
Meta-Learning Hypothesis Spaces for Sequential Decision-making
Parnian Kassraie, Jonas Rothfuss, Andreas Krause

Motivation: Sequential Decision-making

2

Receive reward

Interact with environment

Repeat

Sequential Decision Problems:

• Bandits / Bayesian Optimization

• Active Learning

• Model-based RL

Motivation: Sequential Decision-making

2

Receive reward

Interact with environment

Repeat

Sequential Decision Problems:

• Bandits / Bayesian Optimization

• Active Learning

• Model-based RL

explore

exploit

Confidence sets are great for
guiding explorations! width current uncertainty

center current knowledge

Hypothesis Spaces and Confidence Sets

3

Hk⇤Hk̂

Hk1 Hk2 True sets (Valid)

Invalid

Meta-Learning Hypothesis Spaces

With oracle knowledge of k⇤,

|µt�1(k
⇤;x)� f(x)|  �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘
.

The meta-learned confidence bounds approach the oracle bounds,
as amounts of offline data grows.

We let k⇤(x, x0) = 1
5

P
j2J⇤ Pj(x)Pj(x0), where Pj is a degree-j Leg-

endre polynomial and J
⇤ is a random subset of size 5 from {1, · · · , 20}.

Using this kernel, we generate a random meta-data set of size m = n = 50.
On a test task, with a fresh new function f

⇤, we assess the confidence sets
at t = 4. We check 1) if the sets are valid and 2) if they are tight.

We commit to confidence sets of the form,

Ct�1(k1;x)

Ct�1(k2;x)

Ct�1(k
⇤;x)

Ct�1(k̂;x)

Goal: Find k̂ such that these sets are valid,

Empirical width of the confidence band.

Empirical coverage of the confidence band
vs. the true 1� �

Both quantities are averages over a sample
of size 1000 from X . Error bars show stan-
dard error for 50 runs of the problem.

If applied to Bandit optimization, the sets imply a sublinear regret guaran-
tee for the GP-UCB algorithm using k̂. This regret bound approaches that
of the oracle algorithm.

Sequential decision-making describes a class of problems where a learner
sequentially interacts with an unknown stochastic environment, with the
goal of maximizing a reward.

Obtaining reliable confidence sequences for unknown target functions is
a central challenge in sequential decision-making tasks, e.g., Bayesian
Optimization and model-based RL.

These confidence sets are typically constructed by relying on oracle
knowledge of the hypothesis space, e.g., a known RKHS. This is a strong
assumption.

We propose any-time valid confidence sets that rely on a meta-learned
hypothesis space, instead of assuming oracle knowledge.

Meta-Learning Hypothesis Spaces

With oracle knowledge of k⇤,

|µt�1(k
⇤;x)� f(x)|  �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘
.

The meta-learned confidence bounds approach the oracle bounds,
as amounts of offline data grows.

We let k⇤(x, x0) = 1
5

P
j2J⇤ Pj(x)Pj(x0), where Pj is a degree-j Leg-

endre polynomial and J
⇤ is a random subset of size 5 from {1, · · · , 20}.

Using this kernel, we generate a random meta-data set of size m = n = 50.
On a test task, with a fresh new function f

⇤, we assess the confidence sets
at t = 4. We check 1) if the sets are valid and 2) if they are tight.

We commit to confidence sets of the form,

Ct�1(k1;x)

Ct�1(k2;x)

Ct�1(k
⇤;x)

Ct�1(k̂;x)

Goal: Find k̂ such that these sets are valid,

Empirical width of the confidence band.

Empirical coverage of the confidence band
vs. the true 1� �

Both quantities are averages over a sample
of size 1000 from X . Error bars show stan-
dard error for 50 runs of the problem.

If applied to Bandit optimization, the sets imply a sublinear regret guaran-
tee for the GP-UCB algorithm using k̂. This regret bound approaches that
of the oracle algorithm.

Sequential decision-making describes a class of problems where a learner
sequentially interacts with an unknown stochastic environment, with the
goal of maximizing a reward.

Obtaining reliable confidence sequences for unknown target functions is
a central challenge in sequential decision-making tasks, e.g., Bayesian
Optimization and model-based RL.

These confidence sets are typically constructed by relying on oracle
knowledge of the hypothesis space, e.g., a known RKHS. This is a strong
assumption.

We propose any-time valid confidence sets that rely on a meta-learned
hypothesis space, instead of assuming oracle knowledge.

Invalid

Hypothesis Spaces and Confidence Sets

3

Hk⇤Hk̂

Hk1 Hk2

Valid but too wide

True sets (Valid)

Invalid

Meta-Learning Hypothesis Spaces

With oracle knowledge of k⇤,

|µt�1(k
⇤;x)� f(x)|  �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘
.

The meta-learned confidence bounds approach the oracle bounds,
as amounts of offline data grows.

We let k⇤(x, x0) = 1
5

P
j2J⇤ Pj(x)Pj(x0), where Pj is a degree-j Leg-

endre polynomial and J
⇤ is a random subset of size 5 from {1, · · · , 20}.

Using this kernel, we generate a random meta-data set of size m = n = 50.
On a test task, with a fresh new function f

⇤, we assess the confidence sets
at t = 4. We check 1) if the sets are valid and 2) if they are tight.

We commit to confidence sets of the form,

Ct�1(k1;x)

Ct�1(k2;x)

Ct�1(k
⇤;x)

Ct�1(k̂;x)

Goal: Find k̂ such that these sets are valid,

Empirical width of the confidence band.

Empirical coverage of the confidence band
vs. the true 1� �

Both quantities are averages over a sample
of size 1000 from X . Error bars show stan-
dard error for 50 runs of the problem.

If applied to Bandit optimization, the sets imply a sublinear regret guaran-
tee for the GP-UCB algorithm using k̂. This regret bound approaches that
of the oracle algorithm.

Sequential decision-making describes a class of problems where a learner
sequentially interacts with an unknown stochastic environment, with the
goal of maximizing a reward.

Obtaining reliable confidence sequences for unknown target functions is
a central challenge in sequential decision-making tasks, e.g., Bayesian
Optimization and model-based RL.

These confidence sets are typically constructed by relying on oracle
knowledge of the hypothesis space, e.g., a known RKHS. This is a strong
assumption.

We propose any-time valid confidence sets that rely on a meta-learned
hypothesis space, instead of assuming oracle knowledge.

Meta-Learning Hypothesis Spaces

With oracle knowledge of k⇤,

|µt�1(k
⇤;x)� f(x)|  �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘
.

The meta-learned confidence bounds approach the oracle bounds,
as amounts of offline data grows.

We let k⇤(x, x0) = 1
5

P
j2J⇤ Pj(x)Pj(x0), where Pj is a degree-j Leg-

endre polynomial and J
⇤ is a random subset of size 5 from {1, · · · , 20}.

Using this kernel, we generate a random meta-data set of size m = n = 50.
On a test task, with a fresh new function f

⇤, we assess the confidence sets
at t = 4. We check 1) if the sets are valid and 2) if they are tight.

We commit to confidence sets of the form,

Ct�1(k1;x)

Ct�1(k2;x)

Ct�1(k
⇤;x)

Ct�1(k̂;x)

Goal: Find k̂ such that these sets are valid,

Empirical width of the confidence band.

Empirical coverage of the confidence band
vs. the true 1� �

Both quantities are averages over a sample
of size 1000 from X . Error bars show stan-
dard error for 50 runs of the problem.

If applied to Bandit optimization, the sets imply a sublinear regret guaran-
tee for the GP-UCB algorithm using k̂. This regret bound approaches that
of the oracle algorithm.

Sequential decision-making describes a class of problems where a learner
sequentially interacts with an unknown stochastic environment, with the
goal of maximizing a reward.

Obtaining reliable confidence sequences for unknown target functions is
a central challenge in sequential decision-making tasks, e.g., Bayesian
Optimization and model-based RL.

These confidence sets are typically constructed by relying on oracle
knowledge of the hypothesis space, e.g., a known RKHS. This is a strong
assumption.

We propose any-time valid confidence sets that rely on a meta-learned
hypothesis space, instead of assuming oracle knowledge.

Meta-Learning Hypothesis Spaces

With oracle knowledge of k⇤,

|µt�1(k
⇤;x)� f(x)|  �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘
.

The meta-learned confidence bounds approach the oracle bounds,
as amounts of offline data grows.

We let k⇤(x, x0) = 1
5

P
j2J⇤ Pj(x)Pj(x0), where Pj is a degree-j Leg-

endre polynomial and J
⇤ is a random subset of size 5 from {1, · · · , 20}.

Using this kernel, we generate a random meta-data set of size m = n = 50.
On a test task, with a fresh new function f

⇤, we assess the confidence sets
at t = 4. We check 1) if the sets are valid and 2) if they are tight.

We commit to confidence sets of the form,

Ct�1(k1;x)

Ct�1(k2;x)

Ct�1(k
⇤;x)

Ct�1(k̂;x)

Goal: Find k̂ such that these sets are valid,

Empirical width of the confidence band.

Empirical coverage of the confidence band
vs. the true 1� �

Both quantities are averages over a sample
of size 1000 from X . Error bars show stan-
dard error for 50 runs of the problem.

If applied to Bandit optimization, the sets imply a sublinear regret guaran-
tee for the GP-UCB algorithm using k̂. This regret bound approaches that
of the oracle algorithm.

Sequential decision-making describes a class of problems where a learner
sequentially interacts with an unknown stochastic environment, with the
goal of maximizing a reward.

Obtaining reliable confidence sequences for unknown target functions is
a central challenge in sequential decision-making tasks, e.g., Bayesian
Optimization and model-based RL.

These confidence sets are typically constructed by relying on oracle
knowledge of the hypothesis space, e.g., a known RKHS. This is a strong
assumption.

We propose any-time valid confidence sets that rely on a meta-learned
hypothesis space, instead of assuming oracle knowledge.

Valid but too wideInvalid

Hypothesis Spaces and Confidence Sets

3

Hk⇤Hk̂

Hk1 Hk2

Valid and tight

Valid but too wide

True sets (Valid)

Invalid

Meta-Learning Hypothesis Spaces

With oracle knowledge of k⇤,

|µt�1(k
⇤;x)� f(x)|  �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘
.

The meta-learned confidence bounds approach the oracle bounds,
as amounts of offline data grows.

We let k⇤(x, x0) = 1
5

P
j2J⇤ Pj(x)Pj(x0), where Pj is a degree-j Leg-

endre polynomial and J
⇤ is a random subset of size 5 from {1, · · · , 20}.

Using this kernel, we generate a random meta-data set of size m = n = 50.
On a test task, with a fresh new function f

⇤, we assess the confidence sets
at t = 4. We check 1) if the sets are valid and 2) if they are tight.

We commit to confidence sets of the form,

Ct�1(k1;x)

Ct�1(k2;x)

Ct�1(k
⇤;x)

Ct�1(k̂;x)

Goal: Find k̂ such that these sets are valid,

Empirical width of the confidence band.

Empirical coverage of the confidence band
vs. the true 1� �

Both quantities are averages over a sample
of size 1000 from X . Error bars show stan-
dard error for 50 runs of the problem.

If applied to Bandit optimization, the sets imply a sublinear regret guaran-
tee for the GP-UCB algorithm using k̂. This regret bound approaches that
of the oracle algorithm.

Sequential decision-making describes a class of problems where a learner
sequentially interacts with an unknown stochastic environment, with the
goal of maximizing a reward.

Obtaining reliable confidence sequences for unknown target functions is
a central challenge in sequential decision-making tasks, e.g., Bayesian
Optimization and model-based RL.

These confidence sets are typically constructed by relying on oracle
knowledge of the hypothesis space, e.g., a known RKHS. This is a strong
assumption.

We propose any-time valid confidence sets that rely on a meta-learned
hypothesis space, instead of assuming oracle knowledge.

Meta-Learning Hypothesis Spaces

With oracle knowledge of k⇤,

|µt�1(k
⇤;x)� f(x)|  �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘
.

The meta-learned confidence bounds approach the oracle bounds,
as amounts of offline data grows.

We let k⇤(x, x0) = 1
5

P
j2J⇤ Pj(x)Pj(x0), where Pj is a degree-j Leg-

endre polynomial and J
⇤ is a random subset of size 5 from {1, · · · , 20}.

Using this kernel, we generate a random meta-data set of size m = n = 50.
On a test task, with a fresh new function f

⇤, we assess the confidence sets
at t = 4. We check 1) if the sets are valid and 2) if they are tight.

We commit to confidence sets of the form,

Ct�1(k1;x)

Ct�1(k2;x)

Ct�1(k
⇤;x)

Ct�1(k̂;x)

Goal: Find k̂ such that these sets are valid,

Empirical width of the confidence band.

Empirical coverage of the confidence band
vs. the true 1� �

Both quantities are averages over a sample
of size 1000 from X . Error bars show stan-
dard error for 50 runs of the problem.

If applied to Bandit optimization, the sets imply a sublinear regret guaran-
tee for the GP-UCB algorithm using k̂. This regret bound approaches that
of the oracle algorithm.

Sequential decision-making describes a class of problems where a learner
sequentially interacts with an unknown stochastic environment, with the
goal of maximizing a reward.

Obtaining reliable confidence sequences for unknown target functions is
a central challenge in sequential decision-making tasks, e.g., Bayesian
Optimization and model-based RL.

These confidence sets are typically constructed by relying on oracle
knowledge of the hypothesis space, e.g., a known RKHS. This is a strong
assumption.

We propose any-time valid confidence sets that rely on a meta-learned
hypothesis space, instead of assuming oracle knowledge.

Meta-Learning Hypothesis Spaces

With oracle knowledge of k⇤,

|µt�1(k
⇤;x)� f(x)|  �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘
.

The meta-learned confidence bounds approach the oracle bounds,
as amounts of offline data grows.

We let k⇤(x, x0) = 1
5

P
j2J⇤ Pj(x)Pj(x0), where Pj is a degree-j Leg-

endre polynomial and J
⇤ is a random subset of size 5 from {1, · · · , 20}.

Using this kernel, we generate a random meta-data set of size m = n = 50.
On a test task, with a fresh new function f

⇤, we assess the confidence sets
at t = 4. We check 1) if the sets are valid and 2) if they are tight.

We commit to confidence sets of the form,

Ct�1(k1;x)

Ct�1(k2;x)

Ct�1(k
⇤;x)

Ct�1(k̂;x)

Goal: Find k̂ such that these sets are valid,

Empirical width of the confidence band.

Empirical coverage of the confidence band
vs. the true 1� �

Both quantities are averages over a sample
of size 1000 from X . Error bars show stan-
dard error for 50 runs of the problem.

If applied to Bandit optimization, the sets imply a sublinear regret guaran-
tee for the GP-UCB algorithm using k̂. This regret bound approaches that
of the oracle algorithm.

Sequential decision-making describes a class of problems where a learner
sequentially interacts with an unknown stochastic environment, with the
goal of maximizing a reward.

Obtaining reliable confidence sequences for unknown target functions is
a central challenge in sequential decision-making tasks, e.g., Bayesian
Optimization and model-based RL.

These confidence sets are typically constructed by relying on oracle
knowledge of the hypothesis space, e.g., a known RKHS. This is a strong
assumption.

We propose any-time valid confidence sets that rely on a meta-learned
hypothesis space, instead of assuming oracle knowledge.

Meta-Learning Hypothesis Spaces

With oracle knowledge of k⇤,

|µt�1(k
⇤;x)� f(x)|  �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘
.

The meta-learned confidence bounds approach the oracle bounds,
as amounts of offline data grows.

We let k⇤(x, x0) = 1
5

P
j2J⇤ Pj(x)Pj(x0), where Pj is a degree-j Leg-

endre polynomial and J
⇤ is a random subset of size 5 from {1, · · · , 20}.

Using this kernel, we generate a random meta-data set of size m = n = 50.
On a test task, with a fresh new function f

⇤, we assess the confidence sets
at t = 4. We check 1) if the sets are valid and 2) if they are tight.

We commit to confidence sets of the form,

Ct�1(k1;x)

Ct�1(k2;x)

Ct�1(k
⇤;x)

Ct�1(k̂;x)

Goal: Find k̂ such that these sets are valid,

Empirical width of the confidence band.

Empirical coverage of the confidence band
vs. the true 1� �

Both quantities are averages over a sample
of size 1000 from X . Error bars show stan-
dard error for 50 runs of the problem.

If applied to Bandit optimization, the sets imply a sublinear regret guaran-
tee for the GP-UCB algorithm using k̂. This regret bound approaches that
of the oracle algorithm.

Sequential decision-making describes a class of problems where a learner
sequentially interacts with an unknown stochastic environment, with the
goal of maximizing a reward.

Obtaining reliable confidence sequences for unknown target functions is
a central challenge in sequential decision-making tasks, e.g., Bayesian
Optimization and model-based RL.

These confidence sets are typically constructed by relying on oracle
knowledge of the hypothesis space, e.g., a known RKHS. This is a strong
assumption.

We propose any-time valid confidence sets that rely on a meta-learned
hypothesis space, instead of assuming oracle knowledge.

Valid but too wideInvalid Valid and tight

Hypothesis Spaces and Confidence Sets

3

Hk⇤Hk̂

Hk1 Hk2

Valid and tight

Valid but too wide

True sets (Valid)

Invalid

Meta-Learning Hypothesis Spaces

With oracle knowledge of k⇤,

|µt�1(k
⇤;x)� f(x)|  �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘
.

The meta-learned confidence bounds approach the oracle bounds,
as amounts of offline data grows.

We let k⇤(x, x0) = 1
5

P
j2J⇤ Pj(x)Pj(x0), where Pj is a degree-j Leg-

endre polynomial and J
⇤ is a random subset of size 5 from {1, · · · , 20}.

Using this kernel, we generate a random meta-data set of size m = n = 50.
On a test task, with a fresh new function f

⇤, we assess the confidence sets
at t = 4. We check 1) if the sets are valid and 2) if they are tight.

We commit to confidence sets of the form,

Ct�1(k1;x)

Ct�1(k2;x)

Ct�1(k
⇤;x)

Ct�1(k̂;x)

Goal: Find k̂ such that these sets are valid,

Empirical width of the confidence band.

Empirical coverage of the confidence band
vs. the true 1� �

Both quantities are averages over a sample
of size 1000 from X . Error bars show stan-
dard error for 50 runs of the problem.

If applied to Bandit optimization, the sets imply a sublinear regret guaran-
tee for the GP-UCB algorithm using k̂. This regret bound approaches that
of the oracle algorithm.

Sequential decision-making describes a class of problems where a learner
sequentially interacts with an unknown stochastic environment, with the
goal of maximizing a reward.

Obtaining reliable confidence sequences for unknown target functions is
a central challenge in sequential decision-making tasks, e.g., Bayesian
Optimization and model-based RL.

These confidence sets are typically constructed by relying on oracle
knowledge of the hypothesis space, e.g., a known RKHS. This is a strong
assumption.

We propose any-time valid confidence sets that rely on a meta-learned
hypothesis space, instead of assuming oracle knowledge.

Meta-Learning Hypothesis Spaces

With oracle knowledge of k⇤,

|µt�1(k
⇤;x)� f(x)|  �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘
.

The meta-learned confidence bounds approach the oracle bounds,
as amounts of offline data grows.

We let k⇤(x, x0) = 1
5

P
j2J⇤ Pj(x)Pj(x0), where Pj is a degree-j Leg-

endre polynomial and J
⇤ is a random subset of size 5 from {1, · · · , 20}.

Using this kernel, we generate a random meta-data set of size m = n = 50.
On a test task, with a fresh new function f

⇤, we assess the confidence sets
at t = 4. We check 1) if the sets are valid and 2) if they are tight.

We commit to confidence sets of the form,

Ct�1(k1;x)

Ct�1(k2;x)

Ct�1(k
⇤;x)

Ct�1(k̂;x)

Goal: Find k̂ such that these sets are valid,

Empirical width of the confidence band.

Empirical coverage of the confidence band
vs. the true 1� �

Both quantities are averages over a sample
of size 1000 from X . Error bars show stan-
dard error for 50 runs of the problem.

If applied to Bandit optimization, the sets imply a sublinear regret guaran-
tee for the GP-UCB algorithm using k̂. This regret bound approaches that
of the oracle algorithm.

Sequential decision-making describes a class of problems where a learner
sequentially interacts with an unknown stochastic environment, with the
goal of maximizing a reward.

Obtaining reliable confidence sequences for unknown target functions is
a central challenge in sequential decision-making tasks, e.g., Bayesian
Optimization and model-based RL.

These confidence sets are typically constructed by relying on oracle
knowledge of the hypothesis space, e.g., a known RKHS. This is a strong
assumption.

We propose any-time valid confidence sets that rely on a meta-learned
hypothesis space, instead of assuming oracle knowledge.

Meta-Learning Hypothesis Spaces

With oracle knowledge of k⇤,

|µt�1(k
⇤;x)� f(x)|  �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘
.

The meta-learned confidence bounds approach the oracle bounds,
as amounts of offline data grows.

We let k⇤(x, x0) = 1
5

P
j2J⇤ Pj(x)Pj(x0), where Pj is a degree-j Leg-

endre polynomial and J
⇤ is a random subset of size 5 from {1, · · · , 20}.

Using this kernel, we generate a random meta-data set of size m = n = 50.
On a test task, with a fresh new function f

⇤, we assess the confidence sets
at t = 4. We check 1) if the sets are valid and 2) if they are tight.

We commit to confidence sets of the form,

Ct�1(k1;x)

Ct�1(k2;x)

Ct�1(k
⇤;x)

Ct�1(k̂;x)

Goal: Find k̂ such that these sets are valid,

Empirical width of the confidence band.

Empirical coverage of the confidence band
vs. the true 1� �

Both quantities are averages over a sample
of size 1000 from X . Error bars show stan-
dard error for 50 runs of the problem.

If applied to Bandit optimization, the sets imply a sublinear regret guaran-
tee for the GP-UCB algorithm using k̂. This regret bound approaches that
of the oracle algorithm.

Sequential decision-making describes a class of problems where a learner
sequentially interacts with an unknown stochastic environment, with the
goal of maximizing a reward.

Obtaining reliable confidence sequences for unknown target functions is
a central challenge in sequential decision-making tasks, e.g., Bayesian
Optimization and model-based RL.

These confidence sets are typically constructed by relying on oracle
knowledge of the hypothesis space, e.g., a known RKHS. This is a strong
assumption.

We propose any-time valid confidence sets that rely on a meta-learned
hypothesis space, instead of assuming oracle knowledge.

Meta-Learning Hypothesis Spaces

With oracle knowledge of k⇤,

|µt�1(k
⇤;x)� f(x)|  �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘
.

The meta-learned confidence bounds approach the oracle bounds,
as amounts of offline data grows.

We let k⇤(x, x0) = 1
5

P
j2J⇤ Pj(x)Pj(x0), where Pj is a degree-j Leg-

endre polynomial and J
⇤ is a random subset of size 5 from {1, · · · , 20}.

Using this kernel, we generate a random meta-data set of size m = n = 50.
On a test task, with a fresh new function f

⇤, we assess the confidence sets
at t = 4. We check 1) if the sets are valid and 2) if they are tight.

We commit to confidence sets of the form,

Ct�1(k1;x)

Ct�1(k2;x)

Ct�1(k
⇤;x)

Ct�1(k̂;x)

Goal: Find k̂ such that these sets are valid,

Empirical width of the confidence band.

Empirical coverage of the confidence band
vs. the true 1� �

Both quantities are averages over a sample
of size 1000 from X . Error bars show stan-
dard error for 50 runs of the problem.

If applied to Bandit optimization, the sets imply a sublinear regret guaran-
tee for the GP-UCB algorithm using k̂. This regret bound approaches that
of the oracle algorithm.

Sequential decision-making describes a class of problems where a learner
sequentially interacts with an unknown stochastic environment, with the
goal of maximizing a reward.

Obtaining reliable confidence sequences for unknown target functions is
a central challenge in sequential decision-making tasks, e.g., Bayesian
Optimization and model-based RL.

These confidence sets are typically constructed by relying on oracle
knowledge of the hypothesis space, e.g., a known RKHS. This is a strong
assumption.

We propose any-time valid confidence sets that rely on a meta-learned
hypothesis space, instead of assuming oracle knowledge.

Meta-Learning Hypothesis Spaces

Algorithm 1 Iterative META-KEL solver
1: Input Dm,n, �, kj : 81  j  p, ✏, Tstop

2: Initialize (↵(0)
1 , · · · ,↵(0)

m ,⌘(0))
3: t 1
4: while t  Tstop or L1(↵

(t�1)
1 , · · · ,↵(t�1)

1 ;⌘(t�1)) � ✏ do
5: ⌘(t) argminL1(↵

(t�1)
1 , · · · ,↵(t�1)

m ;⌘)
6: for all s 2 [1, · · · ,m] do
7: ↵(t)

s argminL2(⌘(t);↵s)
8: end for
9: t t+ 1

10: end while

Figure 7: Examples of possible functions fs for the meta-dataset.

How can we find a good Hk̂?How can we find a good

Valid but too wideInvalid Valid and tight

Our approach: Meta-learning

4

Meta-Learning Hypothesis Spaces for Sequential Decision-making
Parnian Kassraie, Jonas Rothfuss, Andreas Krause

Model

References
[1]

Meta-Learning Hypothesis Spaces

Curi, S., Berkenkamp, F., and Krause, A. Efficient model-based reinforcement learning through
optimistic policy search and planning. arXiv preprint arXiv:2006.08684, 2020.

Evgeniou, T. and Pontil, M. Regularized multi–task learning. In Proceedings of the tenth ACM
SIGKDD international conference on Knowledge discovery and data mining, pp. 109–117, 2004.

Gneiting, T., Balabdaoui, F., and Raftery, A. E. Probabilistic forecasts, calibration and sharpness.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 69(2):243–268,
2007.

Gönen, M. and Alpaydın, E. Multiple kernel learning algorithms. The Journal of Machine Learning
Research, 12:2211–2268, 2011.

Hao, B., Lattimore, T., and Wang, M. High-dimensional sparse linear bandits. arXiv preprint
arXiv:2011.04020, 2020.

Jacot, A., Gabriel, F., and Hongler, C. Neural tangent kernel: Convergence and generalization in
neural networks. arXiv preprint arXiv:1806.07572, 2018.

Javanmard, A. and Montanari, A. Confidence intervals and hypothesis testing for high-dimensional
regression. The Journal of Machine Learning Research, 15(1):2869–2909, 2014.

Kakade, S., Krishnamurthy, A., Lowrey, K., Ohnishi, M., and Sun, W. Information theoretic regret
bounds for online nonlinear control. arXiv preprint arXiv:2006.12466, 2020.

Kim, G.-S. and Paik, M. C. Doubly-robust lasso bandit. arXiv preprint arXiv:1907.11362, 2019.

Kloft, M., Brefeld, U., Sonnenburg, S., and Zien, A. Lp-norm multiple kernel learning. The Journal
of Machine Learning Research, 12:953–997, 2011.

Koltchinskii, V. and Yuan, M. Sparse recovery in large ensembles of kernel machines. In Proceed-
ings of COLT, volume 69, 2008.

Kveton, B., Mladenov, M., Hsu, C.-W., Zaheer, M., Szepesvari, C., and Boutilier, C. Meta-learning
bandit policies by gradient ascent. arXiv preprint arXiv:2006.05094, 2020.

Liu, H. and Zhang, J. Estimation consistency of the group lasso and its applications. In Artificial
Intelligence and Statistics, pp. 376–383. PMLR, 2009.

Lounici, K., Pontil, M., Van De Geer, S., and Tsybakov, A. B. Oracle inequalities and optimal
inference under group sparsity. The annals of statistics, 39(4):2164–2204, 2011.

Massias, M., Gramfort, A., and Salmon, J. Celer: a fast solver for the lasso with dual extrapolation.
In Proceedings of the 35th International Conference on Machine Learning, volume 80, pp.
3321–3330, 2018.

Ong, C. S., Smola, A. J., and Williamson, R. C. Learning the kernel with hyperkernels. Journal of
Machine Learning Research, 2005.

Rahimi, A., Recht, B., et al. Random features for large-scale kernel machines. In NIPS, pp. 5.
Citeseer, 2007.

Rothfuss, J., Fortuin, V., Josifoski, M., and Krause, A. Pacoh: Bayes-optimal meta-learning with
pac-guarantees. In International Conference on Machine Learning, pp. 9116–9126. PMLR,
2021a.

Rothfuss, J., Heyn, D., Chen, J., and Krause, A. Meta-learning reliable priors in the function space.
In Advances in Neural Information Processing Systems, 2021b.

Russo, D. and Van Roy, B. Learning to optimize via posterior sampling. Mathematics of Operations
Research, 39(4):1221–1243, 2014.

[2]

Meta-Learning Hypothesis Spaces

References
Abbasi-Yadkori, Y., Pál, D., and Szepesvári, C. Improved algorithms for linear stochastic bandits.

