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The Neural Collapse Phenomenon

DNN-based classifiers can be typically represented as 1pe(x) = Whe(x) + b,
where ® = {W, b, 0} are the learned parameters.
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The Neural Collapse Phenomenon

DNN-based classifiers can be typically represented as 1pe(x) = Whe(x) + b,
where ® = {W, b, 0} are the learned parameters.

Common practice: keep optimizing the network's parameters after the training
error vanishes to further push the training loss toward zero.

Papyan et al. (2020) empirically observed a “Terminal Phase of Training”
phenomenon, dubbed “Neural Collapse” (NC).
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where ® = {W, b, 0} are the learned parameters.
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error vanishes to further push the training loss toward zero.

NC is made of four (simultaneous) components:
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The Neural Collapse Phenomenon

DNN-based classifiers can be typically represented as 1pe(x) = Whe(x) + b,
where ® = {W, b, 0} are the learned parameters.

Common practice: keep optimizing the network's parameters after the training
error vanishes to further push the training loss toward zero.

NC is made of four (simultaneous) components:

o (NC1): The learned features hg(x) of within-class samples converge to their
mean (i.e., the intraclass variance vanishes)

o (NC2): After centering by their global mean, the limiting means of different
classes exhibit a simplex equiangular tight frame (ETF) structure

e (NC3): The limit of the last weights W T is aligned with this simplex ETF

o (NC4): The classification decision converges to the nearest class center (in
feature space) rule
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The Unconstrained Features Model

The typical way to optimize a DNN’s parameters (empirical risk minim.):

K n

.1
Hgn E §;£(Wh0(xk,i) + b7yk) + R(®)7

where y, € R¥ is the one-hot vector with 1 in its k-th entry, £(-,) is a loss
function (e.g., cross-entropy or MSE), and R(-) is a regularization term (e.g.,
squared Ly-norm).
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where y, € R¥ is the one-hot vector with 1 in its k-th entry, £(-,) is a loss

function (e.g., cross-entropy or MSE), and R(-) is a regularization term (e.g.,
squared Ly-norm).

Mixon et al. (2020) suggested to explore NC via an Unconstrained Features Model
(UFM) — The features {hy ; = hg(xx i)} are treated as free optimization

variables:
K n
1

W,ﬂﬁ,;} re ; ; L(Why;+b,yc) +R(W,b,{h;}).
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The Unconstrained Features Model

The typical way to optimize a DNN’s parameters (empirical risk minim.):

K n

.1
Hgn E ;;E(Whe(xk,i) + b7yk) + 7?‘(6)7

where y, € R¥ is the one-hot vector with 1 in its k-th entry, £(-,) is a loss
function (e.g., cross-entropy or MSE), and R(-) is a regularization term (e.g.,
squared Ly-norm).

Mixon et al. (2020) suggested to explore NC via an Unconstrained Features Model
(UFM) — The features {hy ; = hg(xx i)} are treated as free optimization
variables:

K n

Z Z L(Why;+ b,y) + R(W,b,{h;}).

k=1 i=1

. 1
min —
w,b,{h;} Kn

The UFM rationale: Modern over-parameterized DNNs can adapt their feature
mapping to almost any training data.
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The Unconstrained Features Model

@ Most (if not all) of the theoretical works on NC consider this plain UFM.
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@ [Mixon et al., 2020] showed that for MSE loss and no regularization, a
simplex EFT is (only) a global minimizer (yet, experiments with randomly
initialized GD convergence to non-collapse global minimizers)
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@ [Mixon et al., 2020] showed that for MSE loss and no regularization, a
simplex EFT is (only) a global minimizer (yet, experiments with randomly
initialized GD convergence to non-collapse global minimizers)

o Other works, e.g., [Lu et al., 2020; Fang et al., 2021; Zhu et al., 2021],
considered the UFM with Ly-norm regularized CE loss w/ or w/o the bias
term. They showed that any global minimizer has simplex EFT structure.
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The Unconstrained Features Model

@ Most (if not all) of the theoretical works on NC consider this plain UFM.

