde{y}_{t, j}\) Update the allocated impressions of \(s \in \mathbb{S}\) by:
\[
y_{t, s}=\left(1-p_{s}\right) y_{t, s}+p_{s} y_{t, j},
\]
and then remove \(s\) from \(\mathbb{S}\) if \(y_{t, s}=\widetilde{y}_{t, s}\). end if
end for
Output: Allocate \(a \in \mathbf{E}_{t}\) to \(r(a)\)-th slot if \(r(a) \leq N\).
```


Key idea:

- Allocate the expected impressions by swapping the positions of advertisements
- Swapping operations utilize excess impressions to make up for under-allocated advertisements

Expected impressions \square Allocated impressions

Experiments

Effectiveness on Reducing Computation

The OG-MA is $3 \sim 4$ order faster than dual subgradient descent.

Inference Efficiency

The complexity grows sub-linearly w.r.t the number of slots N.

Regret Bound for different Click Model

The experiment results coincide with the theoretical analysis.

Trade-off between Revenue and Diversity

Higher entropy leads to better diversity in matching. Particularly, $\alpha=0.01$ presents a good trade-off result.

Conclusion

Online subGradient descent for Multi-slots Allocation (OG-MA)

- Scalable: $\mathcal{O}\left(N+N A_{t}+A_{t} \log A_{t}\right)$ complexity, good for large-scale applications
- Effective: sub-linear regret w.r.t. the number of slots
- Diverse: provides diversified ranking results without violating resource constraints
- Easy implementation: only consists of basic operations (i.e., swap and merge)