In Advances in Neural Information Processing Systems, volume 24, 2011.

Bach, F., Jenatton, R., Mairal, J., and Obozinski, G. Optimization with sparsity-inducing penalties.
arXiv preprint arXiv:1108.0775, 2011.

Bach, F. R. Consistency of the group lasso and multiple kernel learning. Journal of Machine
Learning Research, 9(6), 2008.

Bach, F. R., Lanckriet, G. R., and Jordan, M. I. Multiple kernel learning, conic duality, and the smo
algorithm. In Proceedings of the twenty-first international conference on Machine learning, pp.
6, 2004.

Bastani, H. and Bayati, M. Online decision making with high-dimensional covariates. Operations
Research, 68(1):276–294, 2020.

Basu, S., Kveton, B., Zaheer, M., and Szepesvári, C. No regrets for learning the prior in bandits.
Advances in Neural Information Processing Systems, 34, 2021.

Berkenkamp, F., Turchetta, M., Schoellig, A. P., and Krause, A. Safe model-based reinforcement
learning with stability guarantees. arXiv preprint arXiv:1705.08551, 2017.

Berkenkamp, F., Schoellig, A. P., and Krause, A. No-regret bayesian optimization with unknown
hyperparameters. arXiv preprint arXiv:1901.03357, 2019.

Bickel, P. J., Ritov, Y., and Tsybakov, A. B. Simultaneous analysis of lasso and dantzig selector.
The Annals of statistics, 37(4):1705–1732, 2009.

Bogunovic, I. and Krause, A. Misspecified Gaussian process bandit optimization. In Conference
on Neural Information Processing Systems (NeurIPS), 2021.

Boutilier, C., Hsu, C.-w., Kveton, B., Mladenov, M., Szepesvari, C., and Zaheer, M. Differentiable
meta-learning of bandit policies. In Advances in Neural Information Processing Systems. Curran
Associates, Inc., 2020.

Boyd, S., Boyd, S. P., and Vandenberghe, L. Convex optimization. Cambridge University Press,
2004.

Bühlmann, P. and Van De Geer, S. Statistics for high-dimensional data: methods, theory and
applications. Springer Science & Business Media, 2011.

Bunea, F., Lederer, J., and She, Y. The group square-root lasso: Theoretical properties and fast
algorithms. IEEE Transactions on Information Theory, 60(2):1313–1325, 2013.

Cavalier, L., Golubev, G., Picard, D., and Tsybakov, A. Oracle inequalities for inverse problems.
The Annals of Statistics, 30(3):843–874, 2002.

Cella, L. and Pontil, M. Multi-task and meta-learning with sparse linear bandits. In Uncertainty in
Artificial Intelligence, pp. 1692–1702. PMLR, 2021.

Cella, L., Lazaric, A., and Pontil, M. Meta-learning with stochastic linear bandits. In International
Conference on Machine Learning, pp. 1360–1370. PMLR, 2020.

Chowdhury, S. R. and Gopalan, A. On kernelized multi-armed bandits. In International Conference
on Machine Learning, pp. 844–853. PMLR, 2017.

Cristianini, N., Kandola, J., Elisseeff, A., and Shawe-Taylor, J. On kernel target alignment. In
Innovations in machine learning, pp. 205–256. Springer, 2006.

Hk⇤
Hk̂

Hkfull

Confidence SetsOverview

Problem Setting

Meta-KeL

Meta-Learning Hypothesis Spaces

Figure 8: BO (minimization) with META-KEL. Upper plot shows the state at t = 5 and the lower plot at t = 55.

f 2 Hk⇤

fs 2 Hk⇤

w.h.p. {8x 2 X : f(x) 2 Ct�1(k
⇤;x)}

xt = argmax
x2X

Ct�1(k̂;x)

Jk⇤ ⇢ {1, · · · , 20}, |Jk⇤ | = 5

D.1. SAVI Poster

Interacting with the environment

yt = f
⇤(xt) + "t

xt 2 X , depends on the history (x1:t�1, y1:t�1)

X ⇢ Rd0 , compact

"t: �2 sub-Gussian, i.i.d.

f
⇤ : X ! R, f⇤ 2 Hk⇤ , kf⇤kk⇤  B

k
⇤ unknown

Find k̂ s.t. the confidence sets are valid

P
⇣
8x 2 X , 8t � 1 : f⇤(x) 2 Ct�1(k̂;x)

⌘

Meta-Learning Hypothesis Spaces

Figure 8: BO (minimization) with META-KEL. Upper plot shows the state at t = 5 and the lower plot at t = 55.

f 2 Hk⇤

fs 2 Hk⇤

w.h.p. {8x 2 X : f(x) 2 Ct�1(k
⇤;x)}

xt = argmax
x2X

Ct�1(k̂;x)

Jk⇤ ⇢ {1, · · · , 20}, |Jk⇤ | = 5

D.1. SAVI Poster

Interacting with the environment

yt = f
⇤(xt) + "t

xt 2 X , depends on the history (x1:t�1, y1:t�1)

X ⇢ Rd0 , compact

"t: �2 sub-Gussian, i.i.d.

f
⇤ : X ! R, f⇤ 2 Hk⇤ , kf⇤kk⇤  B

k
⇤ unknown

Find k̂ s.t. the confidence sets are valid

P
⇣
8x 2 X , 8t � 1 : f⇤(x) 2 Ct�1(k̂;x)

⌘

Meta-Learning Hypothesis Spaces

Figure 8: BO (minimization) with META-KEL. Upper plot shows the state at t = 5 and the lower plot at t = 55.

f 2 Hk⇤

fs 2 Hk⇤

w.h.p. {8x 2 X : f(x) 2 Ct�1(k
⇤;x)}

xt = argmax
x2X

Ct�1(k̂;x)

Jk⇤ ⇢ {1, · · · , 20}, |Jk⇤ | = 5

D.1. SAVI Poster

Interacting with the environment

yt = f
⇤(xt) + "t

xt 2 X , depends on the history (x1:t�1, y1:t�1)

X ⇢ Rd0 , compact

"t: �2 sub-Gussian, i.i.d.

f
⇤ : X ! R, f⇤ 2 Hk⇤ , kf⇤kk⇤  B

k
⇤ unknown

Find k̂ s.t. the confidence sets are valid

P
⇣
8x 2 X , 8t � 1 : f⇤(x) 2 Ct�1(k̂;x)

⌘

Meta-Learning Hypothesis Spaces

Figure 8: BO (minimization) with META-KEL. Upper plot shows the state at t = 5 and the lower plot at t = 55.

f 2 Hk⇤

fs 2 Hk⇤

w.h.p. {8x 2 X : f(x) 2 Ct�1(k
⇤;x)}

xt = argmax
x2X

Ct�1(k̂;x)

Jk⇤ ⇢ {1, · · · , 20}, |Jk⇤ | = 5

yt = f
⇤(xt) + ✏t

xt 2 X , depends on the history (x1:t�1, y1:t�1)

X ⇢ Rd0 , compact

✏t: �2 sub-Gussian, i.i.d.

f
⇤ : X ! R, f⇤ 2 Hk⇤ , kf⇤kk⇤  B

k
⇤ unknown

Find k̂ s.t. the confidence sets are valid

P
⇣
8x 2 X , 8t � 1 : f⇤(x) 2 Ct�1(k̂;x)

⌘

Ct�1(k;x) = [µt�1(k;x)± ⌫t�t�1(k;x)]

Meta-Learning Hypothesis Spaces

Figure 8: BO (minimization) with META-KEL. Upper plot shows the state at t = 5 and the lower plot at t = 55.

f 2 Hk⇤

fs 2 Hk⇤

w.h.p. {8x 2 X : f(x) 2 Ct�1(k
⇤;x)}

xt = argmax
x2X

Ct�1(k̂;x)

Jk⇤ ⇢ {1, · · · , 20}, |Jk⇤ | = 5

yt = f
⇤(xt) + ✏t

xt 2 X , depends on the history (x1:t�1, y1:t�1)

X ⇢ Rd0 , compact

✏t: �2 sub-Gussian, i.i.d.

f
⇤ : X ! R, f⇤ 2 Hk⇤ , kf⇤kk⇤  B

k
⇤ unknown

Find k̂ s.t. the confidence sets are valid

P
⇣
8x 2 X , 8t � 1 : f⇤(x) 2 Ct�1(k̂;x)

⌘

Ct�1(k;x) = [µt�1(k;x)± ⌫t�t�1(k;x)]

Meta-Learning Hypothesis Spaces

Figure 8: BO (minimization) with META-KEL. Upper plot shows the state at t = 5 and the lower plot at t = 55.

f 2 Hk⇤

fs 2 Hk⇤

w.h.p. {8x 2 X : f(x) 2 Ct�1(k
⇤;x)}

xt = argmax
x2X

Ct�1(k̂;x)

Jk⇤ ⇢ {1, · · · , 20}, |Jk⇤ | = 5

D.1. SAVI Poster

Interacting with the environment

yt = f
⇤(xt) + "t

xt 2 X , depends on the history (x1:t�1, y1:t�1)

X ⇢ Rd0 , compact

"t: �2 sub-Gussian, i.i.d.

f
⇤ : X ! R, f⇤ 2 Hk⇤ , kf⇤kk⇤  B

k
⇤ unknown

Find k̂ s.t. the confidence sets are valid

P
⇣
8x 2 X , 8t � 1 : f⇤(x) 2 Ct�1(k̂;x)

⌘
� 1� �

Meta-Learning Hypothesis Spaces

Ct�1(k;x) = [µt�1(k;x)± ⌫t�t�1(k;x)]

µt�1(k;x) = kT
t�1(x)(Kt�1 + �̄

2I)�1yt�1 (D.1)

�
2
t�1(k;x) = k(x,x)� kT

t�1(x)(Kt�1 + �̄
2I)�1kt�1(x)

Data from similar tasks is available (fixed design)

ys,i = fs(xs,i) + "s,i

"s,i: also �
2 sub-Gussian, i.i.d.

fs : X ! R, fs 2 Hk⇤ , kfskk⇤  B

Meta-Learning Hypothesis Spaces

Ct�1(k;x) = [µt�1(k;x)± ⌫t�t�1(k;x)]

µt�1(k;x) = kT
t�1(x)(Kt�1 + �̄

2I)�1yt�1 (D.1)

�
2
t�1(k;x) = k(x,x)� kT

t�1(x)(Kt�1 + �̄
2I)�1kt�1(x)

Data from similar tasks is available (fixed design)

ys,i = fs(xs,i) + "s,i

"s,i: also �
2 sub-Gussian, i.i.d.

fs : X ! R, fs 2 Hk⇤ , kfskk⇤  B

Meta-Learning Hypothesis Spaces

Ct�1(k;x) = [µt�1(k;x)± ⌫t�t�1(k;x)]

µt�1(k;x) = kT
t�1(x)(Kt�1 + �̄

2I)�1yt�1 (D.1)

�
2
t�1(k;x) = k(x,x)� kT

t�1(x)(Kt�1 + �̄
2I)�1kt�1(x)

Data from similar tasks is available (fixed design)

ys,i = fs(xs,i) + "s,i

"s,i: also �
2 sub-Gussian, i.i.d.

fs : X ! R, fs 2 Hk⇤ , kfskk⇤  B

s  m

i  n

Meta-Learning Hypothesis Spaces

Ct�1(k;x) = [µt�1(k;x)± ⌫t�t�1(k;x)]

µt�1(k;x) = kT
t�1(x)(Kt�1 + �̄

2I)�1yt�1 (D.1)

�
2
t�1(k;x) = k(x,x)� kT

t�1(x)(Kt�1 + �̄
2I)�1kt�1(x)

Data from similar tasks is available (fixed design)

ys,i = fs(xs,i) + "s,i, for 1  i  n and 1  s  m

"s,i: also �
2 sub-Gussian, i.i.d.

fs : X ! R, fs 2 Hk⇤ , kfskk⇤  B

s  m

i  n

Meta-Learning Hypothesis Spaces

Ct�1(k;x) = [µt�1(k;x)± ⌫t�t�1(k;x)]

µt�1(k;x) = kT
t�1(x)(Kt�1 + �̄

2I)�1yt�1 (D.1)

�
2
t�1(k;x) = k(x,x)� kT

t�1(x)(Kt�1 + �̄
2I)�1kt�1(x)

Data from m similar tasks is available (fixed design)

ys,i = fs(xs,i) + "s,i, for 1  i  n and 1  s  m

"s,i: also �
2 sub-Gussian, i.i.d.

fs : X ! R, fs 2 Hk⇤ , kfskk⇤  B

s  m

i  n

Assume that true kernel can be decomposed as

k(x,x0) =
pX

j=1

⌘
⇤
j kj(x,x

0)

p < 1

⌘
⇤
j : unknown, non-negative

Better choice is ⌘⇤j 2 {0, 1}.

kj : known, finite-dimensional

Is extendable to infinite-dimensional kernels.

k⌘⇤k1  1 and kj(x,x0)  1

Sparsity pattern J
⇤ = {1  j  p : ⌘⇤j 6= 0}

Meta-loss

Proposition

We require regularity assumptions on the meta-data: Restricted Eigenvalue Assumption and Multi-task Group Beta-min
Condition.

Meta-Learning Hypothesis Spaces

Ct�1(k;x) = [µt�1(k;x)± ⌫t�t�1(k;x)]

µt�1(k;x) = kT
t�1(x)(Kt�1 + �̄

2I)�1yt�1 (D.1)

�
2
t�1(k;x) = k(x,x)� kT

t�1(x)(Kt�1 + �̄
2I)�1kt�1(x)

Data from m similar tasks is available (fixed design)

ys,i = fs(xs,i) + "s,i, for 1  i  n and 1  s  m

"s,i: also �
2 sub-Gussian, i.i.d.

fs : X ! R, fs 2 Hk⇤ , kfskk⇤  B

s  m

i  n

Assume that true kernel can be decomposed as

k
⇤(x,x0) =

pX

j=1

⌘
⇤
j kj(x,x

0)

p < 1

⌘
⇤
j : unknown, non-negative

Better choice is ⌘⇤j 2 {0, 1}.

kj : known, finite-dimensional

Is extendable to infinite-dimensional kernels.

k⌘⇤k1  1 and kj(x,x0)  1

Sparsity pattern J
⇤ = {1  j  p : ⌘⇤j 6= 0}

Meta-loss

Proposition

We require regularity assumptions on the meta-data: Restricted Eigenvalue Assumption and Multi-task Group Beta-min
Condition.

Meta-Learning Hypothesis Spaces

Ct�1(k;x) = [µt�1(k;x)± ⌫t�t�1(k;x)]

µt�1(k;x) = kT
t�1(x)(Kt�1 + �̄

2I)�1yt�1 (D.1)

�
2
t�1(k;x) = k(x,x)� kT

t�1(x)(Kt�1 + �̄
2I)�1kt�1(x)

Data from m similar tasks is available (fixed design)

ys,i = fs(xs,i) + "s,i, for 1  i  n and 1  s  m

"s,i: also �
2 sub-Gussian, i.i.d.

fs : X ! R, fs 2 Hk⇤ , kfskk⇤  B

s  m

i  n

Assume that true kernel can be decomposed as

k
⇤(x,x0) =

pX

j=1

⌘
⇤
j kj(x,x

0)

p < 1

⌘
⇤
j : unknown, non-negative

Better choice is ⌘⇤j 2 {0, 1}.

kj : known, finite-dimensional

Is extendable to infinite-dimensional kernels.

k⌘⇤k1  1 and kj(x,x0)  1

Sparsity pattern J
⇤ = {1  j  p : ⌘⇤j 6= 0}

Meta-loss

Proposition

We require regularity assumptions on the meta-data: Restricted Eigenvalue Assumption and Multi-task Group Beta-min
Condition.

Meta-Learning Hypothesis Spaces

Ct�1(k;x) = [µt�1(k;x)± ⌫t�t�1(k;x)]

µt�1(k;x) = kT
t�1(x)(Kt�1 + �̄

2I)�1yt�1 (D.1)

�
2
t�1(k;x) = k(x,x)� kT

t�1(x)(Kt�1 + �̄
2I)�1kt�1(x)

Data from m similar tasks is available (fixed design)

ys,i = fs(xs,i) + "s,i, for 1  i  n and 1  s  m

"s,i: also �
2 sub-Gussian, i.i.d.

fs : X ! R, fs 2 Hk⇤ , kfskk⇤  B

s  m

i  n

Assume that true kernel can be decomposed as

k
⇤(x,x0) =

pX

j=1

⌘
⇤
j kj(x,x

0)

p < 1

⌘
⇤
j : unknown, non-negative

Better choice is ⌘⇤j 2 {0, 1}.

kj : known, finite-dimensional

Is extendable to infinite-dimensional kernels.

k⌘⇤k1  1 and kj(x,x0)  1

Sparsity pattern J
⇤ = {1  j  p : ⌘⇤j 6= 0}

Meta-loss

Proposition

We require regularity assumptions on the meta-data: Restricted Eigenvalue Assumption and Multi-task Group Beta-min
Condition.

Meta-Learning Hypothesis Spaces

Ct�1(k;x) = [µt�1(k;x)± ⌫t�t�1(k;x)]

µt�1(k;x) = kT
t�1(x)(Kt�1 + �̄

2I)�1yt�1 (D.1)

�
2
t�1(k;x) = k(x,x)� kT

t�1(x)(Kt�1 + �̄
2I)�1kt�1(x)

Data from m similar tasks is available (fixed design)

ys,i = fs(xs,i) + "s,i, for 1  i  n and 1  s  m

"s,i: also �
2 sub-Gussian, i.i.d.

fs : X ! R, fs 2 Hk⇤ , kfskk⇤  B

s  m

i  n

Assume that true kernel can be decomposed as

k
⇤(x,x0) =

pX

j=1

⌘
⇤
j kj(x,x

0)

p < 1

⌘
⇤
j : unknown, non-negative

Better choice is ⌘⇤j 2 {0, 1}.

kj : known, finite-dimensional

Is extendable to infinite-dimensional kernels.

k⌘⇤k1  1 and kj(x,x0)  1

Sparsity pattern J
⇤ = {1  j  p : ⌘⇤j 6= 0}

Meta-loss

Proposition

We require regularity assumptions on the meta-data: Restricted Eigenvalue Assumption and Multi-task Group Beta-min
Condition.

Meta-Learning Hypothesis Spaces

Ct�1(k;x) = [µt�1(k;x)± ⌫t�t�1(k;x)]

µt�1(k;x) = kT
t�1(x)(Kt�1 + �̄

2I)�1yt�1 (D.1)

�
2
t�1(k;x) = k(x,x)� kT

t�1(x)(Kt�1 + �̄
2I)�1kt�1(x)

Data from m similar tasks is available (fixed design)

ys,i = fs(xs,i) + "s,i, for 1  i  n and 1  s  m

"s,i: also �
2 sub-Gussian, i.i.d.

fs : X ! R, fs 2 Hk⇤ , kfskk⇤  B

s  m

i  n

Assume that true kernel can be decomposed as

k
⇤(x,x0) =

pX

j=1

⌘
⇤
j kj(x,x

0)

p < 1

⌘
⇤
j : unknown, non-negative

Better choice is ⌘⇤j 2 {0, 1}.

kj : known, finite-dimensional

Is extendable to infinite-dimensional kernels.

k⌘⇤k1  1 and kj(x,x0)  1

Sparsity pattern J
⇤ = {1  j  p : ⌘⇤j 6= 0}

Meta-loss

Proposition

We require regularity assumptions on the meta-data: Restricted Eigenvalue Assumption and Multi-task Group Beta-min
Condition.

Meta-Learning Hypothesis Spaces

where d =
Pp

j=1 dj and

�(x) =
⇣p

⌘
⇤

1�
T
1 (x), · · · ,

p
⌘⇤p�

T
p (x)

⌘T
.

For each task s, the function fs is contained in Hk⇤ . By the
Mercer’s theorem fs may be decomposed as

fs(x) = �T (x)�⇤

s =
pX

j=1

q
⌘
⇤

j�
T
j (x)�

⇤

s
(j)

, (6)

where �⇤

s 2 Rd is the coefficients vector of task s and
�⇤

s
(j) 2 Rdj is the sub-vector corresponding to kernel kj . It

is not possible to meta-select a base kernel kj which has not
contributed to the generation of the meta-data. Therefore, if
a base kernel is active in the construction of Hk⇤ , it is only
natural to assume that there is some task in the meta-data
which reflects this presence. More formally, we assume that,
for any j 2 Jk⇤ , there exists some s  m where �⇤

s
(j) 6= 0.

We define �⇤ = (�⇤

1
T
, · · · ,�⇤

m
T)T 2 Rmd as the concate-

nated coefficients vector for all tasks. To refer to the group
of coefficients that correspond to kernel kj across all tasks,
we use �⇤(j) = ((�⇤

1
(j))T , · · · , (�⇤

m
(j))T)T 2 Rmdj . Our

next assumption guarantees that the meta-learning problem
is not ill-posed.
Assumption 3.1 (Group Beta-min Condition). There exists
c1 > 0 s.t. for all j 2 Jk⇤ it holds that

���⇤(j)
��
2
� c1.

This assumption is inevitable for recovering the sparsity
pattern from empirical data and it is widely used in the
high-dimensional statistics literature (e.g., Bühlmann &
Van De Geer, 2011; Zhao & Yu, 2006; Van de Geer et al.,
2011). Assumption 3.1 implies that for j to be in Jk⇤ , the
coefficients vector corresponding to kernel kj can not be
zero or arbitrarily close to zero. In practice,

���(j)
��
2

has
to be comparable with the noise level for the activity of a
base kernel not to be mistaken with randomness.

4. Meta-learning the Hypothesis Space
(META-KEL)

In the following section, we present our formulation of
the meta-learning problem and analyze the properties of
the learned hypothesis space. We meta-learn the kernel by
solving the following optimization problem. Then, we set
the hypothesis space of the downstream learning algorithm
to be the RKHS of the meta-learned kernel.

min
⌘,f1,...,fm

1

m

mX

s=1

"
1

n

nX

i=1

(ys,i � fs(xs,i))
2

#

+
�

2

mX

s=1

kfsk2k +
�

2
k⌘k1

s.t. 8s : fs 2 Hk, k =
pX

j=1

⌘jkj , 0  ⌘

(7)

We will refer to this problem as Meta-Kernel Learning
(META-KEL). The first part of the objective is similar to
the kernel ridge regression loss, and accounts for how well
a series of regularized fs fit the meta-data. The last term
regularizes our choice of the kernel function. We use `1-
norm regularization for ⌘ to implicitly perform meta-model-
selection. As shown in Proposition 4.4, the meta-learned
kernel will reflect the sparsity pattern of the true kernel. The
optimization problem (7) is convex and admits an efficient
solution, as explained next.

We first introduce a vectorized formulation of Equation (7).
Let ys 2 Rn denote the observed values for a task s

and y = (yT
1 , · · · ,yT

m)T 2 Rmn the multi-task stacked
vector of observations. We then design a multi-task fea-
ture matrix. We define � to be a mn ⇥ md block-
diagonal matrix, where each block s corresponds to �s =
(�(xs,1), · · · ,�(xs,n))T , the n⇥d feature matrix of task s.
Figure 6 provides an illustration thereof. As shown in Propo-
sition 4.1, this vectorized design brings forth a parametric
equivalent of META-KEL, which happens to be the well-
known Group Lasso problem.
Proposition 4.1 (Solution of META-KEL). Let k =P

j ⌘̂jkj be a solution to Problem (7). Then, for all
1  j  p, it holds that

⌘̂j =
����̂(j)

���
2

with �̂ = (�̂(j))jp as the solution of the following convex
optimization problem:

min
�

1

mn
ky ���k22 + �

pX

j=1

����(j)
���
2
. (8)

We show this equivalence by eliminating ⌘. We use a trick
introduced by Bach et al. (2004), which, for w, v 2 R states
2|w| = minv>0 w

2
/v + v. The proof is given in Appendix

A.2. Problem (8) can be optimized by any Group Lasso
solver. Bach et al. (2011) present a number of coordinate
descent algorithms which efficiently find the solution.

Before introducing the meta-learned kernel k̂, we note that
Reproducing Kernel Hilbert Spaces are equivalent up to
scaling of the kernel function. For c > 0, both Hk and the
scaled version Hck contain the same set of functions. Going
from Hk to Hck, the RKHS norm of any member f would
scale by 1/c, i.e. kfkk = ckfkck. Hence, the norm k⌘̂k1
will be irrelevant when meta-learning the function space.
This norm can be scaled or normalized, and still yield the
same hypothesis space, only with a scaled operator norm.
For consistency of notation, we define k̂ as follows. For any
two points x, x0 2 X , set

k̂(x,x0) =
pX

j=1

⌘̂j

c1
�T

j (x)�j(x
0), (9)

Meta-Learning Hypothesis Spaces

where d =
Pp

j=1 dj and

�(x) =
⇣p

⌘
⇤

1�
T
1 (x), · · · ,

p
⌘⇤p�

T
p (x)

⌘T
.

For each task s, the function fs is contained in Hk⇤ . By the
Mercer’s theorem fs may be decomposed as

fs(x) = �T (x)�⇤

s =
pX

j=1

q
⌘
⇤

j�
T
j (x)�

⇤

s
(j)

, (6)

where �⇤

s 2 Rd is the coefficients vector of task s and
�⇤

s
(j) 2 Rdj is the sub-vector corresponding to kernel kj . It

is not possible to meta-select a base kernel kj which has not
contributed to the generation of the meta-data. Therefore, if
a base kernel is active in the construction of Hk⇤ , it is only
natural to assume that there is some task in the meta-data
which reflects this presence. More formally, we assume that,
for any j 2 Jk⇤ , there exists some s  m where �⇤

s
(j) 6= 0.

We define �⇤ = (�⇤

1
T
, · · · ,�⇤

m
T)T 2 Rmd as the concate-

nated coefficients vector for all tasks. To refer to the group
of coefficients that correspond to kernel kj across all tasks,
we use �⇤(j) = ((�⇤

1
(j))T , · · · , (�⇤

m
(j))T)T 2 Rmdj . Our

next assumption guarantees that the meta-learning problem
is not ill-posed.
Assumption 3.1 (Group Beta-min Condition). There exists
c1 > 0 s.t. for all j 2 Jk⇤ it holds that

���⇤(j)
��
2
� c1.

This assumption is inevitable for recovering the sparsity
pattern from empirical data and it is widely used in the
high-dimensional statistics literature (e.g., Bühlmann &
Van De Geer, 2011; Zhao & Yu, 2006; Van de Geer et al.,
2011). Assumption 3.1 implies that for j to be in Jk⇤ , the
coefficients vector corresponding to kernel kj can not be
zero or arbitrarily close to zero. In practice,

���(j)
��
2

has
to be comparable with the noise level for the activity of a
base kernel not to be mistaken with randomness.

4. Meta-learning the Hypothesis Space
(META-KEL)

In the following section, we present our formulation of
the meta-learning problem and analyze the properties of
the learned hypothesis space. We meta-learn the kernel by
solving the following optimization problem. Then, we set
the hypothesis space of the downstream learning algorithm
to be the RKHS of the meta-learned kernel.

min
⌘,f1,...,fm

1

m

mX

s=1

"
1

n

nX

i=1

(ys,i � fs(xs,i))
2

#

+
�

2

mX

s=1

kfsk2k +
�

2
k⌘k1

s.t. 8s : fs 2 Hk, k =
pX

j=1

⌘jkj , 0  ⌘

(7)

We will refer to this problem as Meta-Kernel Learning
(META-KEL). The first part of the objective is similar to
the kernel ridge regression loss, and accounts for how well
a series of regularized fs fit the meta-data. The last term
regularizes our choice of the kernel function. We use `1-
norm regularization for ⌘ to implicitly perform meta-model-
selection. As shown in Proposition 4.4, the meta-learned
kernel will reflect the sparsity pattern of the true kernel. The
optimization problem (7) is convex and admits an efficient
solution, as explained next.

We first introduce a vectorized formulation of Equation (7).
Let ys 2 Rn denote the observed values for a task s

and y = (yT
1 , · · · ,yT

m)T 2 Rmn the multi-task stacked
vector of observations. We then design a multi-task fea-
ture matrix. We define � to be a mn ⇥ md block-
diagonal matrix, where each block s corresponds to �s =
(�(xs,1), · · · ,�(xs,n))T , the n⇥d feature matrix of task s.
Figure 6 provides an illustration thereof. As shown in Propo-
sition 4.1, this vectorized design brings forth a parametric
equivalent of META-KEL, which happens to be the well-
known Group Lasso problem.
Proposition 4.1 (Solution of META-KEL). Let k =P

j ⌘̂jkj be a solution to Problem (7). Then, for all
1  j  p, it holds that

⌘̂j =
����̂(j)

���
2

with �̂ = (�̂(j))jp as the solution of the following convex
optimization problem:

min
�

1

mn
ky ���k22 + �

pX

j=1

����(j)
���
2
. (8)

We show this equivalence by eliminating ⌘. We use a trick
introduced by Bach et al. (2004), which, for w, v 2 R states
2|w| = minv>0 w

2
/v + v. The proof is given in Appendix

A.2. Problem (8) can be optimized by any Group Lasso
solver. Bach et al. (2011) present a number of coordinate
descent algorithms which efficiently find the solution.

