

# **Multi-Slots Online Matching With High Entropy**

Xingyu Lu Qintong Wu Wenliang Zhong

{sing.lxy, qintong.wqt, yice.zwl}@antgroup.com





## Multi-slots Online Matching Applications

AD

AD

AD





- Multiple Ads are presented under resource constraints
- User pays the most attention onto particular ads slots
- Diversity shall be maintained across different slots

$$\max_{\mathbf{X} \in \mathscr{X}} \sum_{t=1}^{T} \mathbf{r}_t^{\mathsf{T}} \mathbf{X}_t \mathbf{c} + \alpha \mathscr{H}(\mathbf{X}_t \mathbf{c})$$
$$\sum_{t=1}^{T} \mathbf{M}_t^{\mathsf{T}} \mathbf{X}_t \mathbf{c} \leq T \mathbf{B}$$

Here, *c* characterizes slots' impression capacity. Correspondingly, *c* influences both the objective as well as the consumption of resources.

 $\mathscr{H}(x)$  refers to the entropy regularizer, which is designed to promote diversity.





## **Problem Formulation**

### Original Problem

$$\max_{\mathbf{X} \in \mathcal{X}} \sum_{t=1}^{T} \mathbf{r}_{t}^{\mathsf{T}} \mathbf{X}_{t} \mathbf{c} + \alpha \mathcal{H}(\mathbf{X}_{t} \mathbf{c})$$
$$\sum_{t=1}^{T} \mathbf{M}_{t}^{\mathsf{T}} \mathbf{X}_{t} \mathbf{c} \leq T \mathbf{B}$$

Our Two-Steps Approach

$$\hat{\mathbf{X}}_{t} = \arg_{\mathbf{X}_{t} \in \mathcal{X}} \left\{ \mathbf{X}_{t} \mathbf{c} = \hat{\mathbf{y}}_{t} \right\}$$

 $\max_{\mathbf{y} \in \mathscr{Y}} \sum_{t=1}^{T} \mathbf{r}_{t}^{\mathsf{T}} \mathbf{y}_{t} + \alpha \mathscr{H}(\mathbf{y}_{t})$  $s \cdot t \cdot \sum_{t=1}^{T} \mathbf{M}_{t}^{\mathsf{T}} \mathbf{y}_{t} \leq T \mathbf{B}$ 

- Directly solving  $\mathbf{X}_t$  requires  $\mathcal{O}(N^3 A_t^3)$  complexity!
- Unacceptable for real-world applications in general

- Introduce the intermediate variable  $y_t := X_t c$ representing the total expected impressions in all slots.
  - imize a simpler problem by reducing the ariable.
- Next, we solve a linear system to recover the decision matrix.





# Online subGradient descent for Multi-slots Allocation (OG-MA)

Algorithm 1 Online subGradient descent for Multi-slots Allocation (OG-MA)

**Input:** User set  $\mathbb{T}$ , the step-size  $\eta$ ; and initialize dual variables  $\lambda_0 = 0$ .

for t = 1 to T do

Receive a stochastic request with  $(\mathbf{r}_t, \mathbf{M}_t)$ . Solve the expected impressions  $\hat{\mathbf{y}}_t$  for all advertisements using **efficiency pooling projection**; Update the allocated impressions under the remaining

Update the allocated impressions under the remaining resources:

$$\widetilde{\mathbf{y}}_t = \begin{cases} \widehat{\mathbf{y}}_t, & \text{if } \sum_{s=1}^{t-1} \mathbf{M}_s^\top \widetilde{\mathbf{X}}_s \mathbf{c} + \mathbf{M}_t^\top \widehat{\mathbf{y}}_t \le T \mathbf{B}, \\ \mathbf{0}, & \text{otherwise.} \end{cases}$$
(11)

Make the realization  $\widetilde{\mathbf{X}}_t$  of primal solution  $\mathbf{X}_t$  with given  $\widetilde{\mathbf{y}}_t$  by **roulette swapping allocation**. Compute gradients  $\mathbf{g}(\boldsymbol{\lambda}_t)$  of  $\boldsymbol{\lambda}_t$  where:

$$\mathbf{g}(\boldsymbol{\lambda}_t) := \mathbf{B} - \mathbf{M}_t^\top \hat{\mathbf{y}}_t.$$

Update  $\lambda$  by projected subgradient descent:

$$\boldsymbol{\lambda}_{t+1} = \operatorname{Proj}_{\boldsymbol{\lambda} \ge 0} \{ \boldsymbol{\lambda}_t - \eta \mathbf{g}(\boldsymbol{\lambda}_t) \}$$
(12)

end for

[1]: Craswell, N., Zoeter, O., Taylor, M., and Ramsey, B. An experimental comparison of click position-bias models.