@ [Mixon et al., 2020] showed that for MSE loss and no regularization, a
simplex EFT is (only) a global minimizer (yet, experiments with randomly
initialized GD convergence to non-collapse global minimizers)

o Other works, e.g., [Lu et al., 2020; Fang et al., 2021; Zhu et al., 2021],
considered the UFM with Ly-norm regularized CE loss w/ or w/o the bias
term. They showed that any global minimizer has simplex EFT structure.

@ Our contributions include:
o Closing the gap for the UFM with regularized MSE loss (showing some
distinction from the CE case)
o Extending the UFM with another level of features (another layer of weights
and nonlinearity) to capture depthwise NC behavior
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UFM with Regularized MSE Loss

Contribution: We analyze the minima of the UFM with regularized MSE loss and
show the effect of the bias term on the minimizers' structured collapse.

Theorem (The bias-free case — the factors are stated in the paper)

Let d > K and define ¢ := K/ nAgAw. If ¢ <1, then any global minimizer
(W=, H*) of

WH = Y| + 22 w2 + 25 |H
WG]RKXIEl HeRdxKn 2Kn|| HF + || ||F + || ||F

obeys that H* = H® 1] for some H := [hj,..., h}] € R¥>*K W*T « H, and

WHxH Hx WWT « Ix.

If ¢ > 1, then the minimizer is (W*, H*) = (0,0).

Denote the global mean hf = % Hl, note that H'H= ply implies:

(H-h:10) " (H=—he1)) =p (I — —1k1f
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Extended Unconstrained Features Model

Contribution: We analyze the minima of a linear extended UFM and show its
limitation in modeling (practical) depthwise NC behavior.

Theorem (Linear extended UFM)
Let d > K and (W5, Wy, Hf) be a global minimizer of

)\Hl

)\Wz )\Wl

T IWaWiHL = Y[ + =2 [Wal [ + = [ WAJE + =% Hu|Z.

wzr,nwl,Hl 2K
We have that Hy = H; ® 1] for some H; € R?*K and
* *\ 14 = 5 * * * *
(W5 W) Hy o< Hy Hy oc (W W) (W5 W) T o k.

Similarly, we have that H := Wy H; = H, ® 1] for some H, € R?*K, and

W; Hy oc Hy Ho o W WS  Ig.
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Extended Unconstrained Features Model

Theorem (Linear extended UFM)
Let d > K and (W5, W', HS) be a global minimizer of the linear extended model

We have that Hy = H; ® 1] for some H; € R?*K and
* *\ 14 = 5 * * * *
(W5 W) Hy o Hy Hy oc (W5 W) (W5 W) T o Uk
Similarly, we have that Hj := Wy H; = H, ® 1] for some H, € R?*K, and

W; Hy oc Hy Ho o W WS  Ig.

Limitations of this model:

@ Empirically, structured collapse appears only in the deepest features, but:
The theorem shows the emergence of structured (orthogonal) collapse
simultaneously at the two levels of unconstrained features.

@ Empirically, the decrease in within-class variability is depthwise gradual, but:
The linear link between H, and H; implies (under certain conditions) that
NCi(H,) =~ NCy(H;) after random initialization and along gradient-based

optimization.
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Extended Unconstrained Features Model

Contribution: We analyze the minima of a ReLU-based nonlinear extended UFM
and show the structured collapse of the deepest features.

Theorem (Nonlinear extended UFM)

Let d > K and (W, Wy, HY) be a global minimizer of

A

W; )\W )\H
: | Wa2 + S WAE + S Hy 2,

1

min
W, Wy, Hy
where o () = max(0, -) is the element-wise ReLU function.
We have that Hj := o(W;'H;) = H, ® 1] for some non-negative H, € RY*K,
and .
W5 Hy o< Hy Hy oc W W' T o I
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Our Numerical Results - Extended UFM

Setting: K =4,d =20,n =50 and Ay, = Aw; = An, = 0.005 (no bias is used).
Plain gradient descent optimization with step-size 0.1.