Before introducing the meta-learned kernel k̂, we note that
Reproducing Kernel Hilbert Spaces are equivalent up to
scaling of the kernel function. For c > 0, both Hk and the
scaled version Hck contain the same set of functions. Going
from Hk to Hck, the RKHS norm of any member f would
scale by 1/c, i.e. kfkk = ckfkck. Hence, the norm k⌘̂k1
will be irrelevant when meta-learning the function space.
This norm can be scaled or normalized, and still yield the
same hypothesis space, only with a scaled operator norm.
For consistency of notation, we define k̂ as follows. For any
two points x, x0 2 X , set

k̂(x,x0) =
pX

j=1

⌘̂j

c1
�T

j (x)�j(x
0), (9)

Meta-Learning Hypothesis Spaces

where d =
Pp

j=1 dj and

�(x) =
⇣p

⌘
⇤

1�
T
1 (x), · · · ,

p
⌘⇤p�

T
p (x)

⌘T
.

For each task s, the function fs is contained in Hk⇤ . By the
Mercer’s theorem fs may be decomposed as

fs(x) = �T (x)�⇤

s =
pX

j=1

q
⌘
⇤

j�
T
j (x)�

⇤

s
(j)

, (6)

where �⇤

s 2 Rd is the coefficients vector of task s and
�⇤

s
(j) 2 Rdj is the sub-vector corresponding to kernel kj . It

is not possible to meta-select a base kernel kj which has not
contributed to the generation of the meta-data. Therefore, if
a base kernel is active in the construction of Hk⇤ , it is only
natural to assume that there is some task in the meta-data
which reflects this presence. More formally, we assume that,
for any j 2 Jk⇤ , there exists some s  m where �⇤

s
(j) 6= 0.

We define �⇤ = (�⇤

1
T
, · · · ,�⇤

m
T)T 2 Rmd as the concate-

nated coefficients vector for all tasks. To refer to the group
of coefficients that correspond to kernel kj across all tasks,
we use �⇤(j) = ((�⇤

1
(j))T , · · · , (�⇤

m
(j))T)T 2 Rmdj . Our

next assumption guarantees that the meta-learning problem
is not ill-posed.
Assumption 3.1 (Group Beta-min Condition). There exists
c1 > 0 s.t. for all j 2 Jk⇤ it holds that

���⇤(j)
��
2
� c1.

This assumption is inevitable for recovering the sparsity
pattern from empirical data and it is widely used in the
high-dimensional statistics literature (e.g., Bühlmann &
Van De Geer, 2011; Zhao & Yu, 2006; Van de Geer et al.,
2011). Assumption 3.1 implies that for j to be in Jk⇤ , the
coefficients vector corresponding to kernel kj can not be
zero or arbitrarily close to zero. In practice,

���(j)
��
2

has
to be comparable with the noise level for the activity of a
base kernel not to be mistaken with randomness.

4. Meta-learning the Hypothesis Space
(META-KEL)

In the following section, we present our formulation of
the meta-learning problem and analyze the properties of
the learned hypothesis space. We meta-learn the kernel by
solving the following optimization problem. Then, we set
the hypothesis space of the downstream learning algorithm
to be the RKHS of the meta-learned kernel.

min
⌘,f1,...,fm

1

m

mX

s=1

"
1

n

nX

i=1

(ys,i � fs(xs,i))
2

#

+
�

2

mX

s=1

kfsk2k +
�

2
k⌘k1

s.t. 8s : fs 2 Hk, k =
pX

j=1

⌘jkj , 0  ⌘

(7)

We will refer to this problem as Meta-Kernel Learning
(META-KEL). The first part of the objective is similar to
the kernel ridge regression loss, and accounts for how well
a series of regularized fs fit the meta-data. The last term
regularizes our choice of the kernel function. We use `1-
norm regularization for ⌘ to implicitly perform meta-model-
selection. As shown in Proposition 4.4, the meta-learned
kernel will reflect the sparsity pattern of the true kernel. The
optimization problem (7) is convex and admits an efficient
solution, as explained next.

We first introduce a vectorized formulation of Equation (7).
Let ys 2 Rn denote the observed values for a task s

and y = (yT
1 , · · · ,yT

m)T 2 Rmn the multi-task stacked
vector of observations. We then design a multi-task fea-
ture matrix. We define � to be a mn ⇥ md block-
diagonal matrix, where each block s corresponds to �s =
(�(xs,1), · · · ,�(xs,n))T , the n⇥d feature matrix of task s.
Figure 6 provides an illustration thereof. As shown in Propo-
sition 4.1, this vectorized design brings forth a parametric
equivalent of META-KEL, which happens to be the well-
known Group Lasso problem.
Proposition 4.1 (Solution of META-KEL). Let k =P

j ⌘̂jkj be a solution to Problem (7). Then, for all
1  j  p, it holds that

⌘̂j =
����̂(j)

���
2

with �̂ = (�̂(j))jp as the solution of the following convex
optimization problem:

min
�

1

mn
ky ���k22 + �

pX

j=1

����(j)
���
2
. (8)

We show this equivalence by eliminating ⌘. We use a trick
introduced by Bach et al. (2004), which, for w, v 2 R states
2|w| = minv>0 w

2
/v + v. The proof is given in Appendix

A.2. Problem (8) can be optimized by any Group Lasso
solver. Bach et al. (2011) present a number of coordinate
descent algorithms which efficiently find the solution.

Before introducing the meta-learned kernel k̂, we note that
Reproducing Kernel Hilbert Spaces are equivalent up to
scaling of the kernel function. For c > 0, both Hk and the
scaled version Hck contain the same set of functions. Going
from Hk to Hck, the RKHS norm of any member f would
scale by 1/c, i.e. kfkk = ckfkck. Hence, the norm k⌘̂k1
will be irrelevant when meta-learning the function space.
This norm can be scaled or normalized, and still yield the
same hypothesis space, only with a scaled operator norm.
For consistency of notation, we define k̂ as follows. For any
two points x, x0 2 X , set

k̂(x,x0) =
pX

j=1

⌘̂j

c1
�T

j (x)�j(x
0), (9)

Meta-Loss

Theorem (Hypothesis Space Recovery, Informal)

Let 0 < � < 1. Assume meta-data satisfies the Restricted

Eigenvalue Assumption and (a relaxed) Beta-min Condition.

For the appropriate choice of �, with probability greater than 1� �,

Hk⇤ ✓ Hk̂ ,

kf kk̂  kf kk⇤

⇣
1 + ✏(n,m) + o

�
✏(n,m)

�⌘
,

where ✏(n,m) = O

⇣
1/

p
mn

⇣
log p/� +

p
mdmax log p/�

⌘⌘
.

Meta-Learning Hypothesis Spaces

Ct�1(k;x) = [µt�1(k;x)± ⌫t�t�1(k;x)]

µt�1(k;x) = kT
t�1(x)(Kt�1 + �̄

2I)�1yt�1 (D.1)

�
2
t�1(k;x) = k(x,x)� kT

t�1(x)(Kt�1 + �̄
2I)�1kt�1(x)

Data from m similar tasks is available (fixed design)

ys,i = fs(xs,i) + "s,i, for 1  i  n and 1  s  m

"s,i: also �
2 sub-Gussian, i.i.d.

fs : X ! R, fs 2 Hk⇤ , kfskk⇤  B

s  m

i  n

Assume that true kernel can be decomposed as

k
⇤(x,x0) =

pX

j=1

⌘
⇤
j kj(x,x

0)

p < 1

⌘
⇤
j : unknown, non-negative

Better choice is ⌘⇤j 2 {0, 1}.

kj : known, finite-dimensional

Is extendable to infinite-dimensional kernels.

k⌘⇤k1  1 and kj(x,x0)  1

J
⇤ = {1  j  p : ⌘⇤j 6= 0} captures sparsity pattern of tk.

Let k̂ be the minimizer of

(META-KEL)

We require regularity assumptions on the meta-data:

Restricted Eigenvalue Assumption and Multi-task Group Beta-min Condition.

k̂ =
pX

j=1

⌘̂jkj , ⌘̂j =
����̂(j)

���
2

�̂(j) = argmin
�

1

mn
ky ���k22 + �

pX

j=1

����(j)
���
2

(D.2)

kfull(x,x
0) =

1

p

pX

j=1

kj(x,x
0)

If ⌘⇤j 2 0, 1, we can show Ĵ = J
⇤ with high probability, for an improved Meta-KeL.

Hk⇤
w.h.p.
✓ Hk̂

w.h.p.
(Hkfull

Meta-Loss

Proposition (Sparsity of k̂ , Informal)

Let 0 < � < 1. Assume ⌘⇤
is s-sparse.

Under assumptions of the theorem above, and for mn large

enough, ⌘̂ is also s-sparse with probability greater than 1� �.

Meta-Loss

Proposition

Meta-KeL is convex, has a solution and optimizing it is as di�cult

as the Group Lasso.

Meta-Learning Hypothesis Spaces

Ct�1(k;x) = [µt�1(k;x)± ⌫t�t�1(k;x)]

µt�1(k;x) = kT
t�1(x)(Kt�1 + �̄

2I)�1yt�1 (D.1)

�
2
t�1(k;x) = k(x,x)� kT

t�1(x)(Kt�1 + �̄
2I)�1kt�1(x)

Data from m similar tasks is available (fixed design)

ys,i = fs(xs,i) + "s,i, for 1  i  n and 1  s  m

"s,i: also �
2 sub-Gussian, i.i.d.

fs : X ! R, fs 2 Hk⇤ , kfskk⇤  B

s  m

i  n

Assume that true kernel can be decomposed as

k
⇤(x,x0) =

pX

j=1

⌘
⇤
j kj(x,x

0)

p < 1

⌘
⇤
j : unknown, non-negative

Better choice is ⌘⇤j 2 {0, 1}.

kj : known, finite-dimensional

Is extendable to infinite-dimensional kernels.

k⌘⇤k1  1 and kj(x,x0)  1

J
⇤ = {1  j  p : ⌘⇤j 6= 0} captures sparsity pattern of tk.

Let k̂ be the minimizer of

(META-KEL)

We require regularity assumptions on the meta-data:

Restricted Eigenvalue Assumption and Multi-task Group Beta-min Condition.

k̂ =
pX

j=1

⌘̂jkj , ⌘̂j =
����̂(j)

���
2

�̂(j) = argmin
�

1

mn
ky ���k22 + �

pX

j=1

����(j)
���
2

(D.2)

kfull(x,x
0) =

1

p

pX

j=1

kj(x,x
0)

If ⌘⇤j 2 0, 1, we can show Ĵ = J
⇤ with high probability, for an improved Meta-KeL.

Hk⇤
w.h.p.
✓ Hk̂

w.h.p.
(Hkfull

Meta-Learning Hypothesis Spaces

Ct�1(k;x) = [µt�1(k;x)± ⌫t�t�1(k;x)]

µt�1(k;x) = kT
t�1(x)(Kt�1 + �̄

2I)�1yt�1 (D.1)

�
2
t�1(k;x) = k(x,x)� kT

t�1(x)(Kt�1 + �̄
2I)�1kt�1(x)

Data from m similar tasks is available (fixed design)

ys,i = fs(xs,i) + "s,i, for 1  i  n and 1  s  m

"s,i: also �
2 sub-Gussian, i.i.d.

fs : X ! R, fs 2 Hk⇤ , kfskk⇤  B

s  m

i  n

Assume that true kernel can be decomposed as

k
⇤(x,x0) =

pX

j=1

⌘
⇤
j kj(x,x

0)

p < 1

⌘
⇤
j : unknown, non-negative

Better choice is ⌘⇤j 2 {0, 1}.

kj : known, finite-dimensional

Is extendable to infinite-dimensional kernels.

k⌘⇤k1  1 and kj(x,x0)  1

J
⇤ = {1  j  p : ⌘⇤j 6= 0} captures sparsity pattern of tk.

Let k̂ be the minimizer of

Proposition

We require regularity assumptions on the meta-data:

Restricted Eigenvalue Assumption and Multi-task Group Beta-min Condition.

Meta-Learning Hypothesis Spaces

i.e., exists dj < 1 where kj(x,x0) = �T (x)�(x0) and � 2 Rdj .

i.e., the sparsity patterns match with high probability.

Construct the confidence sets (see Equation 1)

Ct�1(k̂;x) = [µt�1(k̂;x)± ⌫t�t�1(k̂;x)]

⌫t = B

⇣
1 + ✏(n,m)

⌘
+ �

q
d̂ log (1 + �̄�2t) + 2 + 2 log(1/�)

For calculating µt�1 and �t�1, set �̄ = 1 + 2/t.

where d̂ is the dimension of k̂.

i.e., exists d̂ < 1 where k̂(x,x0) = �T (x)�(x0) where � 2 Rd̂

Theorem D.1 (Confidence Bounds with META-KEL). Let f 2 Hk⇤ with kfkk⇤  B, where k
⇤ is unknown. Under the

assumptions of the previous theorem, with probability greater than 1� �,

P
⇣
8x 2 X , 8t � 1 : f(x) 2 Ct�1(k̂;x)

⌘
� 1� �.

This theorem implies, with probability greater than 1� �

|µt�1(k
⇤;x)� f(x)|  �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘

As more meta-data is provided, i.e., as m and n grow, ✏(n,m) vanishes
and d̂ ! d

⇤, the dimension of k⇤.
With oracle knowledge of k⇤,

|µt�1(k
⇤;x)� f(x)|  �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘
.

The meta-learned confidence bounds approach the oracle bounds,
as amounts of offline data grows.

Meta-Learning Hypothesis Spaces

i.e., exists dj < 1 where kj(x,x0) = �T (x)�(x0) and � 2 Rdj .

i.e., the sparsity patterns match with high probability.

Construct the confidence sets (see Equation 1)

Ct�1(k̂;x) = [µt�1(k̂;x)± ⌫t�t�1(k̂;x)]

⌫t = B

⇣
1 + ✏(n,m)

⌘
+ �

q
d̂ log (1 + �̄�2t) + 2 + 2 log(1/�)

For calculating µt�1 and �t�1, set �̄ = 1 + 2/t.

where d̂ is the dimension of k̂.

i.e., exists d̂ < 1 where k̂(x,x0) = �T (x)�(x0) where � 2 Rd̂

Theorem D.1 (Confidence Bounds with META-KEL). Let f 2 Hk⇤ with kfkk⇤  B, where k
⇤ is unknown. Under the

assumptions of the previous theorem, with probability greater than 1� �,

P
⇣
8x 2 X , 8t � 1 : f(x) 2 Ct�1(k̂;x)

⌘
� 1� �.

This theorem implies, with probability greater than 1� �

|µt�1(k
⇤;x)� f(x)|  �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘

As more meta-data is provided, i.e., as m and n grow, ✏(n,m) vanishes
and d̂ ! d

⇤, the dimension of k⇤.
With oracle knowledge of k⇤,

|µt�1(k
⇤;x)� f(x)|  �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘
.

The meta-learned confidence bounds approach the oracle bounds,
as amounts of offline data grows.

Meta-Learning Hypothesis Spaces

i.e., exists dj < 1 where kj(x,x0) = �T (x)�(x0) and � 2 Rdj .

i.e., the sparsity patterns match with high probability.

Construct the confidence sets (see Equation 1)

Ct�1(k̂;x) = [µt�1(k̂;x)± ⌫t�t�1(k̂;x)]

⌫t = B

⇣
1 + ✏(n,m)

⌘
+ �

q
d̂ log (1 + �̄�2t) + 2 + 2 log(1/�)

For calculating µt�1 and �t�1, set �̄ = 1 + 2/t.

where d̂ is the dimension of k̂.

i.e., exists d̂ < 1 where k̂(x,x0) = �T (x)�(x0) where � 2 Rd̂

Theorem D.1 (Confidence Bounds with META-KEL). Let f 2 Hk⇤ with kfkk⇤  B, where k
⇤ is unknown. Under the

assumptions of the previous theorem, with probability greater than 1� �,

P
⇣
8x 2 X , 8t � 1 : f(x) 2 Ct�1(k̂;x)

⌘
� 1� �.

This theorem implies, with probability greater than 1� �

|µt�1(k
⇤;x)� f(x)|  �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘

As more meta-data is provided, i.e., as m and n grow, ✏(n,m) vanishes
and d̂ ! d

⇤, the dimension of k⇤.
With oracle knowledge of k⇤,

|µt�1(k
⇤;x)� f(x)|  �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘
.

The meta-learned confidence bounds approach the oracle bounds,
as amounts of offline data grows.

Meta-Learning Hypothesis Spaces

i.e., exists dj < 1 where kj(x,x0) = �T (x)�(x0) and � 2 Rdj .

i.e., the sparsity patterns match with high probability.

Construct the confidence sets (see Equation 1)

Ct�1(k̂;x) = [µt�1(k̂;x)± ⌫t�t�1(k̂;x)]

⌫t = B

⇣
1 + ✏(n,m)

⌘
+ �

q
d̂ log (1 + �̄�2t) + 2 + 2 log(1/�)

For calculating µt�1 and �t�1, set �̄ = 1 + 2/t.

where d̂ is the dimension of k̂.

i.e., exists d̂ < 1 where k̂(x,x0) = �T (x)�(x0) where � 2 Rd̂

Theorem D.1 (Confidence Bounds with META-KEL). Let f 2 Hk⇤ with kfkk⇤  B, where k
⇤ is unknown. Under the

assumptions of the previous theorem, with probability greater than 1� �,

P
⇣
8x 2 X , 8t � 1 : f(x) 2 Ct�1(k̂;x)

⌘
� 1� �.

This theorem implies, with probability greater than 1� �

|µt�1(k
⇤;x)� f(x)|  �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘

As more meta-data is provided, i.e., as m and n grow, ✏(n,m) vanishes
and d̂ ! d

⇤, the dimension of k⇤.
With oracle knowledge of k⇤,

|µt�1(k
⇤;x)� f(x)|  �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘
.

The meta-learned confidence bounds approach the oracle bounds,
as amounts of offline data grows.

Meta-Learning Hypothesis Spaces

i.e., exists dj < 1 where kj(x,x0) = �T (x)�(x0) and � 2 Rdj .

i.e., the sparsity patterns match with high probability.

Construct the confidence sets (see Equation 1)

Ct�1(k̂;x) = [µt�1(k̂;x)± ⌫t�t�1(k̂;x)]

⌫t = B

⇣
1 + ✏(n,m)

⌘
+ �

q
d̂ log (1 + �̄�2t) + 2 + 2 log(1/�)

For calculating µt�1 and �t�1, set �̄ = 1 + 2/t.

where d̂ is the dimension of k̂.

i.e., exists d̂ < 1 where k̂(x,x0) = �T (x)�(x0) where � 2 Rd̂

Theorem D.1 (Confidence Bounds with META-KEL). Let f 2 Hk⇤ with kfkk⇤  B, where k
⇤ is unknown. Under the

assumptions of the previous theorem, with probability greater than 1� �,

P
⇣
8x 2 X , 8t � 1 : f(x) 2 Ct�1(k̂;x)

⌘
� 1� �.

This theorem implies, with probability greater than 1� �

|µt�1(k
⇤;x)� f(x)|  �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘

As more meta-data is provided, i.e., as m and n grow, ✏(n,m) vanishes
and d̂ ! d

⇤, the dimension of k⇤.
With oracle knowledge of k⇤,

|µt�1(k
⇤;x)� f(x)|  �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘
.

The meta-learned confidence bounds approach the oracle bounds,
as amounts of offline data grows.

Meta-Learning Hypothesis Spaces

i.e., exists dj < 1 where kj(x,x0) = �T (x)�(x0) and � 2 Rdj .

i.e., the sparsity patterns match with high probability.

Construct the confidence sets (see Equation 1)

Ct�1(k̂;x) = [µt�1(k̂;x)± ⌫t�t�1(k̂;x)]

⌫t = B

⇣
1 + ✏(n,m)

⌘
+ �

q
d̂ log (1 + �̄�2t) + 2 + 2 log(1/�)

For calculating µt�1 and �t�1, set �̄ = 1 + 2/t.

where d̂ is the dimension of k̂.

i.e., exists d̂ < 1 where k̂(x,x0) = �T (x)�(x0) where � 2 Rd̂

Theorem D.1 (Confidence Bounds with META-KEL). Let f 2 Hk⇤ with kfkk⇤  B, where k
⇤ is unknown. Under the

assumptions of the previous theorem, with probability greater than 1� �,

P
⇣
8x 2 X , 8t � 1 : f(x) 2 Ct�1(k̂;x)

⌘
� 1� �.

This theorem implies, with probability greater than 1� �

|µt�1(k
⇤;x)� f(x)|  �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘

As more meta-data is provided, i.e., as m and n grow, ✏(n,m) vanishes
and d̂ ! d

⇤, the dimension of k⇤.
With oracle knowledge of k⇤,

|µt�1(k
⇤;x)� f(x)|  �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘
.

The meta-learned confidence bounds approach the oracle bounds,
as amounts of offline data grows.

Meta-Loss

Theorem (Confidence Bounds with Meta-KeL)

Let f 2 Hk⇤ with kf kk⇤  B , where k
⇤
is unknown.

Under the assumptions of the previous theorem, with probability

greater than 1� �,

P
⇣
8x 2 X , 8t � 1 : f (x) 2 Ct�1(k̂ ; x)

⌘
� 1� �.

Meta-Learning Hypothesis Spaces

i.e., exists dj < 1 where kj(x,x0) = �T (x)�(x0) and � 2 Rdj .

i.e., the sparsity patterns match with high probability.

Construct the confidence sets (see Equation 1)

Ct�1(k̂;x) = [µt�1(k̂;x)± ⌫t�t�1(k̂;x)]

⌫t = B

⇣
1 + ✏(n,m)

⌘
+ �

q
d̂ log (1 + �̄�2t) + 2 + 2 log(1/�)

For calculating µt�1 and �t�1, set �̄ = 1 + 2/t.

where d̂ is the dimension of k̂.

i.e., exists d̂ < 1 where k̂(x,x0) = �T (x)�(x0) where � 2 Rd̂

Theorem D.1 (Confidence Bounds with META-KEL). Let f 2 Hk⇤ with kfkk⇤  B, where k
⇤ is unknown. Under the

assumptions of the previous theorem, with probability greater than 1� �,

P
⇣
8x 2 X , 8t � 1 : f(x) 2 Ct�1(k̂;x)

⌘
� 1� �.

This theorem implies, with probability greater than 1� �

|µt�1(k
⇤;x)� f(x)|  �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘

As more meta-data is provided, i.e., as m and n grow, ✏(n,m) vanishes
and d̂ ! d

⇤, the dimension of k⇤.
With oracle knowledge of k⇤,

|µt�1(k
⇤;x)� f(x)|  �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘
.

The meta-learned confidence bounds approach the oracle bounds,
as amounts of offline data grows.

Meta-Learning Hypothesis Spaces

i.e., exists dj < 1 where kj(x,x0) = �T (x)�(x0) and � 2 Rdj .

i.e., the sparsity patterns match with high probability.

Construct the confidence sets (see Equation 1)

Ct�1(k̂;x) = [µt�1(k̂;x)± ⌫t�t�1(k̂;x)]

⌫t = B

⇣
1 + ✏(n,m)

⌘
+ �

q
d̂ log (1 + �̄�2t) + 2 + 2 log(1/�)

For calculating µt�1 and �t�1, set �̄ = 1 + 2/t.

where d̂ is the dimension of k̂.

i.e., exists d̂ < 1 where k̂(x,x0) = �T (x)�(x0) where � 2 Rd̂

Theorem D.1 (Confidence Bounds with META-KEL). Let f 2 Hk⇤ with kfkk⇤  B, where k
⇤ is unknown. Under the

assumptions of the previous theorem, with probability greater than 1� �,

P
⇣
8x 2 X , 8t � 1 : f(x) 2 Ct�1(k̂;x)

⌘
� 1� �.

This theorem implies, with probability greater than 1� �

|µt�1(k
⇤;x)� f(x)|  �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘

As more meta-data is provided, i.e., as m and n grow, ✏(n,m) vanishes
and d̂ ! d

⇤, the dimension of k⇤.
With oracle knowledge of k⇤,

|µt�1(k
⇤;x)� f(x)|  �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘
.

The meta-learned confidence bounds approach the oracle bounds,
as amounts of offline data grows.

Meta-Learning Hypothesis Spaces

i.e., exists dj < 1 where kj(x,x0) = �T (x)�(x0) and � 2 Rdj .

i.e., the sparsity patterns match with high probability.

Construct the confidence sets (see Equation 1)

Ct�1(k̂;x) = [µt�1(k̂;x)± ⌫t�t�1(k̂;x)]

⌫t = B

⇣
1 + ✏(n,m)

⌘
+ �

q
d̂ log (1 + �̄�2t) + 2 + 2 log(1/�)

For calculating µt�1 and �t�1, set �̄ = 1 + 2/t.

where d̂ is the dimension of k̂.

i.e., exists d̂ < 1 where k̂(x,x0) = �T (x)�(x0) where � 2 Rd̂

Theorem D.1 (Confidence Bounds with META-KEL). Let f 2 Hk⇤ with kfkk⇤  B, where k
⇤ is unknown. Under the

assumptions of the previous theorem, with probability greater than 1� �,

P
⇣
8x 2 X , 8t � 1 : f(x) 2 Ct�1(k̂;x)

⌘
� 1� �.

This theorem implies, with probability greater than 1� �

|µt�1(k̂;x)� f(x)|  �t�1(k̂;x)
⇣
B +B✏(n,m) + �

q
d̂ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘

As more meta-data is provided, i.e., as m and n grow, ✏(n,m) vanishes
and d̂ ! d

⇤, the dimension of k⇤.
With oracle knowledge of k⇤,

|µt�1(k
⇤;x)� f(x)|  �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘
.

The meta-learned confidence bounds approach the oracle bounds,
as amounts of offline data grows.

Meta-Learning Hypothesis Spaces

i.e., exists dj < 1 where kj(x,x0) = �T (x)�(x0) and � 2 Rdj .

i.e., the sparsity patterns match with high probability.

Construct the confidence sets (see Equation 1)

Ct�1(k̂;x) = [µt�1(k̂;x)± ⌫t�t�1(k̂;x)]

⌫t = B

⇣
1 + ✏(n,m)

⌘
+ �

q
d̂ log (1 + �̄�2t) + 2 + 2 log(1/�)

For calculating µt�1 and �t�1, set �̄ = 1 + 2/t.

where d̂ is the dimension of k̂.

i.e., exists d̂ < 1 where k̂(x,x0) = �T (x)�(x0) where � 2 Rd̂

Theorem D.1 (Confidence Bounds with META-KEL). Let f 2 Hk⇤ with kfkk⇤  B, where k
⇤ is unknown. Under the

assumptions of the previous theorem, with probability greater than 1� �,

P
⇣
8x 2 X , 8t � 1 : f(x) 2 Ct�1(k̂;x)

⌘
� 1� �.

This theorem implies, with probability greater than 1� �

|µt�1(k
⇤;x)� f(x)|  �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘

As more meta-data is provided, i.e., as m and n grow, ✏(n,m) vanishes
and d̂ ! d

⇤, the dimension of k⇤.
With oracle knowledge of k⇤,

|µt�1(k
⇤;x)� f(x)|  �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘
.

The meta-learned confidence bounds approach the oracle bounds,
as amounts of offline data grows.

Meta-Learning Hypothesis Spaces

i.e., exists dj < 1 where kj(x,x0) = �T (x)�(x0) and � 2 Rdj .

i.e., the sparsity patterns match with high probability.

Construct the confidence sets (see Equation 1)

Ct�1(k̂;x) = [µt�1(k̂;x)± ⌫t�t�1(k̂;x)]

⌫t = B

⇣
1 + ✏(n,m)

⌘
+ �

q
d̂ log (1 + �̄�2t) + 2 + 2 log(1/�)

For calculating µt�1 and �t�1, set �̄ = 1 + 2/t.

where d̂ is the dimension of k̂.

i.e., exists d̂ < 1 where k̂(x,x0) = �T (x)�(x0) where � 2 Rd̂

Theorem D.1 (Confidence Bounds with META-KEL). Let f 2 Hk⇤ with kfkk⇤  B, where k
⇤ is unknown. Under the

assumptions of the previous theorem, with probability greater than 1� �,

P
⇣
8x 2 X , 8t � 1 : f(x) 2 Ct�1(k̂;x)

⌘
� 1� �.

