

A Single-Loop Gradient Descent and Perturbed Ascent Algorithm for Nonconvex Functional Constrained Optimization

Songtao Lu

IBM Thomas J. Watson Research Center

Nonconvex Functional Constrained Problems

- Consider the following problem

$$\text{P1} \quad \min_{\mathbf{x} \in \mathcal{X} \subseteq \mathbb{R}^d} \quad f(\mathbf{x}) \quad \text{subject to} \quad g(\mathbf{x}) \leq 0 \quad (1)$$

- $f(\mathbf{x}) : \mathbb{R}^d \rightarrow \mathbb{R}$ and $g(\mathbf{x}) : \mathbb{R}^d \rightarrow \mathbb{R}^m$ are smooth (possibly) nonconvex.
 - \mathcal{X} : convex feasible set
 - m : number of constraints
- Applications
 - Multi-class Neyman-Pearson classification (mNPC)
 - Constrained Markov decision processes (CMDP)
 - Deep neural networks training under energy budget

Gradient Descent and Perturbed Ascent

- Find a stationary (quasi-Nash equilibrium) point of the following problem

$$\min_{\mathbf{x} \in \mathcal{X}} \max_{\boldsymbol{\lambda} \geq 0} F_\beta(\mathbf{x}, \boldsymbol{\lambda}) \quad (2)$$

- Perturbed augmented Lagrangian function

$$F_\beta(\mathbf{x}, \boldsymbol{\lambda}) \triangleq f(\mathbf{x}) + \frac{\beta}{2} \left\| \left[g(\mathbf{x}) + \frac{(1-\tau)\boldsymbol{\lambda}}{\beta} \right]_+ \right\|^2 - \frac{\|(1-\tau)\boldsymbol{\lambda}\|^2}{2\beta} \quad (3)$$

- $\boldsymbol{\lambda} \in \mathbb{R}_+^m$: dual variable (Lagrangian multiplier)
- $[\mathbf{x}]_+$: component-wise nonnegative part of vector \mathbf{x}
- $\tau \in (0, 1)$: perturbation term
- $\beta > 0$

- Gradient descent and perturbed ascent (GDPA)

$$\mathbf{x}_{r+1} = \arg \min_{\mathbf{x} \in \mathcal{X}} \langle \nabla_{\mathbf{x}} F_{\beta_r}(\mathbf{x}_r, \boldsymbol{\lambda}_r), \mathbf{x} - \mathbf{x}_r \rangle + \frac{1}{2\alpha_r} \|\mathbf{x} - \mathbf{x}_r\|^2 \quad (4a)$$

$$\boldsymbol{\lambda}_{r+1} = \arg \max_{\boldsymbol{\lambda} \geq 0} \left\langle \frac{1}{1-\tau} \nabla_{\boldsymbol{\lambda}} F_{\beta_r}(\mathbf{x}_{r+1}, \boldsymbol{\lambda}_r), \boldsymbol{\lambda} - \boldsymbol{\lambda}_r \right\rangle - \frac{1-\tau}{2\beta_r} \|\boldsymbol{\lambda} - \boldsymbol{\lambda}_r\|^2 - \frac{\gamma_r}{2} \|\boldsymbol{\lambda}\|^2 \quad (4b)$$

- $\alpha_r, \beta_r, \gamma_r > 0$: dynamic sequences (learning rates)

Gradient Descent and Perturbed Ascent

- Substituting the perturbed augmented Lagrangian function into (4) yields

$$\mathbf{x}_{r+1} = \mathcal{P}_{\mathcal{X}} \left(\mathbf{x}_r - \alpha_r \left(\nabla f(\mathbf{x}_r) + J^T(\mathbf{x}_r) [(1 - \tau) \boldsymbol{\lambda}_r + \beta_r g(\mathbf{x}_r)]_+ \right) \right) \quad (5a)$$

$$[\boldsymbol{\lambda}_{r+1}]_i = \begin{cases} \mathcal{P}_{\geq 0} ((1 - \tau) [\boldsymbol{\lambda}_r]_i + \beta_r g_i(\mathbf{x}_{r+1})), & i \in \mathcal{S}_r \\ 0, & i \in \bar{\mathcal{S}}_r \end{cases} \quad (5b)$$

