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Nonconvex Functional Constrained Problems

P1 min
x∈X⊆Rd

f(x) subject to g(x) ≤ 0 (1)

• Consider the following problem

• f(x) : Rd → R and g(x) : Rd → Rm are smooth
(possibly) nonconvex.
– X : convex feasible set
– m: number of constraints

• Applications
– Multi-class Neyman-Pearson classification (mNPC)
– Constrained Markov decision processes (CMDP)
– Deep neural networks training under energy budget
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Gradient Descent and Perturbed Ascent
• Find a stationary (quasi-Nash equilibrium) point of the following

problem

• Perturbed augmented Lagrangian function

– λ ∈ Rm+ : dual variable (Lagrangian multiplier)
– [x]+: component-wise nonnegative part of vector x
– τ ∈ (0, 1): perturbation term
– β > 0

• Gradient descent and perturbed ascent (GDPA)

– αr, βr, γr > 0: dynamic sequences (learning rates)

min
x∈X

max
λ≥0

Fβ(x,λ) (2)

Fβ(x,λ),f(x) +
β

2

∥∥∥∥∥
[
g(x)+

(1− τ)λ
β

]
+

∥∥∥∥∥
2

− ‖(1− τ)λ‖
2

2β
(3)

xr+1=arg min
x∈X

〈
∇xFβr (xr,λr),x− xr

〉
+

1

2αr
‖x− xr‖2 (4a)

λr+1=argmax
λ≥0

〈
1

1− τ
∇λFβr (xr+1,λr),λ− λr

〉
−

1− τ
2βr

‖λ− λr‖2−
γr

2
‖λ‖2 (4b)
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Gradient Descent and Perturbed Ascent

xr+1 =PX
(
xr − αr

(
∇f(xr) + JT (xr) [(1− τ)λr + βrg(xr)]+

))
(5a)

[λr+1]i =

{
P≥0 ((1−τ)[λr]i+βrgi(xr+1)) , i ∈ Sr
0, i ∈ Sr

(5b)

• Substituting the perturbed augmented Lagrangian function into (4)
yields

– J(x): Jacobian matrix of the constraints at point x
– gi(x): the ith constraint
– [x]i: the ith entry of vector x
–

Sr ,
{
i|gi(xr) +

(1− τ)[λr]i
βr

> 0

}
(6)

– gi(xr) ≤ 0, i ∈ Sr
– PX : the projection of iterates to the feasible set
– P≥0 , []+: the component-wise nonnegative projection operator
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Theoretical Guarantees
Assumptions

A1 Lipschitz continuity of function f(x).
A2 Lipschitz continuity of function g(x).
A3 Lower boundedness of function f(x)
A4 Upper boundedness of function g+(x)
A5 Regularity condition (constraint qualification)

Theorem 1: Under assumptions A1-A5. When the step-sizes are
chosen as αr ∼ 1/βr ∼ O(1/r1/3) and
γrβr = τ > 1− σ/

√
66U2

J + σ2, then the outputs of GDPA
xT (ε),λT (ε) converge to an ε-approximate KKT point satisfying

dist

(
∇f(xT (ε))+

m∑
i=1

[λT (ε)]i∇gi(xT (ε)),−NX (x)

)
≤ ε,

‖g+(xT (ε))‖ ≤ ε,
m∑
i=1

|[λT (ε)]igi(xT (ε))| ≤ ε, (7)

in the number of O(1/ε3) iterations.



6

Numerical Results: mNPC problem

• Compared algorithms

– inexact augmented lagrangian method (IALM) (Sahin et al.,
2019; Li et al., 2021) (O(1/ε3), double-loop)

– inexact quadratically regularized constrained (IQRC) methods
(Ma et al., 2020) (O(1/ε3), double-loop)

– inexact proximal-point penalty (IPPP) method (Lin et al., 2022)
(O(1/ε3), triple-loop)
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Thank You!