This theorem implies, with probability greater than 1� �

|µt�1(k̂;x)� f(x)|  �t�1(k̂;x)
⇣
B +B✏(n,m) + �

q
d̂ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘

As more meta-data is provided, i.e., as m and n grow,
✏(n,m) vanishes and d̂ ! d

⇤, the dimension of k⇤.

With oracle knowledge of k⇤,

|µt�1(k
⇤;x)� f(x)|  �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘
.

The meta-learned confidence bounds approach the oracle bounds,
as amounts of offline data grows.

We let k
⇤(x, x0) = 1

5

P
j2J⇤ Pj(x)Pj(x0), where Pj is a degree-j Legendre

polynomial and J
⇤ is a random subset of size 5 from {1, · · · , 20}. Using this kernel,

we generate a random meta-data set of size m = n = 50. On a test task, with a fresh
new function f

⇤, we assess the confidence sets at t = 4.
Empirical width of the confidence band.

Empirical coverage of the confidence band
vs. the true 1� �

Both quantities are averages over a sample of size 1000 from X .
Error bars show standard error for 50 runs of the problem.

1� �

Meta-Learning Hypothesis Spaces

i.e., exists dj < 1 where kj(x,x0) = �T (x)�(x0) and � 2 Rdj .

i.e., the sparsity patterns match with high probability.

Construct the confidence sets (see Equation 1)

Ct�1(k̂;x) = [µt�1(k̂;x)± ⌫t�t�1(k̂;x)]

⌫t = B

⇣
1 + ✏(n,m)

⌘
+ �

q
d̂ log (1 + �̄�2t) + 2 + 2 log(1/�)

For calculating µt�1 and �t�1, set �̄ = 1 + 2/t.

where d̂ is the dimension of k̂.

i.e., exists d̂ < 1 where k̂(x,x0) = �T (x)�(x0) where � 2 Rd̂

Theorem D.1 (Confidence Bounds with META-KEL). Let f 2 Hk⇤ with kfkk⇤  B, where k
⇤ is unknown. Under the

assumptions of the previous theorem, with probability greater than 1� �,

P
⇣
8x 2 X , 8t � 1 : f(x) 2 Ct�1(k̂;x)

⌘
� 1� �.

This theorem implies, with probability greater than 1� �

|µt�1(k̂;x)� f(x)|  �t�1(k̂;x)
⇣
B +B✏(n,m) + �

q
d̂ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘

As more meta-data is provided, i.e., as m and n grow,
✏(n,m) vanishes and d̂ ! d

⇤, the dimension of k⇤.

With oracle knowledge of k⇤,

|µt�1(k
⇤;x)� f(x)|  �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘
.

The meta-learned confidence bounds approach the oracle bounds,
as amounts of offline data grows.

We let k⇤(x, x0) = 1
5

P
j2J⇤ Pj(x)Pj(x0), where Pj is a degree-j Leg-

endre polynomial and J
⇤ is a random subset of size 5 from {1, · · · , 20}.

Using this kernel, we generate a random meta-data set of size m = n = 50.
On a test task, with a fresh new function f

⇤, we assess the confidence sets
at t = 4. We check 1) if the sets are valid and 2) if they are tight.

Empirical width of the confidence band.

Empirical coverage of the confidence band
vs. the true 1� �

Both quantities are averages over a sample of size 1000 from X .
Error bars show standard error for 50 runs of the problem.

1� �

Meta-Learning Hypothesis Spaces

i.e., exists dj < 1 where kj(x,x0) = �T (x)�(x0) and � 2 Rdj .

i.e., the sparsity patterns match with high probability.

Construct the confidence sets (see Equation 1)

Ct�1(k̂;x) = [µt�1(k̂;x)± ⌫t�t�1(k̂;x)]

⌫t = B

⇣
1 + ✏(n,m)

⌘
+ �

q
d̂ log (1 + �̄�2t) + 2 + 2 log(1/�)

For calculating µt�1 and �t�1, set �̄ = 1 + 2/t.

where d̂ is the dimension of k̂.

i.e., exists d̂ < 1 where k̂(x,x0) = �T (x)�(x0) where � 2 Rd̂

Theorem D.1 (Confidence Bounds with META-KEL). Let f 2 Hk⇤ with kfkk⇤  B, where k
⇤ is unknown. Under the

assumptions of the previous theorem, with probability greater than 1� �,

P
⇣
8x 2 X , 8t � 1 : f(x) 2 Ct�1(k̂;x)

⌘
� 1� �.

This theorem implies, with probability greater than 1� �

|µt�1(k̂;x)� f(x)|  �t�1(k̂;x)
⇣
B +B✏(n,m) + �

q
d̂ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘

As more meta-data is provided, i.e., as m and n grow,
✏(n,m) vanishes and d̂ ! d

⇤, the dimension of k⇤.

With oracle knowledge of k⇤,

|µt�1(k
⇤;x)� f(x)|  �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘
.

The meta-learned confidence bounds approach the oracle bounds,
as amounts of offline data grows.

We let k⇤(x, x0) = 1
5

P
j2J⇤ Pj(x)Pj(x0), where Pj is a degree-j Leg-

endre polynomial and J
⇤ is a random subset of size 5 from {1, · · · , 20}.

Using this kernel, we generate a random meta-data set of size m = n = 50.
On a test task, with a fresh new function f

⇤, we assess the confidence sets
at t = 4. We check 1) if the sets are valid and 2) if they are tight.

Empirical width of the confidence band.

Empirical coverage of the confidence band
vs. the true 1� �

Both quantities are averages over a sample of size 1000 from X .
Error bars show standard error for 50 runs of the problem.

If applied to Bandit optimization, the sets imply a sublinear regret guaran-
tee for the GP-UCB algorithm using k̂. This regret bound approaches that
of the oracle algorithm.

Sequential decision-making describes a class of problems where a learner
sequentially interacts with an unknown stochastic environment, with the
goal of maximizing a reward.

Obtaining reliable confidence sequences for unknown target functions is
a central challenge in sequential decision-making tasks, e.g., Bayesian
Optimization and model-based RL.

Meta-Learning Hypothesis Spaces

i.e., exists dj < 1 where kj(x,x0) = �T (x)�(x0) and � 2 Rdj .

i.e., the sparsity patterns match with high probability.

Construct the confidence sets (see Equation 1)

Ct�1(k̂;x) = [µt�1(k̂;x)± ⌫t�t�1(k̂;x)]

⌫t = B

⇣
1 + ✏(n,m)

⌘
+ �

q
d̂ log (1 + �̄�2t) + 2 + 2 log(1/�)

For calculating µt�1 and �t�1, set �̄ = 1 + 2/t.

where d̂ is the dimension of k̂.

i.e., exists d̂ < 1 where k̂(x,x0) = �T (x)�(x0) where � 2 Rd̂

Theorem D.1 (Confidence Bounds with META-KEL). Let f 2 Hk⇤ with kfkk⇤  B, where k
⇤ is unknown. Under the

assumptions of the previous theorem, with probability greater than 1� �,

P
⇣
8x 2 X , 8t � 1 : f(x) 2 Ct�1(k̂;x)

⌘
� 1� �.

This theorem implies, with probability greater than 1� �

|µt�1(k̂;x)� f(x)|  �t�1(k̂;x)
⇣
B +B✏(n,m) + �

q
d̂ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘

As more meta-data is provided, i.e., as m and n grow,
✏(n,m) vanishes and d̂ ! d

⇤, the dimension of k⇤.

With oracle knowledge of k⇤,

|µt�1(k
⇤;x)� f(x)|  �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘
.

The meta-learned confidence bounds approach the oracle bounds,
as amounts of offline data grows.

We let k⇤(x, x0) = 1
5

P
j2J⇤ Pj(x)Pj(x0), where Pj is a degree-j Leg-

endre polynomial and J
⇤ is a random subset of size 5 from {1, · · · , 20}.

Using this kernel, we generate a random meta-data set of size m = n = 50.
On a test task, with a fresh new function f

⇤, we assess the confidence sets
at t = 4. We check 1) if the sets are valid and 2) if they are tight.

Empirical width of the confidence band.

Empirical coverage of the confidence band
vs. the true 1� �

Both quantities are averages over a sample of size 1000 from X .
Error bars show standard error for 50 runs of the problem.

If applied to Bandit optimization, the sets imply a sublinear regret guaran-
tee for the GP-UCB algorithm using k̂. This regret bound approaches that
of the oracle algorithm.

Sequential decision-making describes a class of problems where a learner
sequentially interacts with an unknown stochastic environment, with the
goal of maximizing a reward.

Obtaining reliable confidence sequences for unknown target functions is
a central challenge in sequential decision-making tasks, e.g., Bayesian
Optimization and model-based RL.

Meta-Learning Hypothesis Spaces

i.e., exists dj < 1 where kj(x,x0) = �T (x)�(x0) and � 2 Rdj .

i.e., the sparsity patterns match with high probability.

Construct the confidence sets (see Equation 1)

Ct�1(k̂;x) = [µt�1(k̂;x)± ⌫t�t�1(k̂;x)]

⌫t = B

⇣
1 + ✏(n,m)

⌘
+ �

q
d̂ log (1 + �̄�2t) + 2 + 2 log(1/�)

For calculating µt�1 and �t�1, set �̄ = 1 + 2/t.

where d̂ is the dimension of k̂.

i.e., exists d̂ < 1 where k̂(x,x0) = �T (x)�(x0) where � 2 Rd̂

Theorem D.1 (Confidence Bounds with META-KEL). Let f 2 Hk⇤ with kfkk⇤  B, where k
⇤ is unknown. Under the

assumptions of the previous theorem, with probability greater than 1� �,

P
⇣
8x 2 X , 8t � 1 : f(x) 2 Ct�1(k̂;x)

⌘
� 1� �.

This theorem implies, with probability greater than 1� �

|µt�1(k̂;x)� f(x)|  �t�1(k̂;x)
⇣
B +B✏(n,m) + �

q
d̂ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘

As more meta-data is provided, i.e., as m and n grow, ✏(n,m) vanishes
and d̂ ! d

⇤, the dimension of k⇤.
With oracle knowledge of k⇤,

|µt�1(k
⇤;x)� f(x)|  �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘
.

The meta-learned confidence bounds approach the oracle bounds,
as amounts of offline data grows.

We let k
⇤(x, x0) = 1

5

P
j2J⇤ Pj(x)Pj(x0), where Pj is a degree-j Legendre

polynomial and J
⇤ is a random subset of size 5 from {1, · · · , 20}. Using this kernel,

we generate a random meta-data set of size m = n = 50. On a test task, with a fresh
new function f

⇤, we assess the confidence sets at t = 4.
Empirical width of the confidence band.

Empirical coverage of the confidence band
vs. the true 1� �.
Both quantities are averages over a sample of size 1000 from X .
Error bars show standard error for 50 runs of the problem.

1� �

M
et

a-
Le

ar
ni

ng
H

yp
ot

he
sis

Sp
ac

es

i.e
.,

ex
is

ts
d
j
<

1
w

he
re

k
j
(x

,
x
0)
=

�
T
(x

)�
(x

0)
an

d
�
2
R

d
j
.

i.e
.,

th
e

sp
ar

si
ty

pa
tte

rn
sm

at
ch

w
ith

hi
gh

pr
ob

ab
ili

ty
.

C
on

st
ru

ct
th

e
co

nfi
de

nc
e

se
ts

(s
ee

Eq
ua

tio
n

1)

C t
�
1
(k̂
;x

)
=

[µ
t�

1
(k̂
;x

)
±

⌫
t�

t�
1
(k̂
;x

)]

⌫
t
=

B

⇣ 1
+

✏
(n
,
m
)⌘

+
�

q
d̂
lo
g
(1

+
�̄
�
2
t
)
+
2
+
2
lo
g(
1/

�
)

Fo
rc

al
cu

la
tin

g
µ
t�

1
an

d
�
t�

1
,s

et
�̄
=

1
+
2/

t
.

w
he

re
d̂

is
th

e
di

m
en

si
on

of
k̂

.

i.e
.,

ex
is

ts
d̂
<

1
w

he
re

k̂
(x

,
x
0)
=

�
T
(x

)�
(x

0)
w

he
re

�
2
R

d̂

Th
eo

re
m

D
.1

(C
on

fid
en

ce
B

ou
nd

s
w

ith
M

E
TA

-K
E

L
).

Le
tf

2
H

k
⇤

w
ith

kf
k k

⇤


B
,w

he
re

k
⇤

is
un

kn
ow

n.
U

nd
er

th
e

as
su

m
pt

io
ns

of
th

e
pr

ev
io

us
th

eo
re

m
,w

ith
pr

ob
ab

ili
ty

gr
ea

te
r

th
an

1
�

�
,

P
⇣ 8x

2
X
,
8t

�
1
:
f
(x

)
2
C t

�
1
(k̂
;x

)⌘
�

1
�

�
.

Th
is

th
eo

re
m

im
pl

ie
s,

w
ith

pr
ob

ab
ili

ty
gr

ea
te

rt
ha

n
1
�

�

|µ
t�

1
(k̂
;x

)
�

f
(x

)|


�
t�

1
(k̂
;x

)⇣ B
+

B
✏
(n
,
m
)
+

�

q
d̂
lo
g
� 1

+
�̄
�
2
t
� +

2
+

2
lo
g(
1/

�
))
⌘

A
sm

or
e

m
et

a-
da

ta
is

pr
ov

id
ed

,i
.e

.,
as

m
an

d
n

gr
ow

,✏
(n
,
m
)

va
ni

sh
es

an
d
d̂
!

d
⇤ ,

th
e

di
m

en
si

on
of

k
⇤ .

W
ith

or
ac

le
kn

ow
le

dg
e

of
k
⇤ ,

|µ
t�

1
(k

⇤ ;
x
)
�
f
(x

)|


�
t�

1
(k

⇤ ;
x
)⇣ B

+
�

q
d
⇤
lo
g
� 1

+
�̄
�
2
t
� +

2
+

2
lo
g(
1/

�
))
⌘ .

Th
e

m
et

a-
le

ar
ne

d
co

nfi
de

nc
e

bo
un

ds
ap

pr
oa

ch
th

e
or

ac
le

bo
un

ds
,

as
am

ou
nt

so
fo

ffl
in

e
da

ta
gr

ow
s.

W
e

le
t
k
⇤ (
x
,
x
0)

=
1 5

P
j2

J
⇤
P
j
(x
)P

j
(x

0)
,

w
he

re
P
j

is
a

de
gr

ee
-j

Le
ge

nd
re

po
ly

no
m

ia
la

nd
J
⇤

is
a

ra
nd

om
su

bs
et

of
si

ze
5

fr
om

{1
,
··
·,

20
}.

U
si

ng
th

is
ke

rn
el

,
w

e
ge

ne
ra

te
a

ra
nd

om
m

et
a-

da
ta

se
to

fs
iz

e
m

=
n
=

50
.O

n
a

te
st

ta
sk

,w
ith

a
fr

es
h

ne
w

fu
nc

tio
n
f
⇤ ,

w
e

as
se

ss
th

e
co

nfi
de

nc
e

se
ts

at
t
=

4.
Em

pi
ric

al
w

id
th

of
th

e
co

nfi
de

nc
e

ba
nd

.

Em
pi

ric
al

co
ve

ra
ge

of
th

e
co

nfi
de

nc
e

ba
nd

vs
.t

he
tru

e
1
�
�
.

B
ot

h
qu

an
tit

ie
sa

re
av

er
ag

es
ov

er
a

sa
m

pl
e

of
si

ze
10

00
fr

om
X

.
Er

ro
rb

ar
ss

ho
w

st
an

da
rd

er
ro

rf
or

50
ru

ns
of

th
e

pr
ob

le
m

.

1
�

�

M
et

a-
Le

ar
ni

ng
H

yp
ot

he
sis

Sp
ac

es

i.e
.,

ex
is

ts
d
j
<

1
w

he
re

k
j
(x

,
x
0)
=

�
T
(x

)�
(x

0)
an

d
�
2
R

d
j
.

i.e
.,

th
e

sp
ar

si
ty

pa
tte

rn
s

m
at

ch
w

ith
hi

gh
pr

ob
ab

ili
ty

.

C
on

st
ru

ct
th

e
co

nfi
de

nc
e

se
ts

(s
ee

Eq
ua

tio
n

1)

C t
�
1
(k̂
;x

)
=

[µ
t�

1
(k̂
;x

)
±

⌫
t�

t�
1
(k̂
;x

)]

⌫
t
=

B

⇣ 1
+

✏
(n
,
m
)⌘

+
�

q
d̂
lo
g
(1

+
�̄
�
2
t
)
+
2
+
2
lo
g(
1/

�
)

Fo
rc

al
cu

la
tin

g
µ
t�

1
an

d
�
t�

1
,s

et
�̄
=

1
+
2/

t
.

w
he

re
d̂

is
th

e
di

m
en

si
on

of
k̂

.

i.e
.,

ex
is

ts
d̂
<

1
w

he
re

k̂
(x

,
x
0)
=

�
T
(x

)�
(x

0)
w

he
re

�
2
R

d̂

T
he

or
em

D
.1

(C
on

fid
en

ce
B

ou
nd

s
w

ith
M

E
TA

-K
E

L
).

Le
tf

2
H

k
⇤

w
ith

kf
k k

⇤


B
,w

he
re

k
⇤

is
un

kn
ow

n.
U

nd
er

th
e

as
su

m
pt

io
ns

of
th

e
pr

ev
io

us
th

eo
re

m
,w

ith
pr

ob
ab

ili
ty

gr
ea

te
r

th
an

1
�

�
,

P
⇣ 8x

2
X
,
8t

�
1
:
f
(x

)
2
C t

�
1
(k̂
;x

)⌘
�

1
�

�
.

Th
is

th
eo

re
m

im
pl

ie
s,

w
ith

pr
ob

ab
ili

ty
gr

ea
te

rt
ha

n
1
�

�

|µ
t�

1
(k̂
;x

)
�

f
(x

)|


�
t�

1
(k̂
;x

)⇣ B
+

B
✏
(n
,
m
)
+

�

q
d̂
lo
g
� 1

+
�̄
�
2
t
� +

2
+

2
lo
g(
1/

�
))
⌘

A
s

m
or

e
m

et
a-

da
ta

is
pr

ov
id

ed
,i

.e
.,

as
m

an
d
n

gr
ow

,✏
(n
,
m
)

va
ni

sh
es

an
d
d̂
!

d
⇤ ,

th
e

di
m

en
si

on
of

k
⇤ .

W
ith

or
ac

le
kn

ow
le

dg
e

of
k
⇤ ,

|µ
t�

1
(k

⇤ ;
x
)
�
f
(x

)|


�
t�

1
(k

⇤ ;
x
)⇣ B

+
�

q
d
⇤
lo
g
� 1

+
�̄
�
2
t
� +

2
+

2
lo
g(
1/

�
))
⌘ .

Th
e

m
et

a-
le

ar
ne

d
co

nfi
de

nc
e

bo
un

ds
ap

pr
oa

ch
th

e
or

ac
le

bo
un

ds
,

as
am

ou
nt

s
of

of
fli

ne
da

ta
gr

ow
s.

W
e

le
t
k
⇤ (
x
,
x
0)

=
1 5

P
j
2
J

⇤
P
j
(x
)P

j
(x

0)
,

w
he

re
P
j

is
a

de
gr

ee
-j

Le
ge

nd
re

po
ly

no
m

ia
la

nd
J
⇤

is
a

ra
nd

om
su

bs
et

of
si

ze
5

fr
om

{1
,
··
·,

20
}.

U
si

ng
th

is
ke

rn
el

,
w

e
ge

ne
ra

te
a

ra
nd

om
m

et
a-

da
ta

se
to

fs
iz

e
m

=
n
=

50
.O

n
a

te
st

ta
sk

,w
ith

a
fr

es
h

ne
w

fu
nc

tio
n
f
⇤ ,

w
e

as
se

ss
th

e
co

nfi
de

nc
e

se
ts

at
t
=

4.
Em

pi
ric

al
w

id
th

of
th

e
co

nfi
de

nc
e

ba
nd

.

Em
pi

ric
al

co
ve

ra
ge

of
th

e
co

nfi
de

nc
e

ba
nd

vs
.t

he
tru

e
1
�

�

B
ot

h
qu

an
tit

ie
s

ar
e

av
er

ag
es

ov
er

a
sa

m
pl

e
of

si
ze

10
00

fr
om

X
.

Er
ro

rb
ar

s
sh

ow
st

an
da

rd
er

ro
rf

or
50

ru
ns

of
th

e
pr

ob
le

m
.

1
�

�

Meta-Learning Hypothesis Spaces

i.e., exists dj < 1 where kj(x,x0) = �T (x)�(x0) and � 2 Rdj .

i.e., the sparsity patterns match with high probability.

Construct the confidence sets (see Equation 1)

Ct�1(k̂;x) = [µt�1(k̂;x)± ⌫t�t�1(k̂;x)]

⌫t = B

⇣
1 + ✏(n,m)

⌘
+ �

q
d̂ log (1 + �̄�2t) + 2 + 2 log(1/�)

For calculating µt�1 and �t�1, set �̄ = 1 + 2/t.

where d̂ is the dimension of k̂.

i.e., exists d̂ < 1 where k̂(x,x0) = �T (x)�(x0) where � 2 Rd̂

Theorem D.1 (Confidence Bounds with META-KEL). Let f 2 Hk⇤ with kfkk⇤  B, where k
⇤ is unknown. Under the

assumptions of the previous theorem, with probability greater than 1� �,

P
⇣
8x 2 X , 8t � 1 : f(x) 2 Ct�1(k̂;x)

⌘
� 1� �.

This theorem implies, with probability greater than 1� �

|µt�1(k̂;x)� f(x)|  �t�1(k̂;x)
⇣
B +B✏(n,m) + �

q
d̂ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘

As more meta-data is provided, i.e., as m and n grow,
✏(n,m) vanishes and d̂ ! d

⇤, the dimension of k⇤.

With oracle knowledge of k⇤,

|µt�1(k
⇤;x)� f(x)|  �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘
.

The meta-learned confidence bounds approach the oracle bounds,
as amounts of offline data grows.

We let k⇤(x, x0) = 1
5

P
j2J⇤ Pj(x)Pj(x0), where Pj is a degree-j Leg-

endre polynomial and J
⇤ is a random subset of size 5 from {1, · · · , 20}.

Using this kernel, we generate a random meta-data set of size m = n = 50.
On a test task, with a fresh new function f

⇤, we assess the confidence sets
at t = 4. We check 1) if the sets are valid and 2) if they are tight.

Empirical width of the confidence band.

Empirical coverage of the confidence band
vs. the true 1� �

Both quantities are averages over a sample
of size 1000 from X . Error bars show stan-
dard error for 50 runs of the problem.

If applied to Bandit optimization, the sets imply a sublinear regret guaran-
tee for the GP-UCB algorithm using k̂. This regret bound approaches that
of the oracle algorithm.

Sequential decision-making describes a class of problems where a learner
sequentially interacts with an unknown stochastic environment, with the
goal of maximizing a reward.

Obtaining reliable confidence sequences for unknown target functions is
a central challenge in sequential decision-making tasks, e.g., Bayesian
Optimization and model-based RL. Meta-Learning Hypothesis Spaces

These confidence sets are typically constructed by relying on oracle knowl-
edge of the hypothesis space, e.g., a known RKHS. This is a strong as-
sumption.

We propose any-time valid confidence sets that rely on a meta-learned
hypothesis space, instead of assuming oracle knowledge.

Meta-Learning Hypothesis Spaces

These confidence sets are typically constructed by relying on oracle knowl-
edge of the hypothesis space, e.g., a known RKHS. This is a strong as-
sumption.

We propose any-time valid confidence sets that rely on a meta-learned
hypothesis space, instead of assuming oracle knowledge.

Data from similar tasks

Our approach: Meta-learning

4

Meta-Learning Hypothesis Spaces for Sequential Decision-making
Parnian Kassraie, Jonas Rothfuss, Andreas Krause

Model

References
[1]

Meta-Learning Hypothesis Spaces

Curi, S., Berkenkamp, F., and Krause, A. Efficient model-based reinforcement learning through
optimistic policy search and planning. arXiv preprint arXiv:2006.08684, 2020.

Evgeniou, T. and Pontil, M. Regularized multi–task learning. In Proceedings of the tenth ACM
SIGKDD international conference on Knowledge discovery and data mining, pp. 109–117, 2004.

Gneiting, T., Balabdaoui, F., and Raftery, A. E. Probabilistic forecasts, calibration and sharpness.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 69(2):243–268,
2007.

Gönen, M. and Alpaydın, E. Multiple kernel learning algorithms. The Journal of Machine Learning
Research, 12:2211–2268, 2011.

Hao, B., Lattimore, T., and Wang, M. High-dimensional sparse linear bandits. arXiv preprint
arXiv:2011.04020, 2020.

Jacot, A., Gabriel, F., and Hongler, C. Neural tangent kernel: Convergence and generalization in
neural networks. arXiv preprint arXiv:1806.07572, 2018.

Javanmard, A. and Montanari, A. Confidence intervals and hypothesis testing for high-dimensional
regression. The Journal of Machine Learning Research, 15(1):2869–2909, 2014.

Kakade, S., Krishnamurthy, A., Lowrey, K., Ohnishi, M., and Sun, W. Information theoretic regret
bounds for online nonlinear control. arXiv preprint arXiv:2006.12466, 2020.

Kim, G.-S. and Paik, M. C. Doubly-robust lasso bandit. arXiv preprint arXiv:1907.11362, 2019.

Kloft, M., Brefeld, U., Sonnenburg, S., and Zien, A. Lp-norm multiple kernel learning. The Journal
of Machine Learning Research, 12:953–997, 2011.

Koltchinskii, V. and Yuan, M. Sparse recovery in large ensembles of kernel machines. In Proceed-
ings of COLT, volume 69, 2008.

Kveton, B., Mladenov, M., Hsu, C.-W., Zaheer, M., Szepesvari, C., and Boutilier, C. Meta-learning
bandit policies by gradient ascent. arXiv preprint arXiv:2006.05094, 2020.

Liu, H. and Zhang, J. Estimation consistency of the group lasso and its applications. In Artificial
Intelligence and Statistics, pp. 376–383. PMLR, 2009.

Lounici, K., Pontil, M., Van De Geer, S., and Tsybakov, A. B. Oracle inequalities and optimal
inference under group sparsity. The annals of statistics, 39(4):2164–2204, 2011.

Massias, M., Gramfort, A., and Salmon, J. Celer: a fast solver for the lasso with dual extrapolation.
In Proceedings of the 35th International Conference on Machine Learning, volume 80, pp.
3321–3330, 2018.

Ong, C. S., Smola, A. J., and Williamson, R. C. Learning the kernel with hyperkernels. Journal of
Machine Learning Research, 2005.

Rahimi, A., Recht, B., et al. Random features for large-scale kernel machines. In NIPS, pp. 5.
Citeseer, 2007.

Rothfuss, J., Fortuin, V., Josifoski, M., and Krause, A. Pacoh: Bayes-optimal meta-learning with
pac-guarantees. In International Conference on Machine Learning, pp. 9116–9126. PMLR,
2021a.

Rothfuss, J., Heyn, D., Chen, J., and Krause, A. Meta-learning reliable priors in the function space.
In Advances in Neural Information Processing Systems, 2021b.

Russo, D. and Van Roy, B. Learning to optimize via posterior sampling. Mathematics of Operations
Research, 39(4):1221–1243, 2014.

[2]

Meta-Learning Hypothesis Spaces

References
Abbasi-Yadkori, Y., Pál, D., and Szepesvári, C. Improved algorithms for linear stochastic bandits.

In Advances in Neural Information Processing Systems, volume 24, 2011.

Bach, F., Jenatton, R., Mairal, J., and Obozinski, G. Optimization with sparsity-inducing penalties.
arXiv preprint arXiv:1108.0775, 2011.

Bach, F. R. Consistency of the group lasso and multiple kernel learning. Journal of Machine
Learning Research, 9(6), 2008.

Bach, F. R., Lanckriet, G. R., and Jordan, M. I. Multiple kernel learning, conic duality, and the smo
algorithm. In Proceedings of the twenty-first international conference on Machine learning, pp.
6, 2004.

Bastani, H. and Bayati, M. Online decision making with high-dimensional covariates. Operations
Research, 68(1):276–294, 2020.

Basu, S., Kveton, B., Zaheer, M., and Szepesvári, C. No regrets for learning the prior in bandits.
Advances in Neural Information Processing Systems, 34, 2021.

Berkenkamp, F., Turchetta, M., Schoellig, A. P., and Krause, A. Safe model-based reinforcement
learning with stability guarantees. arXiv preprint arXiv:1705.08551, 2017.

Berkenkamp, F., Schoellig, A. P., and Krause, A. No-regret bayesian optimization with unknown
hyperparameters. arXiv preprint arXiv:1901.03357, 2019.

Bickel, P. J., Ritov, Y., and Tsybakov, A. B. Simultaneous analysis of lasso and dantzig selector.
The Annals of statistics, 37(4):1705–1732, 2009.