- $J(\mathbf{x})$: Jacobian matrix of the constraints at point \mathbf{x}
- $g_i(\mathbf{x})$: the i th constraint
- $[\mathbf{x}]_i$: the i th entry of vector \mathbf{x}
-

$$\mathcal{S}_r \triangleq \left\{ i \mid g_i(\mathbf{x}_r) + \frac{(1 - \tau) [\boldsymbol{\lambda}_r]_i}{\beta_r} > 0 \right\} \quad (6)$$

- $g_i(\mathbf{x}_r) \leq 0, i \in \bar{\mathcal{S}}_r$
- $\mathcal{P}_{\mathcal{X}}$: the projection of iterates to the feasible set
- $\mathcal{P}_{\geq 0} \triangleq []_+$: the component-wise nonnegative projection operator

Theoretical Guarantees

Assumptions

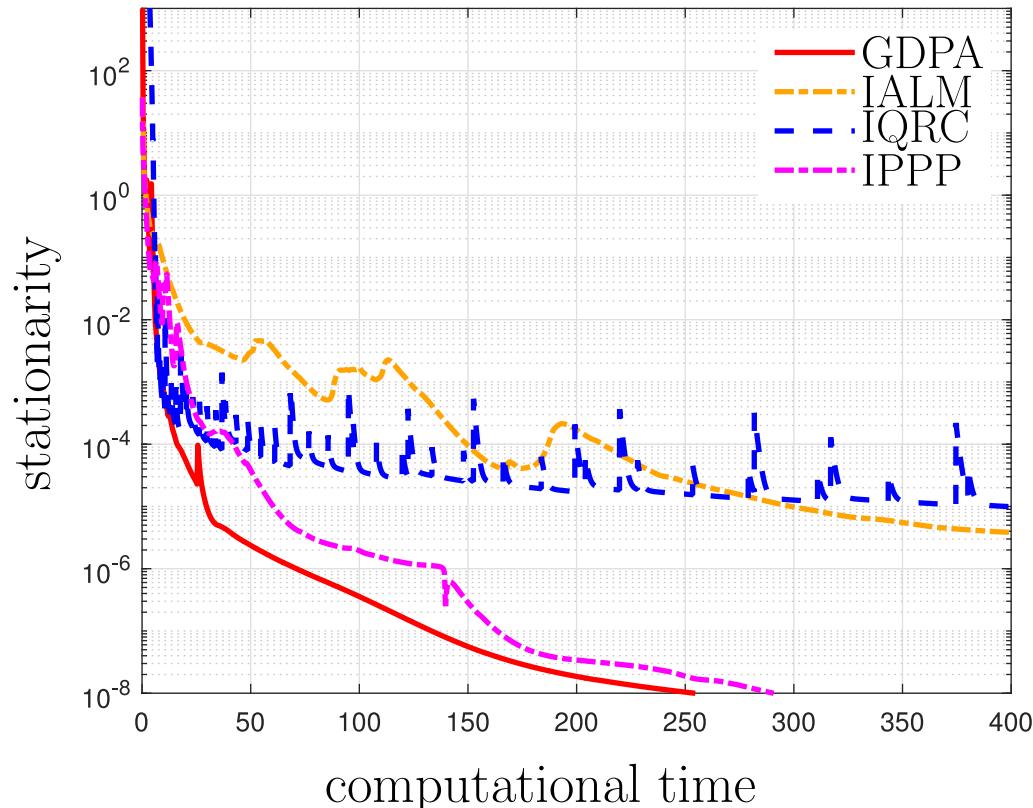
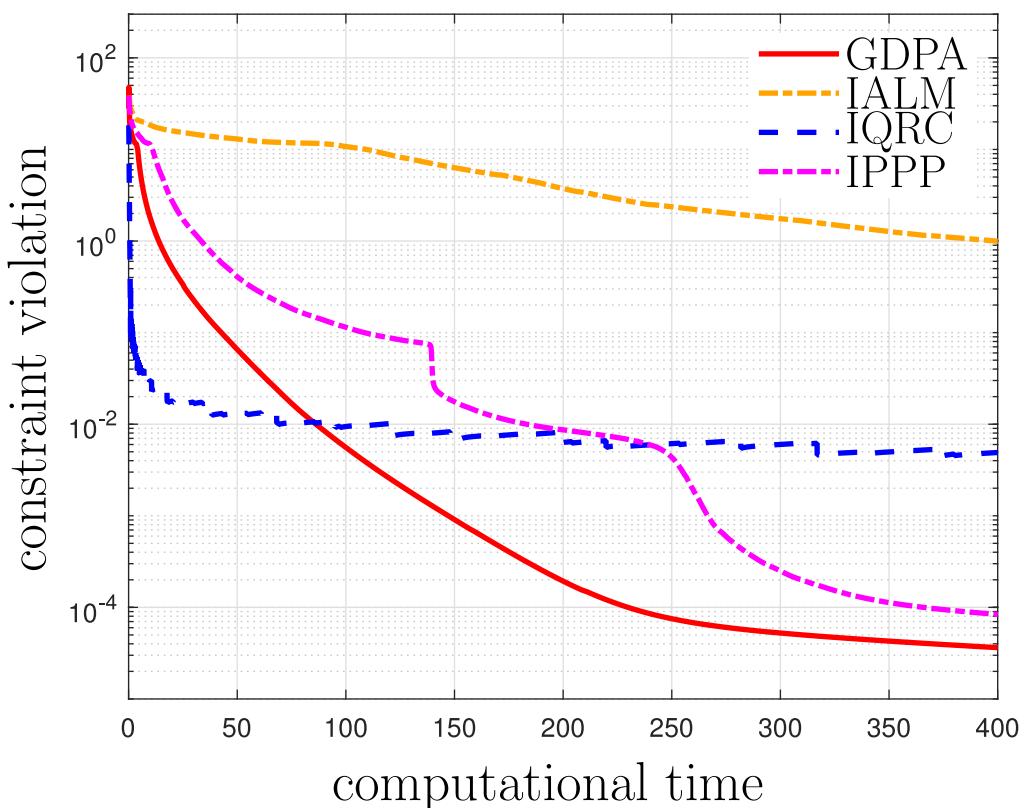
- A1 Lipschitz continuity of function $f(\mathbf{x})$.
- A2 Lipschitz continuity of function $g(\mathbf{x})$.
- A3 Lower boundedness of function $f(\mathbf{x})$
- A4 Upper boundedness of function $g_+(\mathbf{x})$
- A5 Regularity condition (constraint qualification)