Top: no RelLU (the features are: Wy H; and Hj).

Bottom: with ReLU (the features are: o(W;H;) and Hy).

nezor

Figure 3. Verification of Theorem 4.1 (two levels of features). From left to right: the objective value, NC1 (within-class variability), NC2
(similarity of the features to OF), and NC3 (alignment between the weights and the features).

ne20F

Figure 4. Verification of Theorem 4.2 (two levels of features with ReL.U activation). From left to right: the objective value, NC1
(within-class variability), NC2 (similarity of the features to OF), and NC3 (alignment between the weights and the features).
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Our Numerical Results - Extended UFM

Setting: K = 5,d = 20, n = 100, Ay, = 0.005, Ay, = 0.0025, and A, = 0.001
(no bias is used). Plain gradient descent optimization with step-size 0.1.

Top: no RelLU (the features are: Wy H; and Hj).

Bottom: with ReLU (the features are: o(W;H;) and Hy).

Figure 8. Verification of Theorem 4.1 (two levels of features). From left to right: the objective value, NC1 (within-class variability), NC2
(similarity of the features to OF), and NC3 (alignment between the weights and the features).

i

Figure 9. Verification of Theorem 4.2 (two levels of features with ReLU activation). From left to right: the objective value, NC1
(within-class variability), NC2 (similarity of the features to OF), and NC3 (alignment between the weights and the features).
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Our Numerical Results - ResNet18 MNIST

Our experiments (gradual collapse across layers and structure only in final
features)

0.4,
— FCinput — FCinput — FCinput
0.4, ResBlockd input ResBlockd input
2 .03 06 -
& S Loz
Sows Z 021 Z 04 Z
2 1\ 0.2
o000 0.0 0.0 0.0
0 25 s 75 100 0 25 s 75 100 0 25 50 75 100 0 550 75 100
Epoch Epoch Epoch Epoch
- — Fcinput — FCinput — FCinput
0a ResBlockd input 08 Reslockd input 08

Aceuracy

Ne1
5 B N W
ne2
N o
N3

(S

[ 75 75 100 (] E 75 100 (4 25 50 75 100 o 2 50 75 100
Epoch Epoch

50
Epoch

Figure 5. NC metrics for ResNet18 trained on MNIST. Top: MSE loss, weight decay, and no bias; Bottom: Cross-entropy loss and weight
decay. From left to right: training’s objective value and accuracy, NC1 (within-class variability), NC2 (similarity of the centered features
to simplex ETF), and NC3 (alignment between the weights and the features).
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Our Numerical Results - ResNet18 CIFAR10

Our experiments (gradual collapse across layers and structure only in final

features)
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Figure 10. NC metrics for ResNet18 trained on CIFAR 10 with MSE loss, weight decay, and no bias. From left to right: training’s objective
value and accuracy, NC1 (within-class variability), NC2 (similarity of the centered features to simplex ETF), and NC3 (alignment between

the weights and the features).
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Conclusion

@ We characterized the (global) minimizers of the UFM for regularized MSE
loss, showing some distinctions from the NC results that have been obtain for
the cross-entropy loss in recent works.

o We mitigated the inability of the plain UFM to capture any NC behavior that
happens across depth by adding another layer of weights as well as ReLU
nonlinearity to the model and generalized our previous results.

@ We empirically verified the theorems and demonstrated the usefulness of our
nonlinear extended UFM in modeling the (depthwise) NC phenomenon that
occurs in the training of practical networks.

@ We believe that it may not be possible to show positive effects of NC on the
generalization without departing from the plain UFM (Linear model on-top of
features) towards the nonlinear extended UFM (shallow MLP on-top of

features).
Thank You
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