Bogunovic, I. and Krause, A. Misspecified Gaussian process bandit optimization. In Conference
on Neural Information Processing Systems (NeurIPS), 2021.

Boutilier, C., Hsu, C.-w., Kveton, B., Mladenov, M., Szepesvari, C., and Zaheer, M. Differentiable
meta-learning of bandit policies. In Advances in Neural Information Processing Systems. Curran
Associates, Inc., 2020.

Boyd, S., Boyd, S. P., and Vandenberghe, L. Convex optimization. Cambridge University Press,
2004.

Bühlmann, P. and Van De Geer, S. Statistics for high-dimensional data: methods, theory and
applications. Springer Science & Business Media, 2011.

Bunea, F., Lederer, J., and She, Y. The group square-root lasso: Theoretical properties and fast
algorithms. IEEE Transactions on Information Theory, 60(2):1313–1325, 2013.

Cavalier, L., Golubev, G., Picard, D., and Tsybakov, A. Oracle inequalities for inverse problems.
The Annals of Statistics, 30(3):843–874, 2002.

Cella, L. and Pontil, M. Multi-task and meta-learning with sparse linear bandits. In Uncertainty in
Artificial Intelligence, pp. 1692–1702. PMLR, 2021.

Cella, L., Lazaric, A., and Pontil, M. Meta-learning with stochastic linear bandits. In International
Conference on Machine Learning, pp. 1360–1370. PMLR, 2020.

Chowdhury, S. R. and Gopalan, A. On kernelized multi-armed bandits. In International Conference
on Machine Learning, pp. 844–853. PMLR, 2017.

Cristianini, N., Kandola, J., Elisseeff, A., and Shawe-Taylor, J. On kernel target alignment. In
Innovations in machine learning, pp. 205–256. Springer, 2006.

Hk⇤
Hk̂

Hkfull

Confidence SetsOverview

Problem Setting

Meta-KeL

Meta-Learning Hypothesis Spaces

Figure 8: BO (minimization) with META-KEL. Upper plot shows the state at t = 5 and the lower plot at t = 55.

f 2 Hk⇤

fs 2 Hk⇤

w.h.p. {8x 2 X : f(x) 2 Ct�1(k
⇤;x)}

xt = argmax
x2X

Ct�1(k̂;x)

Jk⇤ ⇢ {1, · · · , 20}, |Jk⇤ | = 5

D.1. SAVI Poster

Interacting with the environment

yt = f
⇤(xt) + "t

xt 2 X , depends on the history (x1:t�1, y1:t�1)

X ⇢ Rd0 , compact

"t: �2 sub-Gussian, i.i.d.

f
⇤ : X ! R, f⇤ 2 Hk⇤ , kf⇤kk⇤  B

k
⇤ unknown

Find k̂ s.t. the confidence sets are valid

P
⇣
8x 2 X , 8t � 1 : f⇤(x) 2 Ct�1(k̂;x)

⌘

Meta-Learning Hypothesis Spaces

Figure 8: BO (minimization) with META-KEL. Upper plot shows the state at t = 5 and the lower plot at t = 55.

f 2 Hk⇤

fs 2 Hk⇤

w.h.p. {8x 2 X : f(x) 2 Ct�1(k
⇤;x)}

xt = argmax
x2X

Ct�1(k̂;x)

Jk⇤ ⇢ {1, · · · , 20}, |Jk⇤ | = 5

D.1. SAVI Poster

Interacting with the environment

yt = f
⇤(xt) + "t

xt 2 X , depends on the history (x1:t�1, y1:t�1)

X ⇢ Rd0 , compact

"t: �2 sub-Gussian, i.i.d.

f
⇤ : X ! R, f⇤ 2 Hk⇤ , kf⇤kk⇤  B

k
⇤ unknown

Find k̂ s.t. the confidence sets are valid

P
⇣
8x 2 X , 8t � 1 : f⇤(x) 2 Ct�1(k̂;x)

⌘

Meta-Learning Hypothesis Spaces

Figure 8: BO (minimization) with META-KEL. Upper plot shows the state at t = 5 and the lower plot at t = 55.

f 2 Hk⇤

fs 2 Hk⇤

w.h.p. {8x 2 X : f(x) 2 Ct�1(k
⇤;x)}

xt = argmax
x2X

Ct�1(k̂;x)

Jk⇤ ⇢ {1, · · · , 20}, |Jk⇤ | = 5

D.1. SAVI Poster

Interacting with the environment

yt = f
⇤(xt) + "t

xt 2 X , depends on the history (x1:t�1, y1:t�1)

X ⇢ Rd0 , compact

"t: �2 sub-Gussian, i.i.d.

f
⇤ : X ! R, f⇤ 2 Hk⇤ , kf⇤kk⇤  B

k
⇤ unknown

Find k̂ s.t. the confidence sets are valid

P
⇣
8x 2 X , 8t � 1 : f⇤(x) 2 Ct�1(k̂;x)

⌘

Meta-Learning Hypothesis Spaces

Figure 8: BO (minimization) with META-KEL. Upper plot shows the state at t = 5 and the lower plot at t = 55.

f 2 Hk⇤

fs 2 Hk⇤

w.h.p. {8x 2 X : f(x) 2 Ct�1(k
⇤;x)}

xt = argmax
x2X

Ct�1(k̂;x)

Jk⇤ ⇢ {1, · · · , 20}, |Jk⇤ | = 5

yt = f
⇤(xt) + ✏t

xt 2 X , depends on the history (x1:t�1, y1:t�1)

X ⇢ Rd0 , compact

✏t: �2 sub-Gussian, i.i.d.

f
⇤ : X ! R, f⇤ 2 Hk⇤ , kf⇤kk⇤  B

k
⇤ unknown

Find k̂ s.t. the confidence sets are valid

P
⇣
8x 2 X , 8t � 1 : f⇤(x) 2 Ct�1(k̂;x)

⌘

Ct�1(k;x) = [µt�1(k;x)± ⌫t�t�1(k;x)]

Meta-Learning Hypothesis Spaces

Figure 8: BO (minimization) with META-KEL. Upper plot shows the state at t = 5 and the lower plot at t = 55.

f 2 Hk⇤

fs 2 Hk⇤

w.h.p. {8x 2 X : f(x) 2 Ct�1(k
⇤;x)}

xt = argmax
x2X

Ct�1(k̂;x)

Jk⇤ ⇢ {1, · · · , 20}, |Jk⇤ | = 5

yt = f
⇤(xt) + ✏t

xt 2 X , depends on the history (x1:t�1, y1:t�1)

X ⇢ Rd0 , compact

✏t: �2 sub-Gussian, i.i.d.

f
⇤ : X ! R, f⇤ 2 Hk⇤ , kf⇤kk⇤  B

k
⇤ unknown

Find k̂ s.t. the confidence sets are valid

P
⇣
8x 2 X , 8t � 1 : f⇤(x) 2 Ct�1(k̂;x)

⌘

Ct�1(k;x) = [µt�1(k;x)± ⌫t�t�1(k;x)]

Meta-Learning Hypothesis Spaces

Figure 8: BO (minimization) with META-KEL. Upper plot shows the state at t = 5 and the lower plot at t = 55.

f 2 Hk⇤

fs 2 Hk⇤

w.h.p. {8x 2 X : f(x) 2 Ct�1(k
⇤;x)}

xt = argmax
x2X

Ct�1(k̂;x)

Jk⇤ ⇢ {1, · · · , 20}, |Jk⇤ | = 5

D.1. SAVI Poster

Interacting with the environment

yt = f
⇤(xt) + "t

xt 2 X , depends on the history (x1:t�1, y1:t�1)

X ⇢ Rd0 , compact

"t: �2 sub-Gussian, i.i.d.

f
⇤ : X ! R, f⇤ 2 Hk⇤ , kf⇤kk⇤  B

k
⇤ unknown

Find k̂ s.t. the confidence sets are valid

P
⇣
8x 2 X , 8t � 1 : f⇤(x) 2 Ct�1(k̂;x)

⌘
� 1� �

Meta-Learning Hypothesis Spaces

Ct�1(k;x) = [µt�1(k;x)± ⌫t�t�1(k;x)]

µt�1(k;x) = kT
t�1(x)(Kt�1 + �̄

2I)�1yt�1 (D.1)

�
2
t�1(k;x) = k(x,x)� kT

t�1(x)(Kt�1 + �̄
2I)�1kt�1(x)

Data from similar tasks is available (fixed design)

ys,i = fs(xs,i) + "s,i

"s,i: also �
2 sub-Gussian, i.i.d.

fs : X ! R, fs 2 Hk⇤ , kfskk⇤  B

Meta-Learning Hypothesis Spaces

Ct�1(k;x) = [µt�1(k;x)± ⌫t�t�1(k;x)]

µt�1(k;x) = kT
t�1(x)(Kt�1 + �̄

2I)�1yt�1 (D.1)

�
2
t�1(k;x) = k(x,x)� kT

t�1(x)(Kt�1 + �̄
2I)�1kt�1(x)

Data from similar tasks is available (fixed design)

ys,i = fs(xs,i) + "s,i

"s,i: also �
2 sub-Gussian, i.i.d.

fs : X ! R, fs 2 Hk⇤ , kfskk⇤  B

Meta-Learning Hypothesis Spaces

Ct�1(k;x) = [µt�1(k;x)± ⌫t�t�1(k;x)]

µt�1(k;x) = kT
t�1(x)(Kt�1 + �̄

2I)�1yt�1 (D.1)

�
2
t�1(k;x) = k(x,x)� kT

t�1(x)(Kt�1 + �̄
2I)�1kt�1(x)

Data from similar tasks is available (fixed design)

ys,i = fs(xs,i) + "s,i

"s,i: also �
2 sub-Gussian, i.i.d.

fs : X ! R, fs 2 Hk⇤ , kfskk⇤  B

s  m

i  n

Meta-Learning Hypothesis Spaces

Ct�1(k;x) = [µt�1(k;x)± ⌫t�t�1(k;x)]

µt�1(k;x) = kT
t�1(x)(Kt�1 + �̄

2I)�1yt�1 (D.1)

�
2
t�1(k;x) = k(x,x)� kT

t�1(x)(Kt�1 + �̄
2I)�1kt�1(x)

Data from similar tasks is available (fixed design)

ys,i = fs(xs,i) + "s,i, for 1  i  n and 1  s  m

"s,i: also �
2 sub-Gussian, i.i.d.

fs : X ! R, fs 2 Hk⇤ , kfskk⇤  B

s  m

i  n

Meta-Learning Hypothesis Spaces

Ct�1(k;x) = [µt�1(k;x)± ⌫t�t�1(k;x)]

µt�1(k;x) = kT
t�1(x)(Kt�1 + �̄

2I)�1yt�1 (D.1)

�
2
t�1(k;x) = k(x,x)� kT

t�1(x)(Kt�1 + �̄
2I)�1kt�1(x)

Data from m similar tasks is available (fixed design)

ys,i = fs(xs,i) + "s,i, for 1  i  n and 1  s  m

"s,i: also �
2 sub-Gussian, i.i.d.

fs : X ! R, fs 2 Hk⇤ , kfskk⇤  B

s  m

i  n

Assume that true kernel can be decomposed as

k(x,x0) =
pX

j=1

⌘
⇤
j kj(x,x

0)

p < 1

⌘
⇤
j : unknown, non-negative

Better choice is ⌘⇤j 2 {0, 1}.

kj : known, finite-dimensional

Is extendable to infinite-dimensional kernels.

k⌘⇤k1  1 and kj(x,x0)  1

Sparsity pattern J
⇤ = {1  j  p : ⌘⇤j 6= 0}

Meta-loss

Proposition

We require regularity assumptions on the meta-data: Restricted Eigenvalue Assumption and Multi-task Group Beta-min
Condition.

Meta-Learning Hypothesis Spaces

Ct�1(k;x) = [µt�1(k;x)± ⌫t�t�1(k;x)]

µt�1(k;x) = kT
t�1(x)(Kt�1 + �̄

2I)�1yt�1 (D.1)

�
2
t�1(k;x) = k(x,x)� kT

t�1(x)(Kt�1 + �̄
2I)�1kt�1(x)

Data from m similar tasks is available (fixed design)

ys,i = fs(xs,i) + "s,i, for 1  i  n and 1  s  m

"s,i: also �
2 sub-Gussian, i.i.d.

fs : X ! R, fs 2 Hk⇤ , kfskk⇤  B

s  m

i  n

Assume that true kernel can be decomposed as

k
⇤(x,x0) =

pX

j=1

⌘
⇤
j kj(x,x

0)

p < 1

⌘
⇤
j : unknown, non-negative

Better choice is ⌘⇤j 2 {0, 1}.

kj : known, finite-dimensional

Is extendable to infinite-dimensional kernels.

k⌘⇤k1  1 and kj(x,x0)  1

Sparsity pattern J
⇤ = {1  j  p : ⌘⇤j 6= 0}

Meta-loss

Proposition

We require regularity assumptions on the meta-data: Restricted Eigenvalue Assumption and Multi-task Group Beta-min
Condition.

Meta-Learning Hypothesis Spaces

Ct�1(k;x) = [µt�1(k;x)± ⌫t�t�1(k;x)]

µt�1(k;x) = kT
t�1(x)(Kt�1 + �̄

2I)�1yt�1 (D.1)

�
2
t�1(k;x) = k(x,x)� kT

t�1(x)(Kt�1 + �̄
2I)�1kt�1(x)

Data from m similar tasks is available (fixed design)

ys,i = fs(xs,i) + "s,i, for 1  i  n and 1  s  m

"s,i: also �
2 sub-Gussian, i.i.d.

fs : X ! R, fs 2 Hk⇤ , kfskk⇤  B

s  m

i  n

Assume that true kernel can be decomposed as

k
⇤(x,x0) =

pX

j=1

⌘
⇤
j kj(x,x

0)

p < 1

⌘
⇤
j : unknown, non-negative

Better choice is ⌘⇤j 2 {0, 1}.

kj : known, finite-dimensional

Is extendable to infinite-dimensional kernels.

k⌘⇤k1  1 and kj(x,x0)  1

Sparsity pattern J
⇤ = {1  j  p : ⌘⇤j 6= 0}

Meta-loss

Proposition

We require regularity assumptions on the meta-data: Restricted Eigenvalue Assumption and Multi-task Group Beta-min
Condition.

Meta-Learning Hypothesis Spaces

Ct�1(k;x) = [µt�1(k;x)± ⌫t�t�1(k;x)]

µt�1(k;x) = kT
t�1(x)(Kt�1 + �̄

2I)�1yt�1 (D.1)

�
2
t�1(k;x) = k(x,x)� kT

t�1(x)(Kt�1 + �̄
2I)�1kt�1(x)

Data from m similar tasks is available (fixed design)

ys,i = fs(xs,i) + "s,i, for 1  i  n and 1  s  m

"s,i: also �
2 sub-Gussian, i.i.d.

fs : X ! R, fs 2 Hk⇤ , kfskk⇤  B

s  m

i  n

Assume that true kernel can be decomposed as

k
⇤(x,x0) =

pX

j=1

⌘
⇤
j kj(x,x

0)

p < 1

⌘
⇤
j : unknown, non-negative

Better choice is ⌘⇤j 2 {0, 1}.

kj : known, finite-dimensional

Is extendable to infinite-dimensional kernels.

k⌘⇤k1  1 and kj(x,x0)  1

Sparsity pattern J
⇤ = {1  j  p : ⌘⇤j 6= 0}

Meta-loss

Proposition

We require regularity assumptions on the meta-data: Restricted Eigenvalue Assumption and Multi-task Group Beta-min
Condition.

Meta-Learning Hypothesis Spaces

Ct�1(k;x) = [µt�1(k;x)± ⌫t�t�1(k;x)]

µt�1(k;x) = kT
t�1(x)(Kt�1 + �̄

2I)�1yt�1 (D.1)

�
2
t�1(k;x) = k(x,x)� kT

t�1(x)(Kt�1 + �̄
2I)�1kt�1(x)

Data from m similar tasks is available (fixed design)

ys,i = fs(xs,i) + "s,i, for 1  i  n and 1  s  m

"s,i: also �
2 sub-Gussian, i.i.d.

fs : X ! R, fs 2 Hk⇤ , kfskk⇤  B

s  m

i  n

Assume that true kernel can be decomposed as

k
⇤(x,x0) =

pX

j=1

⌘
⇤
j kj(x,x

0)

p < 1

⌘
⇤
j : unknown, non-negative

Better choice is ⌘⇤j 2 {0, 1}.

kj : known, finite-dimensional

Is extendable to infinite-dimensional kernels.

k⌘⇤k1  1 and kj(x,x0)  1

Sparsity pattern J
⇤ = {1  j  p : ⌘⇤j 6= 0}

Meta-loss

Proposition

We require regularity assumptions on the meta-data: Restricted Eigenvalue Assumption and Multi-task Group Beta-min
Condition.

Meta-Learning Hypothesis Spaces

Ct�1(k;x) = [µt�1(k;x)± ⌫t�t�1(k;x)]

µt�1(k;x) = kT
t�1(x)(Kt�1 + �̄

2I)�1yt�1 (D.1)

�
2
t�1(k;x) = k(x,x)� kT

t�1(x)(Kt�1 + �̄
2I)�1kt�1(x)

Data from m similar tasks is available (fixed design)

ys,i = fs(xs,i) + "s,i, for 1  i  n and 1  s  m

"s,i: also �
2 sub-Gussian, i.i.d.

fs : X ! R, fs 2 Hk⇤ , kfskk⇤  B

s  m

i  n

Assume that true kernel can be decomposed as

k
⇤(x,x0) =

pX

j=1

⌘
⇤
j kj(x,x

0)

p < 1

⌘
⇤
j : unknown, non-negative

Better choice is ⌘⇤j 2 {0, 1}.

kj : known, finite-dimensional

Is extendable to infinite-dimensional kernels.

k⌘⇤k1  1 and kj(x,x0)  1

Sparsity pattern J
⇤ = {1  j  p : ⌘⇤j 6= 0}

Meta-loss

Proposition

We require regularity assumptions on the meta-data: Restricted Eigenvalue Assumption and Multi-task Group Beta-min
Condition.

Meta-Learning Hypothesis Spaces

where d =
Pp

j=1 dj and

�(x) =
⇣p

⌘
⇤

1�
T
1 (x), · · · ,

p
⌘⇤p�

T
p (x)

⌘T
.

For each task s, the function fs is contained in Hk⇤ . By the
Mercer’s theorem fs may be decomposed as

fs(x) = �T (x)�⇤

s =
pX

j=1

q
⌘
⇤

j�
T
j (x)�

⇤

s
(j)

, (6)

where �⇤

s 2 Rd is the coefficients vector of task s and
�⇤

s
(j) 2 Rdj is the sub-vector corresponding to kernel kj . It

is not possible to meta-select a base kernel kj which has not
contributed to the generation of the meta-data. Therefore, if
a base kernel is active in the construction of Hk⇤ , it is only
natural to assume that there is some task in the meta-data
which reflects this presence. More formally, we assume that,
for any j 2 Jk⇤ , there exists some s  m where �⇤

s
(j) 6= 0.

We define �⇤ = (�⇤

1
T
, · · · ,�⇤

m
T)T 2 Rmd as the concate-

nated coefficients vector for all tasks. To refer to the group
of coefficients that correspond to kernel kj across all tasks,
we use �⇤(j) = ((�⇤

1
(j))T , · · · , (�⇤

m
(j))T)T 2 Rmdj . Our

next assumption guarantees that the meta-learning problem
is not ill-posed.
Assumption 3.1 (Group Beta-min Condition). There exists
c1 > 0 s.t. for all j 2 Jk⇤ it holds that

���⇤(j)
��
2
� c1.

This assumption is inevitable for recovering the sparsity
pattern from empirical data and it is widely used in the
high-dimensional statistics literature (e.g., Bühlmann &
Van De Geer, 2011; Zhao & Yu, 2006; Van de Geer et al.,
2011). Assumption 3.1 implies that for j to be in Jk⇤ , the
coefficients vector corresponding to kernel kj can not be
zero or arbitrarily close to zero. In practice,

���(j)
��
2

has
to be comparable with the noise level for the activity of a
base kernel not to be mistaken with randomness.

4. Meta-learning the Hypothesis Space
(META-KEL)

In the following section, we present our formulation of
the meta-learning problem and analyze the properties of
the learned hypothesis space. We meta-learn the kernel by
solving the following optimization problem. Then, we set
the hypothesis space of the downstream learning algorithm
to be the RKHS of the meta-learned kernel.

min
⌘,f1,...,fm

1

m

mX

s=1

"
1

n

nX

i=1

(ys,i � fs(xs,i))
2

#

+
�

2

mX

s=1

kfsk2k +
�

2
k⌘k1

s.t. 8s : fs 2 Hk, k =
pX

j=1

⌘jkj , 0  ⌘

(7)

We will refer to this problem as Meta-Kernel Learning
(META-KEL). The first part of the objective is similar to
the kernel ridge regression loss, and accounts for how well
a series of regularized fs fit the meta-data. The last term
regularizes our choice of the kernel function. We use `1-
norm regularization for ⌘ to implicitly perform meta-model-
selection. As shown in Proposition 4.4, the meta-learned
kernel will reflect the sparsity pattern of the true kernel. The
optimization problem (7) is convex and admits an efficient
solution, as explained next.

We first introduce a vectorized formulation of Equation (7).
Let ys 2 Rn denote the observed values for a task s

and y = (yT
1 , · · · ,yT

m)T 2 Rmn the multi-task stacked
vector of observations. We then design a multi-task fea-
ture matrix. We define � to be a mn ⇥ md block-
diagonal matrix, where each block s corresponds to �s =
(�(xs,1), · · · ,�(xs,n))T , the n⇥d feature matrix of task s.
Figure 6 provides an illustration thereof. As shown in Propo-
sition 4.1, this vectorized design brings forth a parametric
equivalent of META-KEL, which happens to be the well-
known Group Lasso problem.
Proposition 4.1 (Solution of META-KEL). Let k =P

j ⌘̂jkj be a solution to Problem (7). Then, for all
1  j  p, it holds that

⌘̂j =
����̂(j)

���
2

with �̂ = (�̂(j))jp as the solution of the following convex
optimization problem:

min
�

1

mn
ky ���k22 + �

pX

j=1

����(j)
���
2
. (8)

We show this equivalence by eliminating ⌘. We use a trick
introduced by Bach et al. (2004), which, for w, v 2 R states
2|w| = minv>0 w

2
/v + v. The proof is given in Appendix

A.2. Problem (8) can be optimized by any Group Lasso
solver. Bach et al. (2011) present a number of coordinate
descent algorithms which efficiently find the solution.

Before introducing the meta-learned kernel k̂, we note that
Reproducing Kernel Hilbert Spaces are equivalent up to
scaling of the kernel function. For c > 0, both Hk and the
scaled version Hck contain the same set of functions. Going
from Hk to Hck, the RKHS norm of any member f would
scale by 1/c, i.e. kfkk = ckfkck. Hence, the norm k⌘̂k1
will be irrelevant when meta-learning the function space.
This norm can be scaled or normalized, and still yield the
same hypothesis space, only with a scaled operator norm.
For consistency of notation, we define k̂ as follows. For any
two points x, x0 2 X , set

k̂(x,x0) =
pX

j=1

⌘̂j

c1
�T

j (x)�j(x
0), (9)

Meta-Learning Hypothesis Spaces

where d =
Pp

j=1 dj and

�(x) =
⇣p

⌘
⇤

1�
T
1 (x), · · · ,

p
⌘⇤p�

T
p (x)

⌘T
.

For each task s, the function fs is contained in Hk⇤ . By the
Mercer’s theorem fs may be decomposed as

fs(x) = �T (x)�⇤

s =
pX

j=1

q
⌘
⇤

j�
T
j (x)�

⇤

s
(j)

, (6)

where �⇤

s 2 Rd is the coefficients vector of task s and
�⇤

s
(j) 2 Rdj is the sub-vector corresponding to kernel kj . It

is not possible to meta-select a base kernel kj which has not
contributed to the generation of the meta-data. Therefore, if
a base kernel is active in the construction of Hk⇤ , it is only
natural to assume that there is some task in the meta-data
which reflects this presence. More formally, we assume that,
for any j 2 Jk⇤ , there exists some s  m where �⇤

s
(j) 6= 0.

We define �⇤ = (�⇤

1
T
, · · · ,�⇤

m
T)T 2 Rmd as the concate-

nated coefficients vector for all tasks. To refer to the group
of coefficients that correspond to kernel kj across all tasks,
we use �⇤(j) = ((�⇤

1
(j))T , · · · , (�⇤

m
(j))T)T 2 Rmdj . Our

next assumption guarantees that the meta-learning problem
is not ill-posed.
Assumption 3.1 (Group Beta-min Condition). There exists
c1 > 0 s.t. for all j 2 Jk⇤ it holds that

���⇤(j)
��
2
� c1.

This assumption is inevitable for recovering the sparsity
pattern from empirical data and it is widely used in the
high-dimensional statistics literature (e.g., Bühlmann &
Van De Geer, 2011; Zhao & Yu, 2006; Van de Geer et al.,
2011). Assumption 3.1 implies that for j to be in Jk⇤ , the
coefficients vector corresponding to kernel kj can not be
zero or arbitrarily close to zero. In practice,

���(j)
��
2

has
to be comparable with the noise level for the activity of a
base kernel not to be mistaken with randomness.

4. Meta-learning the Hypothesis Space
(META-KEL)

In the following section, we present our formulation of
the meta-learning problem and analyze the properties of
the learned hypothesis space. We meta-learn the kernel by
solving the following optimization problem. Then, we set
the hypothesis space of the downstream learning algorithm
to be the RKHS of the meta-learned kernel.

min
⌘,f1,...,fm

1

m

mX

s=1

"
1

n

nX

i=1

(ys,i � fs(xs,i))
2

#

+
�

2

mX

s=1

kfsk2k +
�

2
k⌘k1

s.t. 8s : fs 2 Hk, k =
pX

j=1

⌘jkj , 0  ⌘

(7)

We will refer to this problem as Meta-Kernel Learning
(META-KEL). The first part of the objective is similar to
the kernel ridge regression loss, and accounts for how well
a series of regularized fs fit the meta-data. The last term
regularizes our choice of the kernel function. We use `1-
norm regularization for ⌘ to implicitly perform meta-model-
selection. As shown in Proposition 4.4, the meta-learned
kernel will reflect the sparsity pattern of the true kernel. The
optimization problem (7) is convex and admits an efficient
solution, as explained next.

We first introduce a vectorized formulation of Equation (7).
Let ys 2 Rn denote the observed values for a task s

and y = (yT
1 , · · · ,yT

m)T 2 Rmn the multi-task stacked
vector of observations. We then design a multi-task fea-
ture matrix. We define � to be a mn ⇥ md block-
diagonal matrix, where each block s corresponds to �s =
(�(xs,1), · · · ,�(xs,n))T , the n⇥d feature matrix of task s.
Figure 6 provides an illustration thereof. As shown in Propo-
sition 4.1, this vectorized design brings forth a parametric
equivalent of META-KEL, which happens to be the well-
known Group Lasso problem.
Proposition 4.1 (Solution of META-KEL). Let k =P

j ⌘̂jkj be a solution to Problem (7). Then, for all
1  j  p, it holds that

⌘̂j =
����̂(j)

���
2

with �̂ = (�̂(j))jp as the solution of the following convex
optimization problem:

min
�

1

mn
ky ���k22 + �

pX

j=1

����(j)
���
2
. (8)

We show this equivalence by eliminating ⌘. We use a trick
introduced by Bach et al. (2004), which, for w, v 2 R states
2|w| = minv>0 w

2
/v + v. The proof is given in Appendix

A.2. Problem (8) can be optimized by any Group Lasso
solver. Bach et al. (2011) present a number of coordinate
descent algorithms which efficiently find the solution.

Before introducing the meta-learned kernel k̂, we note that
Reproducing Kernel Hilbert Spaces are equivalent up to
scaling of the kernel function. For c > 0, both Hk and the
scaled version Hck contain the same set of functions. Going
from Hk to Hck, the RKHS norm of any member f would
scale by 1/c, i.e. kfkk = ckfkck. Hence, the norm k⌘̂k1
will be irrelevant when meta-learning the function space.
This norm can be scaled or normalized, and still yield the
same hypothesis space, only with a scaled operator norm.
For consistency of notation, we define k̂ as follows. For any
two points x, x0 2 X , set

k̂(x,x0) =
pX

j=1

⌘̂j

c1
�T

j (x)�j(x
0), (9)

Meta-Learning Hypothesis Spaces

where d =
Pp

j=1 dj and

�(x) =
⇣p

⌘
⇤

1�
T
1 (x), · · · ,

p
⌘⇤p�

T
p (x)

⌘T
.