- Efficiency Pooling Projection estimates  $\hat{\mathbf{y}}_t$
- Roulette Swapping Allocation samples  $ilde{\mathbf{X}}_t$
- Projected subGradient Descent updates  $\lambda_t$
- Results:
- OG-MA achieves  $O(N + NA_t + A_t logA_t)$  complexity
- Recall that a vanilla method takes  $\mathcal{O}(N^3A_t^3)$
- OG-MA attains  $\mathcal{O}(C(\sqrt{K} + \log T)\sqrt{T})$  regret
- Choose the position-based click model<sup>[1]</sup>  $c_n = \frac{1}{n^{\gamma}}$
- $\gamma = 1$ , the regret is of order O(logN)•  $\gamma = \frac{1}{2}$ , the regret is of order  $O(\sqrt{N})$

 $n^{\gamma}$ 



# Efficiency Pooling Projection Algorithm (EPP)

|                                                                                                             | Kovi                      |
|-------------------------------------------------------------------------------------------------------------|---------------------------|
| Algorithm 2 Efficiency Pooling Projection (EPP)                                                             | КСУТ                      |
| <b>Input:</b> User request $(\mathbf{r}_t, \mathbf{M}_t)$ , dual variable $\boldsymbol{\lambda}$ .          | • Folle                   |
| Sort $\mathbf{E}_t$ in decreasing order by $v_{t,a}$ .                                                      |                           |
| Initialize $\mathbf{E}_t$ into blocks $\{\mathbb{B}_r^{(0)}\}_{r=1}^{N+1}$ by (13), compute                 | <ul> <li>Itera</li> </ul> |
| efficiency value $E(\mathbb{B}^0_r)$ by (14) and set $l = 0$ .                                              | adja                      |
| repeat                                                                                                      |                           |
| <b>Step1</b> . Merge $\mathbb{B}^{(l)}$ -blocks if $E(\mathbb{B}_r^{(l)}) \leq E(\mathbb{B}_{r+1}^{(l)})$ . |                           |
| <b>Step2</b> . Update the merged blocks $\mathbb{B}_r^{(l+1)} := \mathbb{B}_r^{(l)}$ and                    | • Upd                     |
| efficiency value $E(\mathbb{B}_r^{(l+1)})$ for all r, i.e                                                   |                           |
| <b>Step3.</b> If exists $E(\mathbb{B}_r^{(l+1)}) \leq E(\mathbb{B}_{r+1}^{(l+1)})$ , then increase          |                           |
| l = l + 1 and go back to Step1.                                                                             | I = 0                     |
| until $E(\mathbb{B}_r^{(l)}) > E(\mathbb{B}_{r+1}^{(l)})$ for all block $r$ .                               |                           |
| <b>Output:</b> $\hat{y}_{t,a} = v_{t,a}/E(\mathbb{B}_r), \forall a \in \mathbb{B}_r$ and block index r.     |                           |
|                                                                                                             |                           |

- Define  $v_{t,a}$  as the contribution value to the objective, and let  $e_{t,a} := v_{t,a}/y_{t,a}$  be the efficiency value for primal solution  $y_{t,a}$
- The optimal solution  $\mathbf{y}_t^*$  and its efficiency  $\mathbf{e}_t^*$  are in the same order

[2]:De Leeuw, J., Hornik, K., and Mair, P. Isotone optimization in r: pool-adjacent-violators algorithm (pava) and active set methods.

#### idea:

| = 1

| = 2

- ow the idea of Pool Adjacent Violators Algorithm<sup>[2]</sup> (PAVA)
- atively enforce the efficiency  $e_{t,a}$  in non-increasing order by merging acent ads and sharing the same efficiency
- late the expected impression  $y_{t,a}$  after merging operations





#### Algorithm 3 Roulette Swapping Allocation (RSA)

**Input:** Expected impressions  $\tilde{\mathbf{y}}_t$  computed by (11). Initialize position order r(a) = a, the expectation of allocated impressions  $y_{t,a} = c_a \mathbb{I}(1 \le a \le N), \forall a \in \mathbf{E}_t$ and index set  $\mathbb{S} = \{\}$ . for j = 1 to  $A_t$  do

if  $y_{t,j} > \widetilde{y}_{t,j}$  then

Put *j* into the index set:  $\mathbb{S} = \mathbb{S} \cup \{j\}$ 

else

Swap r(j) and  $r(s), s \in \mathbb{S}$  with probability:

$$p_s = \frac{\widetilde{y}_{t,j} - y_{t,j}}{y_{t,s} - y_{t,j}} \frac{\widetilde{y}_{t,s} - y_{t,s}}{\sum_{s' \in \mathbb{S}} (\widetilde{y}_{t,s'} - y_{t,s'})}.$$
 (15)

Update the allocated impressions of j by  $y_{t,j} = \widetilde{y}_{t,j}$ Update the allocated impressions of  $s \in S$  by:

$$y_{t,s} = (1 - p_s)y_{t,s} + p_s y_{t,j},$$

and then remove s from S if  $y_{t,s} = \widetilde{y}_{t,s}$ . end if

end for

**Output:** Allocate  $a \in \mathbf{E}_t$  to r(a)-th slot if  $r(a) \leq N$ .

## Key idea:



# Roulette Swapping Allocation

• Allocate the expected impressions by swapping the positions of advertisements

• Swapping operations utilize excess impressions to make up for under-allocated advertisements



#### **Effectiveness on Reducing Computation**



The OG-MA is 3 ~ 4 order faster than dual subgradient descent.

#### Inference Efficiency



The complexity grows sub-linearly w.r.t the number of slots N.

## Experiments



The experiment results coincide with the theoretical analysis.

#### Trade-off between Revenue and Diversity



Higher entropy leads to better diversity in matching. Particularly,  $\alpha = 0.01$  presents a good trade-off result.







## **Online subGradient descent for Multi-slots Allocation (OG-MA)**

- Scalable:  $O(N + NA_t + A_t log A_t)$  complexity, good for large-scale applications
- **Effective**: sub-linear regret w.r.t. the number of slots

## Conclusion

• **Diverse:** provides diversified ranking results without violating resource constraints

• **Easy implementation**: only consists of basic operations (i.e., swap and merge)