Theorem 1: Under assumptions A1-A5. When the step-sizes are chosen as $\alpha_r \sim 1/\beta_r \sim \mathcal{O}(1/r^{1/3})$ and $\gamma_r \beta_r = \tau > 1 - \sigma/\sqrt{66U_J^2 + \sigma^2}$, then the outputs of GDPA $\bar{\mathbf{x}}_{T(\epsilon)}, \bar{\boldsymbol{\lambda}}_{T(\epsilon)}$ converge to an ϵ -approximate KKT point satisfying

$$\text{dist} \left(\nabla f(\bar{\mathbf{x}}_{T(\epsilon)}) + \sum_{i=1}^m [\bar{\boldsymbol{\lambda}}_{T(\epsilon)}]_i \nabla g_i(\bar{\mathbf{x}}_{T(\epsilon)}), -\mathcal{N}_{\mathcal{X}}(\mathbf{x}) \right) \leq \epsilon,$$
$$\|g_+(\bar{\mathbf{x}}_{T(\epsilon)})\| \leq \epsilon, \quad \sum_{i=1}^m |[\boldsymbol{\lambda}_{T(\epsilon)}]_i g_i(\bar{\mathbf{x}}_{T(\epsilon)})| \leq \epsilon, \quad (7)$$

in the number of $\mathcal{O}(1/\epsilon^3)$ iterations.

Numerical Results: mNPC problem



- Compared algorithms

- inexact augmented lagrangian method (IALM) (Sahin et al., 2019; Li et al., 2021) ($\mathcal{O}(1/\epsilon^3)$, double-loop)
- inexact quadratically regularized constrained (IQRC) methods (Ma et al., 2020) ($\mathcal{O}(1/\epsilon^3)$, double-loop)
- inexact proximal-point penalty (IPPP) method (Lin et al., 2022) ($\mathcal{O}(1/\epsilon^3)$, triple-loop)

Thank You!