For each task s, the function fs is contained in Hk⇤ . By the
Mercer’s theorem fs may be decomposed as

fs(x) = �T (x)�⇤

s =
pX

j=1

q
⌘
⇤

j�
T
j (x)�

⇤

s
(j)

, (6)

where �⇤

s 2 Rd is the coefficients vector of task s and
�⇤

s
(j) 2 Rdj is the sub-vector corresponding to kernel kj . It

is not possible to meta-select a base kernel kj which has not
contributed to the generation of the meta-data. Therefore, if
a base kernel is active in the construction of Hk⇤ , it is only
natural to assume that there is some task in the meta-data
which reflects this presence. More formally, we assume that,
for any j 2 Jk⇤ , there exists some s  m where �⇤

s
(j) 6= 0.

We define �⇤ = (�⇤

1
T
, · · · ,�⇤

m
T)T 2 Rmd as the concate-

nated coefficients vector for all tasks. To refer to the group
of coefficients that correspond to kernel kj across all tasks,
we use �⇤(j) = ((�⇤

1
(j))T , · · · , (�⇤

m
(j))T)T 2 Rmdj . Our

next assumption guarantees that the meta-learning problem
is not ill-posed.
Assumption 3.1 (Group Beta-min Condition). There exists
c1 > 0 s.t. for all j 2 Jk⇤ it holds that

���⇤(j)
��
2
� c1.

This assumption is inevitable for recovering the sparsity
pattern from empirical data and it is widely used in the
high-dimensional statistics literature (e.g., Bühlmann &
Van De Geer, 2011; Zhao & Yu, 2006; Van de Geer et al.,
2011). Assumption 3.1 implies that for j to be in Jk⇤ , the
coefficients vector corresponding to kernel kj can not be
zero or arbitrarily close to zero. In practice,

���(j)
��
2

has
to be comparable with the noise level for the activity of a
base kernel not to be mistaken with randomness.

4. Meta-learning the Hypothesis Space
(META-KEL)

In the following section, we present our formulation of
the meta-learning problem and analyze the properties of
the learned hypothesis space. We meta-learn the kernel by
solving the following optimization problem. Then, we set
the hypothesis space of the downstream learning algorithm
to be the RKHS of the meta-learned kernel.

min
⌘,f1,...,fm

1

m

mX

s=1

"
1

n

nX

i=1

(ys,i � fs(xs,i))
2

#

+
�

2

mX

s=1

kfsk2k +
�

2
k⌘k1

s.t. 8s : fs 2 Hk, k =
pX

j=1

⌘jkj , 0  ⌘

(7)

We will refer to this problem as Meta-Kernel Learning
(META-KEL). The first part of the objective is similar to
the kernel ridge regression loss, and accounts for how well
a series of regularized fs fit the meta-data. The last term
regularizes our choice of the kernel function. We use `1-
norm regularization for ⌘ to implicitly perform meta-model-
selection. As shown in Proposition 4.4, the meta-learned
kernel will reflect the sparsity pattern of the true kernel. The
optimization problem (7) is convex and admits an efficient
solution, as explained next.

We first introduce a vectorized formulation of Equation (7).
Let ys 2 Rn denote the observed values for a task s

and y = (yT
1 , · · · ,yT

m)T 2 Rmn the multi-task stacked
vector of observations. We then design a multi-task fea-
ture matrix. We define � to be a mn ⇥ md block-
diagonal matrix, where each block s corresponds to �s =
(�(xs,1), · · · ,�(xs,n))T , the n⇥d feature matrix of task s.
Figure 6 provides an illustration thereof. As shown in Propo-
sition 4.1, this vectorized design brings forth a parametric
equivalent of META-KEL, which happens to be the well-
known Group Lasso problem.
Proposition 4.1 (Solution of META-KEL). Let k =P

j ⌘̂jkj be a solution to Problem (7). Then, for all
1  j  p, it holds that

⌘̂j =
����̂(j)

���
2

with �̂ = (�̂(j))jp as the solution of the following convex
optimization problem:

min
�

1

mn
ky ���k22 + �

pX

j=1

����(j)
���
2
. (8)

We show this equivalence by eliminating ⌘. We use a trick
introduced by Bach et al. (2004), which, for w, v 2 R states
2|w| = minv>0 w

2
/v + v. The proof is given in Appendix

A.2. Problem (8) can be optimized by any Group Lasso
solver. Bach et al. (2011) present a number of coordinate
descent algorithms which efficiently find the solution.

Before introducing the meta-learned kernel k̂, we note that
Reproducing Kernel Hilbert Spaces are equivalent up to
scaling of the kernel function. For c > 0, both Hk and the
scaled version Hck contain the same set of functions. Going
from Hk to Hck, the RKHS norm of any member f would
scale by 1/c, i.e. kfkk = ckfkck. Hence, the norm k⌘̂k1
will be irrelevant when meta-learning the function space.
This norm can be scaled or normalized, and still yield the
same hypothesis space, only with a scaled operator norm.
For consistency of notation, we define k̂ as follows. For any
two points x, x0 2 X , set

k̂(x,x0) =
pX

j=1

⌘̂j

c1
�T

j (x)�j(x
0), (9)

Meta-Loss

Theorem (Hypothesis Space Recovery, Informal)

Let 0 < � < 1. Assume meta-data satisfies the Restricted

Eigenvalue Assumption and (a relaxed) Beta-min Condition.

For the appropriate choice of �, with probability greater than 1� �,

Hk⇤ ✓ Hk̂ ,

kf kk̂  kf kk⇤

⇣
1 + ✏(n,m) + o

�
✏(n,m)

�⌘
,

where ✏(n,m) = O

⇣
1/

p
mn

⇣
log p/� +

p
mdmax log p/�

⌘⌘
.

Meta-Learning Hypothesis Spaces

Ct�1(k;x) = [µt�1(k;x)± ⌫t�t�1(k;x)]

µt�1(k;x) = kT
t�1(x)(Kt�1 + �̄

2I)�1yt�1 (D.1)

�
2
t�1(k;x) = k(x,x)� kT

t�1(x)(Kt�1 + �̄
2I)�1kt�1(x)

Data from m similar tasks is available (fixed design)

ys,i = fs(xs,i) + "s,i, for 1  i  n and 1  s  m

"s,i: also �
2 sub-Gussian, i.i.d.

fs : X ! R, fs 2 Hk⇤ , kfskk⇤  B

s  m

i  n

Assume that true kernel can be decomposed as

k
⇤(x,x0) =

pX

j=1

⌘
⇤
j kj(x,x

0)

p < 1

⌘
⇤
j : unknown, non-negative

Better choice is ⌘⇤j 2 {0, 1}.

kj : known, finite-dimensional

Is extendable to infinite-dimensional kernels.

k⌘⇤k1  1 and kj(x,x0)  1

J
⇤ = {1  j  p : ⌘⇤j 6= 0} captures sparsity pattern of tk.

Let k̂ be the minimizer of

(META-KEL)

We require regularity assumptions on the meta-data:

Restricted Eigenvalue Assumption and Multi-task Group Beta-min Condition.

k̂ =
pX

j=1

⌘̂jkj , ⌘̂j =
����̂(j)

���
2

�̂(j) = argmin
�

1

mn
ky ���k22 + �

pX

j=1

����(j)
���
2

(D.2)

kfull(x,x
0) =

1

p

pX

j=1

kj(x,x
0)

If ⌘⇤j 2 0, 1, we can show Ĵ = J
⇤ with high probability, for an improved Meta-KeL.

Hk⇤
w.h.p.
✓ Hk̂

w.h.p.
(Hkfull

Meta-Loss

Proposition (Sparsity of k̂ , Informal)

Let 0 < � < 1. Assume ⌘⇤
is s-sparse.

Under assumptions of the theorem above, and for mn large

enough, ⌘̂ is also s-sparse with probability greater than 1� �.

Meta-Loss

Proposition

Meta-KeL is convex, has a solution and optimizing it is as di�cult

as the Group Lasso.

Meta-Learning Hypothesis Spaces

Ct�1(k;x) = [µt�1(k;x)± ⌫t�t�1(k;x)]

µt�1(k;x) = kT
t�1(x)(Kt�1 + �̄

2I)�1yt�1 (D.1)

�
2
t�1(k;x) = k(x,x)� kT

t�1(x)(Kt�1 + �̄
2I)�1kt�1(x)

Data from m similar tasks is available (fixed design)

ys,i = fs(xs,i) + "s,i, for 1  i  n and 1  s  m

"s,i: also �
2 sub-Gussian, i.i.d.

fs : X ! R, fs 2 Hk⇤ , kfskk⇤  B

s  m

i  n

Assume that true kernel can be decomposed as

k
⇤(x,x0) =

pX

j=1

⌘
⇤
j kj(x,x

0)

p < 1

⌘
⇤
j : unknown, non-negative

Better choice is ⌘⇤j 2 {0, 1}.

kj : known, finite-dimensional

Is extendable to infinite-dimensional kernels.

k⌘⇤k1  1 and kj(x,x0)  1

J
⇤ = {1  j  p : ⌘⇤j 6= 0} captures sparsity pattern of tk.

Let k̂ be the minimizer of

(META-KEL)

We require regularity assumptions on the meta-data:

Restricted Eigenvalue Assumption and Multi-task Group Beta-min Condition.

k̂ =
pX

j=1

⌘̂jkj , ⌘̂j =
����̂(j)

���
2

�̂(j) = argmin
�

1

mn
ky ���k22 + �

pX

j=1

����(j)
���
2

(D.2)

kfull(x,x
0) =

1

p

pX

j=1

kj(x,x
0)

If ⌘⇤j 2 0, 1, we can show Ĵ = J
⇤ with high probability, for an improved Meta-KeL.

Hk⇤
w.h.p.
✓ Hk̂

w.h.p.
(Hkfull

Meta-Learning Hypothesis Spaces

Ct�1(k;x) = [µt�1(k;x)± ⌫t�t�1(k;x)]

µt�1(k;x) = kT
t�1(x)(Kt�1 + �̄

2I)�1yt�1 (D.1)

�
2
t�1(k;x) = k(x,x)� kT

t�1(x)(Kt�1 + �̄
2I)�1kt�1(x)

Data from m similar tasks is available (fixed design)

ys,i = fs(xs,i) + "s,i, for 1  i  n and 1  s  m

"s,i: also �
2 sub-Gussian, i.i.d.

fs : X ! R, fs 2 Hk⇤ , kfskk⇤  B

s  m

i  n

Assume that true kernel can be decomposed as

k
⇤(x,x0) =

pX

j=1

⌘
⇤
j kj(x,x

0)

p < 1

⌘
⇤
j : unknown, non-negative

Better choice is ⌘⇤j 2 {0, 1}.

kj : known, finite-dimensional

Is extendable to infinite-dimensional kernels.

k⌘⇤k1  1 and kj(x,x0)  1

J
⇤ = {1  j  p : ⌘⇤j 6= 0} captures sparsity pattern of tk.

Let k̂ be the minimizer of

Proposition

We require regularity assumptions on the meta-data:

Restricted Eigenvalue Assumption and Multi-task Group Beta-min Condition.

Meta-Learning Hypothesis Spaces

i.e., exists dj < 1 where kj(x,x0) = �T (x)�(x0) and � 2 Rdj .

i.e., the sparsity patterns match with high probability.

Construct the confidence sets (see Equation 1)

Ct�1(k̂;x) = [µt�1(k̂;x)± ⌫t�t�1(k̂;x)]

⌫t = B

⇣
1 + ✏(n,m)

⌘
+ �

q
d̂ log (1 + �̄�2t) + 2 + 2 log(1/�)

For calculating µt�1 and �t�1, set �̄ = 1 + 2/t.

where d̂ is the dimension of k̂.

i.e., exists d̂ < 1 where k̂(x,x0) = �T (x)�(x0) where � 2 Rd̂

Theorem D.1 (Confidence Bounds with META-KEL). Let f 2 Hk⇤ with kfkk⇤  B, where k
⇤ is unknown. Under the

assumptions of the previous theorem, with probability greater than 1� �,

P
⇣
8x 2 X , 8t � 1 : f(x) 2 Ct�1(k̂;x)

⌘
� 1� �.

This theorem implies, with probability greater than 1� �

|µt�1(k
⇤;x)� f(x)|  �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘

As more meta-data is provided, i.e., as m and n grow, ✏(n,m) vanishes
and d̂ ! d

⇤, the dimension of k⇤.
With oracle knowledge of k⇤,

|µt�1(k
⇤;x)� f(x)|  �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘
.

The meta-learned confidence bounds approach the oracle bounds,
as amounts of offline data grows.

Meta-Learning Hypothesis Spaces

i.e., exists dj < 1 where kj(x,x0) = �T (x)�(x0) and � 2 Rdj .

i.e., the sparsity patterns match with high probability.

Construct the confidence sets (see Equation 1)

Ct�1(k̂;x) = [µt�1(k̂;x)± ⌫t�t�1(k̂;x)]

⌫t = B

⇣
1 + ✏(n,m)

⌘
+ �

q
d̂ log (1 + �̄�2t) + 2 + 2 log(1/�)

For calculating µt�1 and �t�1, set �̄ = 1 + 2/t.

where d̂ is the dimension of k̂.

i.e., exists d̂ < 1 where k̂(x,x0) = �T (x)�(x0) where � 2 Rd̂

Theorem D.1 (Confidence Bounds with META-KEL). Let f 2 Hk⇤ with kfkk⇤  B, where k
⇤ is unknown. Under the

assumptions of the previous theorem, with probability greater than 1� �,

P
⇣
8x 2 X , 8t � 1 : f(x) 2 Ct�1(k̂;x)

⌘
� 1� �.

This theorem implies, with probability greater than 1� �

|µt�1(k
⇤;x)� f(x)|  �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘

As more meta-data is provided, i.e., as m and n grow, ✏(n,m) vanishes
and d̂ ! d

⇤, the dimension of k⇤.
With oracle knowledge of k⇤,

|µt�1(k
⇤;x)� f(x)|  �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘
.

The meta-learned confidence bounds approach the oracle bounds,
as amounts of offline data grows.

Meta-Learning Hypothesis Spaces

i.e., exists dj < 1 where kj(x,x0) = �T (x)�(x0) and � 2 Rdj .

i.e., the sparsity patterns match with high probability.

Construct the confidence sets (see Equation 1)

Ct�1(k̂;x) = [µt�1(k̂;x)± ⌫t�t�1(k̂;x)]

⌫t = B

⇣
1 + ✏(n,m)

⌘
+ �

q
d̂ log (1 + �̄�2t) + 2 + 2 log(1/�)

For calculating µt�1 and �t�1, set �̄ = 1 + 2/t.

where d̂ is the dimension of k̂.

i.e., exists d̂ < 1 where k̂(x,x0) = �T (x)�(x0) where � 2 Rd̂

Theorem D.1 (Confidence Bounds with META-KEL). Let f 2 Hk⇤ with kfkk⇤  B, where k
⇤ is unknown. Under the

assumptions of the previous theorem, with probability greater than 1� �,

P
⇣
8x 2 X , 8t � 1 : f(x) 2 Ct�1(k̂;x)

⌘
� 1� �.

This theorem implies, with probability greater than 1� �

|µt�1(k
⇤;x)� f(x)|  �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘

As more meta-data is provided, i.e., as m and n grow, ✏(n,m) vanishes
and d̂ ! d

⇤, the dimension of k⇤.
With oracle knowledge of k⇤,

|µt�1(k
⇤;x)� f(x)|  �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘
.

The meta-learned confidence bounds approach the oracle bounds,
as amounts of offline data grows.

Meta-Learning Hypothesis Spaces

i.e., exists dj < 1 where kj(x,x0) = �T (x)�(x0) and � 2 Rdj .

i.e., the sparsity patterns match with high probability.

Construct the confidence sets (see Equation 1)

Ct�1(k̂;x) = [µt�1(k̂;x)± ⌫t�t�1(k̂;x)]

⌫t = B

⇣
1 + ✏(n,m)

⌘
+ �

q
d̂ log (1 + �̄�2t) + 2 + 2 log(1/�)

For calculating µt�1 and �t�1, set �̄ = 1 + 2/t.

where d̂ is the dimension of k̂.

i.e., exists d̂ < 1 where k̂(x,x0) = �T (x)�(x0) where � 2 Rd̂

Theorem D.1 (Confidence Bounds with META-KEL). Let f 2 Hk⇤ with kfkk⇤  B, where k
⇤ is unknown. Under the

assumptions of the previous theorem, with probability greater than 1� �,

P
⇣
8x 2 X , 8t � 1 : f(x) 2 Ct�1(k̂;x)

⌘
� 1� �.

This theorem implies, with probability greater than 1� �

|µt�1(k
⇤;x)� f(x)|  �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘

As more meta-data is provided, i.e., as m and n grow, ✏(n,m) vanishes
and d̂ ! d

⇤, the dimension of k⇤.
With oracle knowledge of k⇤,

|µt�1(k
⇤;x)� f(x)|  �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘
.

The meta-learned confidence bounds approach the oracle bounds,
as amounts of offline data grows.

Meta-Learning Hypothesis Spaces

i.e., exists dj < 1 where kj(x,x0) = �T (x)�(x0) and � 2 Rdj .

i.e., the sparsity patterns match with high probability.

Construct the confidence sets (see Equation 1)

Ct�1(k̂;x) = [µt�1(k̂;x)± ⌫t�t�1(k̂;x)]

⌫t = B

⇣
1 + ✏(n,m)

⌘
+ �

q
d̂ log (1 + �̄�2t) + 2 + 2 log(1/�)

For calculating µt�1 and �t�1, set �̄ = 1 + 2/t.

where d̂ is the dimension of k̂.

i.e., exists d̂ < 1 where k̂(x,x0) = �T (x)�(x0) where � 2 Rd̂

Theorem D.1 (Confidence Bounds with META-KEL). Let f 2 Hk⇤ with kfkk⇤  B, where k
⇤ is unknown. Under the

assumptions of the previous theorem, with probability greater than 1� �,

P
⇣
8x 2 X , 8t � 1 : f(x) 2 Ct�1(k̂;x)

⌘
� 1� �.

This theorem implies, with probability greater than 1� �

|µt�1(k
⇤;x)� f(x)|  �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘

As more meta-data is provided, i.e., as m and n grow, ✏(n,m) vanishes
and d̂ ! d

⇤, the dimension of k⇤.
With oracle knowledge of k⇤,

|µt�1(k
⇤;x)� f(x)|  �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘
.

The meta-learned confidence bounds approach the oracle bounds,
as amounts of offline data grows.

Meta-Learning Hypothesis Spaces

i.e., exists dj < 1 where kj(x,x0) = �T (x)�(x0) and � 2 Rdj .

i.e., the sparsity patterns match with high probability.

Construct the confidence sets (see Equation 1)

Ct�1(k̂;x) = [µt�1(k̂;x)± ⌫t�t�1(k̂;x)]

⌫t = B

⇣
1 + ✏(n,m)

⌘
+ �

q
d̂ log (1 + �̄�2t) + 2 + 2 log(1/�)

For calculating µt�1 and �t�1, set �̄ = 1 + 2/t.

where d̂ is the dimension of k̂.

i.e., exists d̂ < 1 where k̂(x,x0) = �T (x)�(x0) where � 2 Rd̂

Theorem D.1 (Confidence Bounds with META-KEL). Let f 2 Hk⇤ with kfkk⇤  B, where k
⇤ is unknown. Under the

assumptions of the previous theorem, with probability greater than 1� �,

P
⇣
8x 2 X , 8t � 1 : f(x) 2 Ct�1(k̂;x)

⌘
� 1� �.

This theorem implies, with probability greater than 1� �

|µt�1(k
⇤;x)� f(x)|  �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘

As more meta-data is provided, i.e., as m and n grow, ✏(n,m) vanishes
and d̂ ! d

⇤, the dimension of k⇤.
With oracle knowledge of k⇤,

|µt�1(k
⇤;x)� f(x)|  �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘
.

The meta-learned confidence bounds approach the oracle bounds,
as amounts of offline data grows.

Meta-Loss

Theorem (Confidence Bounds with Meta-KeL)

Let f 2 Hk⇤ with kf kk⇤  B , where k
⇤
is unknown.

Under the assumptions of the previous theorem, with probability

greater than 1� �,

P
⇣
8x 2 X , 8t � 1 : f (x) 2 Ct�1(k̂ ; x)

⌘
� 1� �.

Meta-Learning Hypothesis Spaces

i.e., exists dj < 1 where kj(x,x0) = �T (x)�(x0) and � 2 Rdj .

i.e., the sparsity patterns match with high probability.

Construct the confidence sets (see Equation 1)

Ct�1(k̂;x) = [µt�1(k̂;x)± ⌫t�t�1(k̂;x)]

⌫t = B

⇣
1 + ✏(n,m)

⌘
+ �

q
d̂ log (1 + �̄�2t) + 2 + 2 log(1/�)

For calculating µt�1 and �t�1, set �̄ = 1 + 2/t.

where d̂ is the dimension of k̂.

i.e., exists d̂ < 1 where k̂(x,x0) = �T (x)�(x0) where � 2 Rd̂

Theorem D.1 (Confidence Bounds with META-KEL). Let f 2 Hk⇤ with kfkk⇤  B, where k
⇤ is unknown. Under the

assumptions of the previous theorem, with probability greater than 1� �,

P
⇣
8x 2 X , 8t � 1 : f(x) 2 Ct�1(k̂;x)

⌘
� 1� �.

This theorem implies, with probability greater than 1� �

|µt�1(k
⇤;x)� f(x)|  �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘

As more meta-data is provided, i.e., as m and n grow, ✏(n,m) vanishes
and d̂ ! d

⇤, the dimension of k⇤.
With oracle knowledge of k⇤,

|µt�1(k
⇤;x)� f(x)|  �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘
.

The meta-learned confidence bounds approach the oracle bounds,
as amounts of offline data grows.

Meta-Learning Hypothesis Spaces

i.e., exists dj < 1 where kj(x,x0) = �T (x)�(x0) and � 2 Rdj .

i.e., the sparsity patterns match with high probability.

Construct the confidence sets (see Equation 1)

Ct�1(k̂;x) = [µt�1(k̂;x)± ⌫t�t�1(k̂;x)]

⌫t = B

⇣
1 + ✏(n,m)

⌘
+ �

q
d̂ log (1 + �̄�2t) + 2 + 2 log(1/�)

For calculating µt�1 and �t�1, set �̄ = 1 + 2/t.

where d̂ is the dimension of k̂.

i.e., exists d̂ < 1 where k̂(x,x0) = �T (x)�(x0) where � 2 Rd̂

Theorem D.1 (Confidence Bounds with META-KEL). Let f 2 Hk⇤ with kfkk⇤  B, where k
⇤ is unknown. Under the

assumptions of the previous theorem, with probability greater than 1� �,

P
⇣
8x 2 X , 8t � 1 : f(x) 2 Ct�1(k̂;x)

⌘
� 1� �.

This theorem implies, with probability greater than 1� �

|µt�1(k
⇤;x)� f(x)|  �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘

As more meta-data is provided, i.e., as m and n grow, ✏(n,m) vanishes
and d̂ ! d

⇤, the dimension of k⇤.
With oracle knowledge of k⇤,

|µt�1(k
⇤;x)� f(x)|  �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘
.

The meta-learned confidence bounds approach the oracle bounds,
as amounts of offline data grows.

Meta-Learning Hypothesis Spaces

i.e., exists dj < 1 where kj(x,x0) = �T (x)�(x0) and � 2 Rdj .

i.e., the sparsity patterns match with high probability.

Construct the confidence sets (see Equation 1)

Ct�1(k̂;x) = [µt�1(k̂;x)± ⌫t�t�1(k̂;x)]

⌫t = B

⇣
1 + ✏(n,m)

⌘
+ �

q
d̂ log (1 + �̄�2t) + 2 + 2 log(1/�)

For calculating µt�1 and �t�1, set �̄ = 1 + 2/t.

where d̂ is the dimension of k̂.

i.e., exists d̂ < 1 where k̂(x,x0) = �T (x)�(x0) where � 2 Rd̂

Theorem D.1 (Confidence Bounds with META-KEL). Let f 2 Hk⇤ with kfkk⇤  B, where k
⇤ is unknown. Under the

assumptions of the previous theorem, with probability greater than 1� �,

P
⇣
8x 2 X , 8t � 1 : f(x) 2 Ct�1(k̂;x)

⌘
� 1� �.

This theorem implies, with probability greater than 1� �

|µt�1(k̂;x)� f(x)|  �t�1(k̂;x)
⇣
B +B✏(n,m) + �

q
d̂ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘

As more meta-data is provided, i.e., as m and n grow, ✏(n,m) vanishes
and d̂ ! d

⇤, the dimension of k⇤.
With oracle knowledge of k⇤,

|µt�1(k
⇤;x)� f(x)|  �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘
.

The meta-learned confidence bounds approach the oracle bounds,
as amounts of offline data grows.

Meta-Learning Hypothesis Spaces

i.e., exists dj < 1 where kj(x,x0) = �T (x)�(x0) and � 2 Rdj .

i.e., the sparsity patterns match with high probability.

Construct the confidence sets (see Equation 1)

Ct�1(k̂;x) = [µt�1(k̂;x)± ⌫t�t�1(k̂;x)]

⌫t = B

⇣
1 + ✏(n,m)

⌘
+ �

q
d̂ log (1 + �̄�2t) + 2 + 2 log(1/�)

For calculating µt�1 and �t�1, set �̄ = 1 + 2/t.

where d̂ is the dimension of k̂.

i.e., exists d̂ < 1 where k̂(x,x0) = �T (x)�(x0) where � 2 Rd̂

Theorem D.1 (Confidence Bounds with META-KEL). Let f 2 Hk⇤ with kfkk⇤  B, where k
⇤ is unknown. Under the

assumptions of the previous theorem, with probability greater than 1� �,

P
⇣
8x 2 X , 8t � 1 : f(x) 2 Ct�1(k̂;x)

⌘
� 1� �.

This theorem implies, with probability greater than 1� �

|µt�1(k
⇤;x)� f(x)|  �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘

As more meta-data is provided, i.e., as m and n grow, ✏(n,m) vanishes
and d̂ ! d

⇤, the dimension of k⇤.
With oracle knowledge of k⇤,

|µt�1(k
⇤;x)� f(x)|  �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘
.

The meta-learned confidence bounds approach the oracle bounds,
as amounts of offline data grows.

Meta-Learning Hypothesis Spaces

i.e., exists dj < 1 where kj(x,x0) = �T (x)�(x0) and � 2 Rdj .

i.e., the sparsity patterns match with high probability.

Construct the confidence sets (see Equation 1)

Ct�1(k̂;x) = [µt�1(k̂;x)± ⌫t�t�1(k̂;x)]

⌫t = B

⇣
1 + ✏(n,m)

⌘
+ �

q
d̂ log (1 + �̄�2t) + 2 + 2 log(1/�)

For calculating µt�1 and �t�1, set �̄ = 1 + 2/t.

where d̂ is the dimension of k̂.

i.e., exists d̂ < 1 where k̂(x,x0) = �T (x)�(x0) where � 2 Rd̂

Theorem D.1 (Confidence Bounds with META-KEL). Let f 2 Hk⇤ with kfkk⇤  B, where k
⇤ is unknown. Under the

assumptions of the previous theorem, with probability greater than 1� �,

P
⇣
8x 2 X , 8t � 1 : f(x) 2 Ct�1(k̂;x)

⌘
� 1� �.

This theorem implies, with probability greater than 1� �

|µt�1(k̂;x)� f(x)|  �t�1(k̂;x)
⇣
B +B✏(n,m) + �

q
d̂ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘

As more meta-data is provided, i.e., as m and n grow,
✏(n,m) vanishes and d̂ ! d

⇤, the dimension of k⇤.

With oracle knowledge of k⇤,

|µt�1(k
⇤;x)� f(x)|  �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘
.

The meta-learned confidence bounds approach the oracle bounds,
as amounts of offline data grows.

We let k
⇤(x, x0) = 1

5

P
j2J⇤ Pj(x)Pj(x0), where Pj is a degree-j Legendre

polynomial and J
⇤ is a random subset of size 5 from {1, · · · , 20}. Using this kernel,

we generate a random meta-data set of size m = n = 50. On a test task, with a fresh
new function f

⇤, we assess the confidence sets at t = 4.
Empirical width of the confidence band.

Empirical coverage of the confidence band
vs. the true 1� �

Both quantities are averages over a sample of size 1000 from X .
Error bars show standard error for 50 runs of the problem.

1� �

Meta-Learning Hypothesis Spaces

i.e., exists dj < 1 where kj(x,x0) = �T (x)�(x0) and � 2 Rdj .

i.e., the sparsity patterns match with high probability.

Construct the confidence sets (see Equation 1)

Ct�1(k̂;x) = [µt�1(k̂;x)± ⌫t�t�1(k̂;x)]

⌫t = B

⇣
1 + ✏(n,m)

⌘
+ �

q
d̂ log (1 + �̄�2t) + 2 + 2 log(1/�)

For calculating µt�1 and �t�1, set �̄ = 1 + 2/t.

where d̂ is the dimension of k̂.

i.e., exists d̂ < 1 where k̂(x,x0) = �T (x)�(x0) where � 2 Rd̂

Theorem D.1 (Confidence Bounds with META-KEL). Let f 2 Hk⇤ with kfkk⇤  B, where k
⇤ is unknown. Under the

assumptions of the previous theorem, with probability greater than 1� �,

P
⇣
8x 2 X , 8t � 1 : f(x) 2 Ct�1(k̂;x)

⌘
� 1� �.

This theorem implies, with probability greater than 1� �

|µt�1(k̂;x)� f(x)|  �t�1(k̂;x)
⇣
B +B✏(n,m) + �

q
d̂ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘

As more meta-data is provided, i.e., as m and n grow,
✏(n,m) vanishes and d̂ ! d

⇤, the dimension of k⇤.

With oracle knowledge of k⇤,

|µt�1(k
⇤;x)� f(x)|  �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘
.

The meta-learned confidence bounds approach the oracle bounds,
as amounts of offline data grows.

We let k⇤(x, x0) = 1
5

P
j2J⇤ Pj(x)Pj(x0), where Pj is a degree-j Leg-

endre polynomial and J
⇤ is a random subset of size 5 from {1, · · · , 20}.

Using this kernel, we generate a random meta-data set of size m = n = 50.
On a test task, with a fresh new function f

⇤, we assess the confidence sets
at t = 4. We check 1) if the sets are valid and 2) if they are tight.

Empirical width of the confidence band.

Empirical coverage of the confidence band
vs. the true 1� �

Both quantities are averages over a sample of size 1000 from X .
Error bars show standard error for 50 runs of the problem.

1� �

Meta-Learning Hypothesis Spaces

i.e., exists dj < 1 where kj(x,x0) = �T (x)�(x0) and � 2 Rdj .

i.e., the sparsity patterns match with high probability.

Construct the confidence sets (see Equation 1)

Ct�1(k̂;x) = [µt�1(k̂;x)± ⌫t�t�1(k̂;x)]

⌫t = B

⇣
1 + ✏(n,m)

⌘
+ �

q
d̂ log (1 + �̄�2t) + 2 + 2 log(1/�)

For calculating µt�1 and �t�1, set �̄ = 1 + 2/t.

where d̂ is the dimension of k̂.

i.e., exists d̂ < 1 where k̂(x,x0) = �T (x)�(x0) where � 2 Rd̂

Theorem D.1 (Confidence Bounds with META-KEL). Let f 2 Hk⇤ with kfkk⇤  B, where k
⇤ is unknown. Under the

assumptions of the previous theorem, with probability greater than 1� �,

P
⇣
8x 2 X , 8t � 1 : f(x) 2 Ct�1(k̂;x)

⌘
� 1� �.

This theorem implies, with probability greater than 1� �

|µt�1(k̂;x)� f(x)|  �t�1(k̂;x)
⇣
B +B✏(n,m) + �

q
d̂ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘

As more meta-data is provided, i.e., as m and n grow,
✏(n,m) vanishes and d̂ ! d

⇤, the dimension of k⇤.

With oracle knowledge of k⇤,

|µt�1(k
⇤;x)� f(x)|  �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘
.

The meta-learned confidence bounds approach the oracle bounds,
as amounts of offline data grows.

We let k⇤(x, x0) = 1
5

P
j2J⇤ Pj(x)Pj(x0), where Pj is a degree-j Leg-

endre polynomial and J
⇤ is a random subset of size 5 from {1, · · · , 20}.

Using this kernel, we generate a random meta-data set of size m = n = 50.
On a test task, with a fresh new function f

⇤, we assess the confidence sets
at t = 4. We check 1) if the sets are valid and 2) if they are tight.

Empirical width of the confidence band.

Empirical coverage of the confidence band
vs. the true 1� �

Both quantities are averages over a sample of size 1000 from X .
Error bars show standard error for 50 runs of the problem.

If applied to Bandit optimization, the sets imply a sublinear regret guaran-
tee for the GP-UCB algorithm using k̂. This regret bound approaches that
of the oracle algorithm.

Sequential decision-making describes a class of problems where a learner
sequentially interacts with an unknown stochastic environment, with the
goal of maximizing a reward.

Obtaining reliable confidence sequences for unknown target functions is
a central challenge in sequential decision-making tasks, e.g., Bayesian
Optimization and model-based RL.

Meta-Learning Hypothesis Spaces

i.e., exists dj < 1 where kj(x,x0) = �T (x)�(x0) and � 2 Rdj .

i.e., the sparsity patterns match with high probability.

Construct the confidence sets (see Equation 1)

Ct�1(k̂;x) = [µt�1(k̂;x)± ⌫t�t�1(k̂;x)]

⌫t = B

⇣
1 + ✏(n,m)

⌘
+ �

q
d̂ log (1 + �̄�2t) + 2 + 2 log(1/�)

For calculating µt�1 and �t�1, set �̄ = 1 + 2/t.

where d̂ is the dimension of k̂.

i.e., exists d̂ < 1 where k̂(x,x0) = �T (x)�(x0) where � 2 Rd̂

Theorem D.1 (Confidence Bounds with META-KEL). Let f 2 Hk⇤ with kfkk⇤  B, where k
⇤ is unknown. Under the

assumptions of the previous theorem, with probability greater than 1� �,

P
⇣
8x 2 X , 8t � 1 : f(x) 2 Ct�1(k̂;x)

⌘
� 1� �.

This theorem implies, with probability greater than 1� �

|µt�1(k̂;x)� f(x)|  �t�1(k̂;x)
⇣
B +B✏(n,m) + �

q
d̂ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘

As more meta-data is provided, i.e., as m and n grow,
✏(n,m) vanishes and d̂ ! d

⇤, the dimension of k⇤.

With oracle knowledge of k⇤,

|µt�1(k
⇤;x)� f(x)|  �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘
.

The meta-learned confidence bounds approach the oracle bounds,
as amounts of offline data grows.

We let k⇤(x, x0) = 1
5

P
j2J⇤ Pj(x)Pj(x0), where Pj is a degree-j Leg-

endre polynomial and J
⇤ is a random subset of size 5 from {1, · · · , 20}.

Using this kernel, we generate a random meta-data set of size m = n = 50.
On a test task, with a fresh new function f

⇤, we assess the confidence sets
at t = 4. We check 1) if the sets are valid and 2) if they are tight.

Empirical width of the confidence band.

Empirical coverage of the confidence band
vs. the true 1� �

Both quantities are averages over a sample of size 1000 from X .
Error bars show standard error for 50 runs of the problem.

If applied to Bandit optimization, the sets imply a sublinear regret guaran-
tee for the GP-UCB algorithm using k̂. This regret bound approaches that
of the oracle algorithm.

Sequential decision-making describes a class of problems where a learner
sequentially interacts with an unknown stochastic environment, with the
goal of maximizing a reward.

Obtaining reliable confidence sequences for unknown target functions is
a central challenge in sequential decision-making tasks, e.g., Bayesian
Optimization and model-based RL.

Meta-Learning Hypothesis Spaces

i.e., exists dj < 1 where kj(x,x0) = �T (x)�(x0) and � 2 Rdj .

i.e., the sparsity patterns match with high probability.

Construct the confidence sets (see Equation 1)

Ct�1(k̂;x) = [µt�1(k̂;x)± ⌫t�t�1(k̂;x)]

⌫t = B

⇣
1 + ✏(n,m)

⌘
+ �

q
d̂ log (1 + �̄�2t) + 2 + 2 log(1/�)

For calculating µt�1 and �t�1, set �̄ = 1 + 2/t.

where d̂ is the dimension of k̂.

i.e., exists d̂ < 1 where k̂(x,x0) = �T (x)�(x0) where � 2 Rd̂

Theorem D.1 (Confidence Bounds with META-KEL). Let f 2 Hk⇤ with kfkk⇤  B, where k
⇤ is unknown. Under the

assumptions of the previous theorem, with probability greater than 1� �,

P
⇣
8x 2 X , 8t � 1 : f(x) 2 Ct�1(k̂;x)

⌘
� 1� �.

This theorem implies, with probability greater than 1� �

|µt�1(k̂;x)� f(x)|  �t�1(k̂;x)
⇣
B +B✏(n,m) + �

q
d̂ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘

As more meta-data is provided, i.e., as m and n grow, ✏(n,m) vanishes
and d̂ ! d

⇤, the dimension of k⇤.
With oracle knowledge of k⇤,

|µt�1(k
⇤;x)� f(x)|  �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘
.

The meta-learned confidence bounds approach the oracle bounds,
as amounts of offline data grows.

We let k
⇤(x, x0) = 1

5

P
j2J⇤ Pj(x)Pj(x0), where Pj is a degree-j Legendre

polynomial and J
⇤ is a random subset of size 5 from {1, · · · , 20}. Using this kernel,

we generate a random meta-data set of size m = n = 50. On a test task, with a fresh
new function f

⇤, we assess the confidence sets at t = 4.
Empirical width of the confidence band.

Empirical coverage of the confidence band
vs. the true 1� �.
Both quantities are averages over a sample of size 1000 from X .
Error bars show standard error for 50 runs of the problem.

1� �

M
et

a-
Le

ar
ni

ng
H

yp
ot

he
sis

Sp
ac

es

i.e
.,

ex
is

ts
d
j
<

1
w

he
re

k
j
(x

,
x
0)
=

�
T
(x

)�
(x

0)
an

d
�
2
R

d
j
.

i.e
.,

th
e

sp
ar

si
ty

pa
tte

rn
sm

at
ch

w
ith

hi
gh

pr
ob

ab
ili

ty
.

C
on

st
ru

ct
th

e
co

nfi
de

nc
e

se
ts

(s
ee

Eq
ua

tio
n

1)

C t
�
1
(k̂
;x

)
=

[µ
t�

1
(k̂
;x

)
±

⌫
t�

t�
1
(k̂
;x

)]

⌫
t
=

B

⇣ 1
+

✏
(n
,
m
)⌘

+
�

q
d̂
lo
g
(1

+
�̄
�
2
t
)
+
2
+
2
lo
g(
1/

�
)

Fo
rc

al
cu

la
tin

g
µ
t�

1
an

d
�
t�

1
,s

et
�̄
=

1
+
2/

t
.

w
he

re
d̂

is
th

e
di

m
en

si
on

of
k̂

.

i.e
.,

ex
is

ts
d̂
<

1
w

he
re

k̂
(x

,
x
0)
=

�
T
(x

)�
(x

0)
w

he
re

�
2
R

d̂

Th
eo

re
m

D
.1

(C
on

fid
en

ce
B

ou
nd

s
w

ith
M

E
TA

-K
E

L
).

Le
tf

2
H

k
⇤

w
ith

kf
k k

⇤


B
,w

he
re

k
⇤

is
un

kn
ow

n.
U

nd
er

th
e

as
su

m
pt

io
ns

of
th

e
pr

ev
io

us
th

eo
re

m
,w

ith
pr

ob
ab

ili
ty

gr
ea

te
r

th
an

1
�

�
,

P
⇣ 8x

2
X
,
8t

�
1
:
f
(x

)
2
C t

�
1
(k̂
;x

)⌘
�

1
�

�
.

Th
is

th
eo

re
m

im
pl

ie
s,

w
ith

pr
ob

ab
ili

ty
gr

ea
te

rt
ha

n
1
�

�

|µ
t�

1
(k̂
;x

)
�

f
(x

)|


�
t�

1
(k̂
;x

)⇣ B
+

B
✏
(n
,
m
)
+

�

q
d̂
lo
g
� 1

+
�̄
�
2
t
� +

2
+

2
lo
g(
1/

�
))
⌘

A
sm

or
e

m
et

a-
da

ta
is

pr
ov

id
ed

,i
.e

.,
as

m
an

d
n

gr
ow

,✏
(n
,
m
)

va
ni

sh
es

an
d
d̂
!

d
⇤ ,

th
e

di
m

en
si

on
of

k
⇤ .

W
ith

or
ac

le
kn

ow
le

dg
e

of
k
⇤ ,

|µ
t�

1
(k

⇤ ;
x
)
�
f
(x

)|


�
t�

1
(k

⇤ ;
x
)⇣ B

+
�

q
d
⇤
lo
g
� 1

+
�̄
�
2
t
� +

2
+

2
lo
g(
1/

�
))
⌘ .

Th
e

m
et

a-
le

ar
ne

d
co

nfi
de

nc
e

bo
un

ds
ap

pr
oa

ch
th

e
or

ac
le

bo
un

ds
,

as
am

ou
nt

so
fo

ffl
in

e
da

ta
gr

ow
s.

W
e

le
t
k
⇤ (
x
,
x
0)

=
1 5

P
j2

J
⇤
P
j
(x
)P

j
(x

0)
,

w
he

re
P
j

is
a

de
gr

ee
-j

Le
ge

nd
re

po
ly

no
m

ia
la

nd
J
⇤

is
a

ra
nd

om
su

bs
et

of
si

ze
5

fr
om

{1
,
··
·,

20
}.

U
si

ng
th

is
ke

rn
el

,
w

e
ge

ne
ra

te
a

ra
nd

om
m

et
a-

da
ta

se
to

fs
iz

e
m

=
n
=

50
.O

n
a

te
st

ta
sk

,w
ith

a
fr

es
h

ne
w

fu
nc

tio
n
f
⇤ ,

w
e

as
se

ss
th

e
co

nfi
de

nc
e

se
ts

at
t
=

4.
Em

pi
ric

al
w

id
th

of
th

e
co

nfi
de

nc
e

ba
nd

.

Em
pi

ric
al

co
ve

ra
ge

of
th

e
co

nfi
de

nc
e

ba
nd

vs
.t

he
tru

e
1
�
�
.

B
ot

h
qu

an
tit

ie
sa

re
av

er
ag

es
ov

er
a

sa
m

pl
e

of
si

ze
10

00
fr

om
X

.
Er

ro
rb

ar
ss

ho
w

st
an

da
rd

er
ro

rf
or

50
ru

ns
of

th
e

pr
ob

le
m

.

1
�

�

M
et

a-
Le

ar
ni

ng
H

yp
ot

he
sis

Sp
ac

es

i.e
.,

ex
is

ts
d
j
<

1
w

he
re

k
j
(x

,
x
0)
=

�
T
(x

)�
(x

0)
an

d
�
2
R

d
j
.

i.e
.,

th
e

sp
ar

si
ty

pa
tte

rn
s

m
at

ch
w

ith
hi

gh
pr

ob
ab

ili
ty

.

C
on

st
ru

ct
th

e
co

nfi
de

nc
e

se
ts

(s
ee

Eq
ua

tio
n

1)

C t
�
1
(k̂
;x

)
=

[µ
t�

1
(k̂
;x

)
±

⌫
t�

t�
1
(k̂
;x

)]

⌫
t
=

B

⇣ 1
+

✏
(n
,
m
)⌘

+
�

q
d̂
lo
g
(1

+
�̄
�
2
t
)
+
2
+
2
lo
g(
1/

�
)

Fo
rc

al
cu

la
tin

g
µ
t�

1
an

d
�
t�

1
,s

et
�̄
=

1
+
2/

t
.

w
he

re
d̂

is
th

e
di

m
en

si
on

of
k̂

.

i.e
.,

ex
is

ts
d̂
<

1
w

he
re

k̂
(x

,
x
0)
=

�
T
(x

)�
(x

0)
w

he
re

�
2
R

d̂

T
he

or
em

D
.1

(C
on

fid
en

ce
B

ou
nd

s
w

ith
M

E
TA

-K
E

L
).

Le
tf

2
H

k
⇤

w
ith

kf
k k

⇤


B
,w

he
re

k
⇤

is
un

kn
ow

n.
U

nd
er

th
e

as
su

m
pt

io
ns

of
th

e
pr

ev
io

us
th

eo
re

m
,w

ith
pr

ob
ab

ili
ty

gr
ea

te
r

th
an

1
�

�
,

P
⇣ 8x

2
X
,
8t

�
1
:
f
(x

)
2
C t

�
1
(k̂
;x

)⌘
�

1
�

�
.

Th
is

th
eo

re
m

im
pl

ie
s,

w
ith

pr
ob

ab
ili

ty
gr

ea
te

rt
ha

n
1
�

�

|µ
t�

1
(k̂
;x

)
�

f
(x

)|


�
t�

1
(k̂
;x

)⇣ B
+

B
✏
(n
,
m
)
+

�

q
d̂
lo
g
� 1

+
�̄
�
2
t
� +

2
+

2
lo
g(
1/

�
))
⌘

A
s

m
or

e
m

et
a-

da
ta

is
pr

ov
id

ed
,i

.e
.,

as
m

an
d
n

gr
ow

,✏
(n
,
m
)

va
ni

sh
es

an
d
d̂
!

d
⇤ ,

th
e

di
m

en
si

on
of

k
⇤ .

W
ith

or
ac

le
kn

ow
le

dg
e

of
k
⇤ ,

|µ
t�

1
(k

⇤ ;
x
)
�
f
(x

)|


�
t�

1
(k

⇤ ;
x
)⇣ B

+
�

q
d
⇤
lo
g
� 1

+
�̄
�
2
t
� +

2
+

2
lo
g(
1/

�
))
⌘ .

Th
e

m
et

a-
le

ar
ne

d
co

nfi
de

nc
e

bo
un

ds
ap

pr
oa

ch
th

e
or

ac
le

bo
un

ds
,

as
am

ou
nt

s
of

of
fli

ne
da

ta
gr

ow
s.

W
e

le
t
k
⇤ (
x
,
x
0)

=
1 5

P
j
2
J

⇤
P
j
(x
)P

j
(x

0)
,

w
he

re
P
j

is
a

de
gr

ee
-j

Le
ge

nd
re

po
ly

no
m

ia
la

nd
J
⇤

is
a

ra
nd

om
su

bs
et

of
si

ze
5

fr
om

{1
,
··
·,

20
}.

U
si

ng
th

is
ke

rn
el

,
w

e
ge

ne
ra

te
a

ra
nd

om
m

et
a-

da
ta

se
to

fs
iz

e
m

=
n
=

50
.O

n
a

te
st

ta
sk

,w
ith

a
fr

es
h

ne
w

fu
nc

tio
n
f
⇤ ,

w
e

as
se

ss
th

e
co

nfi
de

nc
e

se
ts

at
t
=

4.
Em

pi
ric

al
w

id
th

of
th

e
co

nfi
de

nc
e

ba
nd

.

Em
pi

ric
al

co
ve

ra
ge

of
th

e
co

nfi
de

nc
e

ba
nd

vs
.t

he
tru

e
1
�

�

B
ot

h
qu

an
tit

ie
s

ar
e

av
er

ag
es

ov
er

a
sa

m
pl

e
of

si
ze

10
00

fr
om

X
.

Er
ro

rb
ar

s
sh

ow
st

an
da

rd
er

ro
rf

or
50

ru
ns

of
th

e
pr

ob
le

m
.

1
�

�

Meta-Learning Hypothesis Spaces

i.e., exists dj < 1 where kj(x,x0) = �T (x)�(x0) and � 2 Rdj .

i.e., the sparsity patterns match with high probability.

Construct the confidence sets (see Equation 1)

Ct�1(k̂;x) = [µt�1(k̂;x)± ⌫t�t�1(k̂;x)]

⌫t = B

⇣
1 + ✏(n,m)

⌘
+ �

q
d̂ log (1 + �̄�2t) + 2 + 2 log(1/�)

For calculating µt�1 and �t�1, set �̄ = 1 + 2/t.

where d̂ is the dimension of k̂.

i.e., exists d̂ < 1 where k̂(x,x0) = �T (x)�(x0) where � 2 Rd̂

Theorem D.1 (Confidence Bounds with META-KEL). Let f 2 Hk⇤ with kfkk⇤  B, where k
⇤ is unknown. Under the

assumptions of the previous theorem, with probability greater than 1� �,

P
⇣
8x 2 X , 8t � 1 : f(x) 2 Ct�1(k̂;x)

⌘
� 1� �.

This theorem implies, with probability greater than 1� �

|µt�1(k̂;x)� f(x)|  �t�1(k̂;x)
⇣
B +B✏(n,m) + �

q
d̂ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘

As more meta-data is provided, i.e., as m and n grow,
✏(n,m) vanishes and d̂ ! d

⇤, the dimension of k⇤.

With oracle knowledge of k⇤,

|µt�1(k
⇤;x)� f(x)|  �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘
.

The meta-learned confidence bounds approach the oracle bounds,
as amounts of offline data grows.

We let k⇤(x, x0) = 1
5

P
j2J⇤ Pj(x)Pj(x0), where Pj is a degree-j Leg-

endre polynomial and J
⇤ is a random subset of size 5 from {1, · · · , 20}.

Using this kernel, we generate a random meta-data set of size m = n = 50.
On a test task, with a fresh new function f

⇤, we assess the confidence sets
at t = 4. We check 1) if the sets are valid and 2) if they are tight.

Empirical width of the confidence band.

Empirical coverage of the confidence band
vs. the true 1� �

Both quantities are averages over a sample
of size 1000 from X . Error bars show stan-
dard error for 50 runs of the problem.

If applied to Bandit optimization, the sets imply a sublinear regret guaran-
tee for the GP-UCB algorithm using k̂. This regret bound approaches that
of the oracle algorithm.

Sequential decision-making describes a class of problems where a learner
sequentially interacts with an unknown stochastic environment, with the
goal of maximizing a reward.

Obtaining reliable confidence sequences for unknown target functions is
a central challenge in sequential decision-making tasks, e.g., Bayesian
Optimization and model-based RL. Meta-Learning Hypothesis Spaces

These confidence sets are typically constructed by relying on oracle knowl-
edge of the hypothesis space, e.g., a known RKHS. This is a strong as-
sumption.

We propose any-time valid confidence sets that rely on a meta-learned
hypothesis space, instead of assuming oracle knowledge.

Meta-Learning Hypothesis Spaces

These confidence sets are typically constructed by relying on oracle knowl-
edge of the hypothesis space, e.g., a known RKHS. This is a strong as-
sumption.

We propose any-time valid confidence sets that rely on a meta-learned
hypothesis space, instead of assuming oracle knowledge.

(True) kernel has sparse additive structure

[this holds for all Mercer kernels]

Data from similar tasks Pool of candidate kernels / features

Our approach: Meta-learning

4

Meta-Learning Hypothesis Spaces for Sequential Decision-making
Parnian Kassraie, Jonas Rothfuss, Andreas Krause

Model

References
[1]

Meta-Learning Hypothesis Spaces

Curi, S., Berkenkamp, F., and Krause, A. Efficient model-based reinforcement learning through
optimistic policy search and planning. arXiv preprint arXiv:2006.08684, 2020.

Evgeniou, T. and Pontil, M. Regularized multi–task learning. In Proceedings of the tenth ACM
SIGKDD international conference on Knowledge discovery and data mining, pp. 109–117, 2004.

Gneiting, T., Balabdaoui, F., and Raftery, A. E. Probabilistic forecasts, calibration and sharpness.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 69(2):243–268,
2007.

Gönen, M. and Alpaydın, E. Multiple kernel learning algorithms. The Journal of Machine Learning
Research, 12:2211–2268, 2011.

Hao, B., Lattimore, T., and Wang, M. High-dimensional sparse linear bandits. arXiv preprint
arXiv:2011.04020, 2020.

Jacot, A., Gabriel, F., and Hongler, C. Neural tangent kernel: Convergence and generalization in
neural networks. arXiv preprint arXiv:1806.07572, 2018.

Javanmard, A. and Montanari, A. Confidence intervals and hypothesis testing for high-dimensional
regression. The Journal of Machine Learning Research, 15(1):2869–2909, 2014.

Kakade, S., Krishnamurthy, A., Lowrey, K., Ohnishi, M., and Sun, W. Information theoretic regret
bounds for online nonlinear control. arXiv preprint arXiv:2006.12466, 2020.

Kim, G.-S. and Paik, M. C. Doubly-robust lasso bandit. arXiv preprint arXiv:1907.11362, 2019.

Kloft, M., Brefeld, U., Sonnenburg, S., and Zien, A. Lp-norm multiple kernel learning. The Journal
of Machine Learning Research, 12:953–997, 2011.

Koltchinskii, V. and Yuan, M. Sparse recovery in large ensembles of kernel machines. In Proceed-
ings of COLT, volume 69, 2008.

Kveton, B., Mladenov, M., Hsu, C.-W., Zaheer, M., Szepesvari, C., and Boutilier, C. Meta-learning
bandit policies by gradient ascent. arXiv preprint arXiv:2006.05094, 2020.

Liu, H. and Zhang, J. Estimation consistency of the group lasso and its applications. In Artificial
Intelligence and Statistics, pp. 376–383. PMLR, 2009.

Lounici, K., Pontil, M., Van De Geer, S., and Tsybakov, A. B. Oracle inequalities and optimal
inference under group sparsity. The annals of statistics, 39(4):2164–2204, 2011.

Massias, M., Gramfort, A., and Salmon, J. Celer: a fast solver for the lasso with dual extrapolation.
In Proceedings of the 35th International Conference on Machine Learning, volume 80, pp.
3321–3330, 2018.

Ong, C. S., Smola, A. J., and Williamson, R. C. Learning the kernel with hyperkernels. Journal of
Machine Learning Research, 2005.

Rahimi, A., Recht, B., et al. Random features for large-scale kernel machines. In NIPS, pp. 5.
Citeseer, 2007.

Rothfuss, J., Fortuin, V., Josifoski, M., and Krause, A. Pacoh: Bayes-optimal meta-learning with
pac-guarantees. In International Conference on Machine Learning, pp. 9116–9126. PMLR,
2021a.

Rothfuss, J., Heyn, D., Chen, J., and Krause, A. Meta-learning reliable priors in the function space.
In Advances in Neural Information Processing Systems, 2021b.

Russo, D. and Van Roy, B. Learning to optimize via posterior sampling. Mathematics of Operations
Research, 39(4):1221–1243, 2014.

[2]

Meta-Learning Hypothesis Spaces

References
Abbasi-Yadkori, Y., Pál, D., and Szepesvári, C. Improved algorithms for linear stochastic bandits.

In Advances in Neural Information Processing Systems, volume 24, 2011.

Bach, F., Jenatton, R., Mairal, J., and Obozinski, G. Optimization with sparsity-inducing penalties.
arXiv preprint arXiv:1108.0775, 2011.

Bach, F. R. Consistency of the group lasso and multiple kernel learning. Journal of Machine
Learning Research, 9(6), 2008.

Bach, F. R., Lanckriet, G. R., and Jordan, M. I. Multiple kernel learning, conic duality, and the smo
algorithm. In Proceedings of the twenty-first international conference on Machine learning, pp.
6, 2004.

Bastani, H. and Bayati, M. Online decision making with high-dimensional covariates. Operations
Research, 68(1):276–294, 2020.

Basu, S., Kveton, B., Zaheer, M., and Szepesvári, C. No regrets for learning the prior in bandits.
Advances in Neural Information Processing Systems, 34, 2021.

Berkenkamp, F., Turchetta, M., Schoellig, A. P., and Krause, A. Safe model-based reinforcement
learning with stability guarantees. arXiv preprint arXiv:1705.08551, 2017.

Berkenkamp, F., Schoellig, A. P., and Krause, A. No-regret bayesian optimization with unknown
hyperparameters. arXiv preprint arXiv:1901.03357, 2019.

Bickel, P. J., Ritov, Y., and Tsybakov, A. B. Simultaneous analysis of lasso and dantzig selector.
The Annals of statistics, 37(4):1705–1732, 2009.

Bogunovic, I. and Krause, A. Misspecified Gaussian process bandit optimization. In Conference
on Neural Information Processing Systems (NeurIPS), 2021.

Boutilier, C., Hsu, C.-w., Kveton, B., Mladenov, M., Szepesvari, C., and Zaheer, M. Differentiable
meta-learning of bandit policies. In Advances in Neural Information Processing Systems. Curran
Associates, Inc., 2020.

Boyd, S., Boyd, S. P., and Vandenberghe, L. Convex optimization. Cambridge University Press,
2004.

Bühlmann, P. and Van De Geer, S. Statistics for high-dimensional data: methods, theory and
applications. Springer Science & Business Media, 2011.

Bunea, F., Lederer, J., and She, Y. The group square-root lasso: Theoretical properties and fast
algorithms. IEEE Transactions on Information Theory, 60(2):1313–1325, 2013.

Cavalier, L., Golubev, G., Picard, D., and Tsybakov, A. Oracle inequalities for inverse problems.
The Annals of Statistics, 30(3):843–874, 2002.

Cella, L. and Pontil, M. Multi-task and meta-learning with sparse linear bandits. In Uncertainty in
Artificial Intelligence, pp. 1692–1702. PMLR, 2021.

Cella, L., Lazaric, A., and Pontil, M. Meta-learning with stochastic linear bandits. In International
Conference on Machine Learning, pp. 1360–1370. PMLR, 2020.

Chowdhury, S. R. and Gopalan, A. On kernelized multi-armed bandits. In International Conference
on Machine Learning, pp. 844–853. PMLR, 2017.

Cristianini, N., Kandola, J., Elisseeff, A., and Shawe-Taylor, J. On kernel target alignment. In
Innovations in machine learning, pp. 205–256. Springer, 2006.

Hk⇤
Hk̂

Hkfull

Confidence SetsOverview

Problem Setting

Meta-KeL

Meta-Learning Hypothesis Spaces

Figure 8: BO (minimization) with META-KEL. Upper plot shows the state at t = 5 and the lower plot at t = 55.

f 2 Hk⇤

fs 2 Hk⇤

w.h.p. {8x 2 X : f(x) 2 Ct�1(k
⇤;x)}

xt = argmax
x2X

Ct�1(k̂;x)

Jk⇤ ⇢ {1, · · · , 20}, |Jk⇤ | = 5

D.1. SAVI Poster

Interacting with the environment

yt = f
⇤(xt) + "t

xt 2 X , depends on the history (x1:t�1, y1:t�1)

X ⇢ Rd0 , compact

"t: �2 sub-Gussian, i.i.d.

f
⇤ : X ! R, f⇤ 2 Hk⇤ , kf⇤kk⇤  B

k
⇤ unknown

Find k̂ s.t. the confidence sets are valid

P
⇣
8x 2 X , 8t � 1 : f⇤(x) 2 Ct�1(k̂;x)

⌘

Meta-Learning Hypothesis Spaces

Figure 8: BO (minimization) with META-KEL. Upper plot shows the state at t = 5 and the lower plot at t = 55.

f 2 Hk⇤

fs 2 Hk⇤

w.h.p. {8x 2 X : f(x) 2 Ct�1(k
⇤;x)}

xt = argmax
x2X

Ct�1(k̂;x)

Jk⇤ ⇢ {1, · · · , 20}, |Jk⇤ | = 5

D.1. SAVI Poster

Interacting with the environment

yt = f
⇤(xt) + "t

xt 2 X , depends on the history (x1:t�1, y1:t�1)

X ⇢ Rd0 , compact

"t: �2 sub-Gussian, i.i.d.

f
⇤ : X ! R, f⇤ 2 Hk⇤ , kf⇤kk⇤  B

k
⇤ unknown

Find k̂ s.t. the confidence sets are valid

P
⇣
8x 2 X , 8t � 1 : f⇤(x) 2 Ct�1(k̂;x)

⌘

Meta-Learning Hypothesis Spaces

Figure 8: BO (minimization) with META-KEL. Upper plot shows the state at t = 5 and the lower plot at t = 55.

f 2 Hk⇤

fs 2 Hk⇤

w.h.p. {8x 2 X : f(x) 2 Ct�1(k
⇤;x)}

xt = argmax
x2X

Ct�1(k̂;x)

Jk⇤ ⇢ {1, · · · , 20}, |Jk⇤ | = 5

D.1. SAVI Poster

Interacting with the environment

yt = f
⇤(xt) + "t

xt 2 X , depends on the history (x1:t�1, y1:t�1)

X ⇢ Rd0 , compact

"t: �2 sub-Gussian, i.i.d.

f
⇤ : X ! R, f⇤ 2 Hk⇤ , kf⇤kk⇤  B

k
⇤ unknown

Find k̂ s.t. the confidence sets are valid

P
⇣
8x 2 X , 8t � 1 : f⇤(x) 2 Ct�1(k̂;x)

⌘

Meta-Learning Hypothesis Spaces

Figure 8: BO (minimization) with META-KEL. Upper plot shows the state at t = 5 and the lower plot at t = 55.

f 2 Hk⇤

fs 2 Hk⇤

w.h.p. {8x 2 X : f(x) 2 Ct�1(k
⇤;x)}

xt = argmax
x2X

Ct�1(k̂;x)

Jk⇤ ⇢ {1, · · · , 20}, |Jk⇤ | = 5

yt = f
⇤(xt) + ✏t

xt 2 X , depends on the history (x1:t�1, y1:t�1)

X ⇢ Rd0 , compact

✏t: �2 sub-Gussian, i.i.d.

f
⇤ : X ! R, f⇤ 2 Hk⇤ , kf⇤kk⇤  B

k
⇤ unknown

Find k̂ s.t. the confidence sets are valid

P
⇣
8x 2 X , 8t � 1 : f⇤(x) 2 Ct�1(k̂;x)

⌘

Ct�1(k;x) = [µt�1(k;x)± ⌫t�t�1(k;x)]

Meta-Learning Hypothesis Spaces

Figure 8: BO (minimization) with META-KEL. Upper plot shows the state at t = 5 and the lower plot at t = 55.

f 2 Hk⇤

fs 2 Hk⇤

w.h.p. {8x 2 X : f(x) 2 Ct�1(k
⇤;x)}

xt = argmax
x2X

Ct�1(k̂;x)

Jk⇤ ⇢ {1, · · · , 20}, |Jk⇤ | = 5

yt = f
⇤(xt) + ✏t

xt 2 X , depends on the history (x1:t�1, y1:t�1)

X ⇢ Rd0 , compact

✏t: �2 sub-Gussian, i.i.d.

f
⇤ : X ! R, f⇤ 2 Hk⇤ , kf⇤kk⇤  B

k
⇤ unknown

Find k̂ s.t. the confidence sets are valid

P
⇣
8x 2 X , 8t � 1 : f⇤(x) 2 Ct�1(k̂;x)

⌘

Ct�1(k;x) = [µt�1(k;x)± ⌫t�t�1(k;x)]

Meta-Learning Hypothesis Spaces

Figure 8: BO (minimization) with META-KEL. Upper plot shows the state at t = 5 and the lower plot at t = 55.

f 2 Hk⇤

fs 2 Hk⇤

w.h.p. {8x 2 X : f(x) 2 Ct�1(k
⇤;x)}

xt = argmax
x2X

Ct�1(k̂;x)

Jk⇤ ⇢ {1, · · · , 20}, |Jk⇤ | = 5

D.1. SAVI Poster

Interacting with the environment

yt = f
⇤(xt) + "t

xt 2 X , depends on the history (x1:t�1, y1:t�1)

X ⇢ Rd0 , compact

"t: �2 sub-Gussian, i.i.d.

f
⇤ : X ! R, f⇤ 2 Hk⇤ , kf⇤kk⇤  B

k
⇤ unknown

Find k̂ s.t. the confidence sets are valid

P
⇣
8x 2 X , 8t � 1 : f⇤(x) 2 Ct�1(k̂;x)

⌘
� 1� �

Meta-Learning Hypothesis Spaces

Ct�1(k;x) = [µt�1(k;x)± ⌫t�t�1(k;x)]

µt�1(k;x) = kT
t�1(x)(Kt�1 + �̄

2I)�1yt�1 (D.1)

�
2
t�1(k;x) = k(x,x)� kT

t�1(x)(Kt�1 + �̄
2I)�1kt�1(x)

Data from similar tasks is available (fixed design)

ys,i = fs(xs,i) + "s,i

"s,i: also �
2 sub-Gussian, i.i.d.

fs : X ! R, fs 2 Hk⇤ , kfskk⇤  B

Meta-Learning Hypothesis Spaces

Ct�1(k;x) = [µt�1(k;x)± ⌫t�t�1(k;x)]

µt�1(k;x) = kT
t�1(x)(Kt�1 + �̄

2I)�1yt�1 (D.1)

�
2
t�1(k;x) = k(x,x)� kT

t�1(x)(Kt�1 + �̄
2I)�1kt�1(x)

Data from similar tasks is available (fixed design)

ys,i = fs(xs,i) + "s,i

"s,i: also �
2 sub-Gussian, i.i.d.

fs : X ! R, fs 2 Hk⇤ , kfskk⇤  B

Meta-Learning Hypothesis Spaces

Ct�1(k;x) = [µt�1(k;x)± ⌫t�t�1(k;x)]

µt�1(k;x) = kT
t�1(x)(Kt�1 + �̄

2I)�1yt�1 (D.1)

�
2
t�1(k;x) = k(x,x)� kT

t�1(x)(Kt�1 + �̄
2I)�1kt�1(x)

Data from similar tasks is available (fixed design)

ys,i = fs(xs,i) + "s,i

"s,i: also �
2 sub-Gussian, i.i.d.

fs : X ! R, fs 2 Hk⇤ , kfskk⇤  B

s  m

i  n

Meta-Learning Hypothesis Spaces

Ct�1(k;x) = [µt�1(k;x)± ⌫t�t�1(k;x)]

µt�1(k;x) = kT
t�1(x)(Kt�1 + �̄

2I)�1yt�1 (D.1)

�
2
t�1(k;x) = k(x,x)� kT

t�1(x)(Kt�1 + �̄
2I)�1kt�1(x)

Data from similar tasks is available (fixed design)

ys,i = fs(xs,i) + "s,i, for 1  i  n and 1  s  m

"s,i: also �
2 sub-Gussian, i.i.d.

fs : X ! R, fs 2 Hk⇤ , kfskk⇤  B

s  m

i  n

Meta-Learning Hypothesis Spaces

Ct�1(k;x) = [µt�1(k;x)± ⌫t�t�1(k;x)]

µt�1(k;x) = kT
t�1(x)(Kt�1 + �̄

2I)�1yt�1 (D.1)

�
2
t�1(k;x) = k(x,x)� kT

t�1(x)(Kt�1 + �̄
2I)�1kt�1(x)

Data from m similar tasks is available (fixed design)

ys,i = fs(xs,i) + "s,i, for 1  i  n and 1  s  m

"s,i: also �
2 sub-Gussian, i.i.d.

fs : X ! R, fs 2 Hk⇤ , kfskk⇤  B

s  m

i  n

Assume that true kernel can be decomposed as

k(x,x0) =
pX

j=1

⌘
⇤
j kj(x,x

0)

p < 1

⌘
⇤
j : unknown, non-negative

Better choice is ⌘⇤j 2 {0, 1}.

kj : known, finite-dimensional

Is extendable to infinite-dimensional kernels.

k⌘⇤k1  1 and kj(x,x0)  1

Sparsity pattern J
⇤ = {1  j  p : ⌘⇤j 6= 0}

Meta-loss

Proposition

We require regularity assumptions on the meta-data: Restricted Eigenvalue Assumption and Multi-task Group Beta-min
Condition.

Meta-Learning Hypothesis Spaces

Ct�1(k;x) = [µt�1(k;x)± ⌫t�t�1(k;x)]

µt�1(k;x) = kT
t�1(x)(Kt�1 + �̄

2I)�1yt�1 (D.1)

�
2
t�1(k;x) = k(x,x)� kT

t�1(x)(Kt�1 + �̄
2I)�1kt�1(x)

Data from m similar tasks is available (fixed design)

ys,i = fs(xs,i) + "s,i, for 1  i  n and 1  s  m

"s,i: also �
2 sub-Gussian, i.i.d.

fs : X ! R, fs 2 Hk⇤ , kfskk⇤  B

s  m

i  n

Assume that true kernel can be decomposed as

k
⇤(x,x0) =

pX

j=1

⌘
⇤
j kj(x,x

0)

p < 1

⌘
⇤
j : unknown, non-negative

Better choice is ⌘⇤j 2 {0, 1}.

kj : known, finite-dimensional

Is extendable to infinite-dimensional kernels.

k⌘⇤k1  1 and kj(x,x0)  1

Sparsity pattern J
⇤ = {1  j  p : ⌘⇤j 6= 0}

Meta-loss

Proposition

We require regularity assumptions on the meta-data: Restricted Eigenvalue Assumption and Multi-task Group Beta-min
Condition.

Meta-Learning Hypothesis Spaces

Ct�1(k;x) = [µt�1(k;x)± ⌫t�t�1(k;x)]

µt�1(k;x) = kT
t�1(x)(Kt�1 + �̄

2I)�1yt�1 (D.1)

�
2
t�1(k;x) = k(x,x)� kT

t�1(x)(Kt�1 + �̄
2I)�1kt�1(x)

Data from m similar tasks is available (fixed design)

ys,i = fs(xs,i) + "s,i, for 1  i  n and 1  s  m

"s,i: also �
2 sub-Gussian, i.i.d.

fs : X ! R, fs 2 Hk⇤ , kfskk⇤  B

s  m

i  n

Assume that true kernel can be decomposed as

k
⇤(x,x0) =

pX

j=1

⌘
⇤
j kj(x,x

0)

p < 1

⌘
⇤
j : unknown, non-negative

Better choice is ⌘⇤j 2 {0, 1}.

kj : known, finite-dimensional

Is extendable to infinite-dimensional kernels.

k⌘⇤k1  1 and kj(x,x0)  1

Sparsity pattern J
⇤ = {1  j  p : ⌘⇤j 6= 0}

Meta-loss

Proposition

We require regularity assumptions on the meta-data: Restricted Eigenvalue Assumption and Multi-task Group Beta-min
Condition.

Meta-Learning Hypothesis Spaces

Ct�1(k;x) = [µt�1(k;x)± ⌫t�t�1(k;x)]

µt�1(k;x) = kT
t�1(x)(Kt�1 + �̄

2I)�1yt�1 (D.1)

�
2
t�1(k;x) = k(x,x)� kT

t�1(x)(Kt�1 + �̄
2I)�1kt�1(x)

Data from m similar tasks is available (fixed design)

ys,i = fs(xs,i) + "s,i, for 1  i  n and 1  s  m

"s,i: also �
2 sub-Gussian, i.i.d.

fs : X ! R, fs 2 Hk⇤ , kfskk⇤  B

s  m

i  n

Assume that true kernel can be decomposed as

k
⇤(x,x0) =

pX

j=1

⌘
⇤
j kj(x,x

0)

p < 1

⌘
⇤
j : unknown, non-negative

Better choice is ⌘⇤j 2 {0, 1}.

kj : known, finite-dimensional

Is extendable to infinite-dimensional kernels.

k⌘⇤k1  1 and kj(x,x0)  1

Sparsity pattern J
⇤ = {1  j  p : ⌘⇤j 6= 0}

Meta-loss

Proposition

We require regularity assumptions on the meta-data: Restricted Eigenvalue Assumption and Multi-task Group Beta-min
Condition.

Meta-Learning Hypothesis Spaces

Ct�1(k;x) = [µt�1(k;x)± ⌫t�t�1(k;x)]

µt�1(k;x) = kT
t�1(x)(Kt�1 + �̄

2I)�1yt�1 (D.1)

�
2
t�1(k;x) = k(x,x)� kT

t�1(x)(Kt�1 + �̄
2I)�1kt�1(x)

Data from m similar tasks is available (fixed design)

ys,i = fs(xs,i) + "s,i, for 1  i  n and 1  s  m

"s,i: also �
2 sub-Gussian, i.i.d.

fs : X ! R, fs 2 Hk⇤ , kfskk⇤  B

s  m

i  n

Assume that true kernel can be decomposed as

k
⇤(x,x0) =

pX

j=1

⌘
⇤
j kj(x,x

0)

p < 1

⌘
⇤
j : unknown, non-negative

Better choice is ⌘⇤j 2 {0, 1}.

kj : known, finite-dimensional

Is extendable to infinite-dimensional kernels.

k⌘⇤k1  1 and kj(x,x0)  1

Sparsity pattern J
⇤ = {1  j  p : ⌘⇤j 6= 0}

Meta-loss

Proposition

We require regularity assumptions on the meta-data: Restricted Eigenvalue Assumption and Multi-task Group Beta-min
Condition.

Meta-Learning Hypothesis Spaces

Ct�1(k;x) = [µt�1(k;x)± ⌫t�t�1(k;x)]

µt�1(k;x) = kT
t�1(x)(Kt�1 + �̄

2I)�1yt�1 (D.1)

�
2
t�1(k;x) = k(x,x)� kT

t�1(x)(Kt�1 + �̄
2I)�1kt�1(x)

Data from m similar tasks is available (fixed design)

ys,i = fs(xs,i) + "s,i, for 1  i  n and 1  s  m

"s,i: also �
2 sub-Gussian, i.i.d.

fs : X ! R, fs 2 Hk⇤ , kfskk⇤  B

s  m

i  n

Assume that true kernel can be decomposed as

k
⇤(x,x0) =

pX

j=1

⌘
⇤
j kj(x,x

0)

p < 1

⌘
⇤
j : unknown, non-negative

Better choice is ⌘⇤j 2 {0, 1}.

kj : known, finite-dimensional

Is extendable to infinite-dimensional kernels.

k⌘⇤k1  1 and kj(x,x0)  1

Sparsity pattern J
⇤ = {1  j  p : ⌘⇤j 6= 0}

Meta-loss

Proposition

We require regularity assumptions on the meta-data: Restricted Eigenvalue Assumption and Multi-task Group Beta-min
Condition.

Meta-Learning Hypothesis Spaces

where d =
Pp

j=1 dj and

�(x) =
⇣p

⌘
⇤

1�
T
1 (x), · · · ,

p
⌘⇤p�

T
p (x)

⌘T
.

For each task s, the function fs is contained in Hk⇤ . By the
Mercer’s theorem fs may be decomposed as

fs(x) = �T (x)�⇤

s =
pX

j=1

q
⌘
⇤

j�
T
j (x)�

⇤

s
(j)

, (6)

where �⇤

s 2 Rd is the coefficients vector of task s and
�⇤

s
(j) 2 Rdj is the sub-vector corresponding to kernel kj . It

is not possible to meta-select a base kernel kj which has not
contributed to the generation of the meta-data. Therefore, if
a base kernel is active in the construction of Hk⇤ , it is only
natural to assume that there is some task in the meta-data
which reflects this presence. More formally, we assume that,
for any j 2 Jk⇤ , there exists some s  m where �⇤

s
(j) 6= 0.

We define �⇤ = (�⇤

1
T
, · · · ,�⇤

m
T)T 2 Rmd as the concate-

nated coefficients vector for all tasks. To refer to the group
of coefficients that correspond to kernel kj across all tasks,
we use �⇤(j) = ((�⇤

1
(j))T , · · · , (�⇤

m
(j))T)T 2 Rmdj . Our

next assumption guarantees that the meta-learning problem
is not ill-posed.
Assumption 3.1 (Group Beta-min Condition). There exists
c1 > 0 s.t. for all j 2 Jk⇤ it holds that

���⇤(j)
��
2
� c1.

This assumption is inevitable for recovering the sparsity
pattern from empirical data and it is widely used in the
high-dimensional statistics literature (e.g., Bühlmann &
Van De Geer, 2011; Zhao & Yu, 2006; Van de Geer et al.,
2011). Assumption 3.1 implies that for j to be in Jk⇤ , the
coefficients vector corresponding to kernel kj can not be
zero or arbitrarily close to zero. In practice,

���(j)
��
2

has
to be comparable with the noise level for the activity of a
base kernel not to be mistaken with randomness.

4. Meta-learning the Hypothesis Space
(META-KEL)

In the following section, we present our formulation of
the meta-learning problem and analyze the properties of
the learned hypothesis space. We meta-learn the kernel by
solving the following optimization problem. Then, we set
the hypothesis space of the downstream learning algorithm
to be the RKHS of the meta-learned kernel.

min
⌘,f1,...,fm

1

m

mX

s=1

"
1

n

nX

i=1

(ys,i � fs(xs,i))
2

#

+
�

2

mX

s=1

kfsk2k +
�

2
k⌘k1

s.t. 8s : fs 2 Hk, k =
pX

j=1

⌘jkj , 0  ⌘

(7)

We will refer to this problem as Meta-Kernel Learning
(META-KEL). The first part of the objective is similar to
the kernel ridge regression loss, and accounts for how well
a series of regularized fs fit the meta-data. The last term
regularizes our choice of the kernel function. We use `1-
norm regularization for ⌘ to implicitly perform meta-model-
selection. As shown in Proposition 4.4, the meta-learned
kernel will reflect the sparsity pattern of the true kernel. The
optimization problem (7) is convex and admits an efficient
solution, as explained next.

We first introduce a vectorized formulation of Equation (7).
Let ys 2 Rn denote the observed values for a task s

and y = (yT
1 , · · · ,yT

m)T 2 Rmn the multi-task stacked
vector of observations. We then design a multi-task fea-
ture matrix. We define � to be a mn ⇥ md block-
diagonal matrix, where each block s corresponds to �s =
(�(xs,1), · · · ,�(xs,n))T , the n⇥d feature matrix of task s.
Figure 6 provides an illustration thereof. As shown in Propo-
sition 4.1, this vectorized design brings forth a parametric
equivalent of META-KEL, which happens to be the well-
known Group Lasso problem.
Proposition 4.1 (Solution of META-KEL). Let k =P

j ⌘̂jkj be a solution to Problem (7). Then, for all
1  j  p, it holds that

⌘̂j =
����̂(j)

���
2

with �̂ = (�̂(j))jp as the solution of the following convex
optimization problem:

min
�

1

mn
ky ���k22 + �

pX

j=1

����(j)
���
2
. (8)

We show this equivalence by eliminating ⌘. We use a trick
introduced by Bach et al. (2004), which, for w, v 2 R states
2|w| = minv>0 w

2
/v + v. The proof is given in Appendix

A.2. Problem (8) can be optimized by any Group Lasso
solver. Bach et al. (2011) present a number of coordinate
descent algorithms which efficiently find the solution.

Before introducing the meta-learned kernel k̂, we note that
Reproducing Kernel Hilbert Spaces are equivalent up to
scaling of the kernel function. For c > 0, both Hk and the
scaled version Hck contain the same set of functions. Going
from Hk to Hck, the RKHS norm of any member f would
scale by 1/c, i.e. kfkk = ckfkck. Hence, the norm k⌘̂k1
will be irrelevant when meta-learning the function space.
This norm can be scaled or normalized, and still yield the
same hypothesis space, only with a scaled operator norm.
For consistency of notation, we define k̂ as follows. For any
two points x, x0 2 X , set

k̂(x,x0) =
pX

j=1

⌘̂j

c1
�T

j (x)�j(x
0), (9)

Meta-Learning Hypothesis Spaces

where d =
Pp

j=1 dj and

�(x) =
⇣p

⌘
⇤

1�
T
1 (x), · · · ,

p
⌘⇤p�

T
p (x)

⌘T
.

For each task s, the function fs is contained in Hk⇤ . By the
Mercer’s theorem fs may be decomposed as

fs(x) = �T (x)�⇤

s =
pX

j=1

q
⌘
⇤

j�
T
j (x)�

⇤

s
(j)

, (6)

where �⇤

s 2 Rd is the coefficients vector of task s and
�⇤

s
(j) 2 Rdj is the sub-vector corresponding to kernel kj . It

is not possible to meta-select a base kernel kj which has not
contributed to the generation of the meta-data. Therefore, if
a base kernel is active in the construction of Hk⇤ , it is only
natural to assume that there is some task in the meta-data
which reflects this presence. More formally, we assume that,
for any j 2 Jk⇤ , there exists some s  m where �⇤

s
(j) 6= 0.

We define �⇤ = (�⇤

1
T
, · · · ,�⇤

m
T)T 2 Rmd as the concate-

nated coefficients vector for all tasks. To refer to the group
of coefficients that correspond to kernel kj across all tasks,
we use �⇤(j) = ((�⇤

1
(j))T , · · · , (�⇤

m
(j))T)T 2 Rmdj . Our

next assumption guarantees that the meta-learning problem
is not ill-posed.
Assumption 3.1 (Group Beta-min Condition). There exists
c1 > 0 s.t. for all j 2 Jk⇤ it holds that

���⇤(j)
��
2
� c1.

This assumption is inevitable for recovering the sparsity
pattern from empirical data and it is widely used in the
high-dimensional statistics literature (e.g., Bühlmann &
Van De Geer, 2011; Zhao & Yu, 2006; Van de Geer et al.,
2011). Assumption 3.1 implies that for j to be in Jk⇤ , the
coefficients vector corresponding to kernel kj can not be
zero or arbitrarily close to zero. In practice,

���(j)
��
2

has
to be comparable with the noise level for the activity of a
base kernel not to be mistaken with randomness.

4. Meta-learning the Hypothesis Space
(META-KEL)

In the following section, we present our formulation of
the meta-learning problem and analyze the properties of
the learned hypothesis space. We meta-learn the kernel by
solving the following optimization problem. Then, we set
the hypothesis space of the downstream learning algorithm
to be the RKHS of the meta-learned kernel.

min
⌘,f1,...,fm

1

m

mX

s=1

"
1

n

nX

i=1

(ys,i � fs(xs,i))
2

#

+
�

2

mX

s=1

kfsk2k +
�

2
k⌘k1

s.t. 8s : fs 2 Hk, k =
pX

j=1

⌘jkj , 0  ⌘

(7)

We will refer to this problem as Meta-Kernel Learning
(META-KEL). The first part of the objective is similar to
the kernel ridge regression loss, and accounts for how well
a series of regularized fs fit the meta-data. The last term
regularizes our choice of the kernel function. We use `1-
norm regularization for ⌘ to implicitly perform meta-model-
selection. As shown in Proposition 4.4, the meta-learned
kernel will reflect the sparsity pattern of the true kernel. The
optimization problem (7) is convex and admits an efficient
solution, as explained next.

We first introduce a vectorized formulation of Equation (7).
Let ys 2 Rn denote the observed values for a task s

and y = (yT
1 , · · · ,yT

m)T 2 Rmn the multi-task stacked
vector of observations. We then design a multi-task fea-
ture matrix. We define � to be a mn ⇥ md block-
diagonal matrix, where each block s corresponds to �s =
(�(xs,1), · · · ,�(xs,n))T , the n⇥d feature matrix of task s.
Figure 6 provides an illustration thereof. As shown in Propo-
sition 4.1, this vectorized design brings forth a parametric
equivalent of META-KEL, which happens to be the well-
known Group Lasso problem.
Proposition 4.1 (Solution of META-KEL). Let k =P

j ⌘̂jkj be a solution to Problem (7). Then, for all
1  j  p, it holds that

⌘̂j =
����̂(j)

���
2

with �̂ = (�̂(j))jp as the solution of the following convex
optimization problem:

min
�

1

mn
ky ���k22 + �

pX

j=1

����(j)
���
2
. (8)

We show this equivalence by eliminating ⌘. We use a trick
introduced by Bach et al. (2004), which, for w, v 2 R states
2|w| = minv>0 w

2
/v + v. The proof is given in Appendix

A.2. Problem (8) can be optimized by any Group Lasso
solver. Bach et al. (2011) present a number of coordinate
descent algorithms which efficiently find the solution.

Before introducing the meta-learned kernel k̂, we note that
Reproducing Kernel Hilbert Spaces are equivalent up to
scaling of the kernel function. For c > 0, both Hk and the
scaled version Hck contain the same set of functions. Going
from Hk to Hck, the RKHS norm of any member f would
scale by 1/c, i.e. kfkk = ckfkck. Hence, the norm k⌘̂k1
will be irrelevant when meta-learning the function space.
This norm can be scaled or normalized, and still yield the
same hypothesis space, only with a scaled operator norm.
For consistency of notation, we define k̂ as follows. For any
two points x, x0 2 X , set

k̂(x,x0) =
pX

j=1

⌘̂j

c1
�T

j (x)�j(x
0), (9)

Meta-Learning Hypothesis Spaces

where d =
Pp

j=1 dj and

�(x) =
⇣p

⌘
⇤

1�
T
1 (x), · · · ,

p
⌘⇤p�

T
p (x)

⌘T
.

For each task s, the function fs is contained in Hk⇤ . By the
Mercer’s theorem fs may be decomposed as

fs(x) = �T (x)�⇤

s =
pX

j=1

q
⌘
⇤

j�
T
j (x)�

⇤

s
(j)

, (6)

where �⇤

s 2 Rd is the coefficients vector of task s and
�⇤

s
(j) 2 Rdj is the sub-vector corresponding to kernel kj . It

is not possible to meta-select a base kernel kj which has not
contributed to the generation of the meta-data. Therefore, if
a base kernel is active in the construction of Hk⇤ , it is only
natural to assume that there is some task in the meta-data
which reflects this presence. More formally, we assume that,
for any j 2 Jk⇤ , there exists some s  m where �⇤

s
(j) 6= 0.

We define �⇤ = (�⇤

1
T
, · · · ,�⇤

m
T)T 2 Rmd as the concate-

nated coefficients vector for all tasks. To refer to the group
of coefficients that correspond to kernel kj across all tasks,
we use �⇤(j) = ((�⇤

1
(j))T , · · · , (�⇤

m
(j))T)T 2 Rmdj . Our

next assumption guarantees that the meta-learning problem
is not ill-posed.
Assumption 3.1 (Group Beta-min Condition). There exists
c1 > 0 s.t. for all j 2 Jk⇤ it holds that

���⇤(j)
��
2
� c1.

This assumption is inevitable for recovering the sparsity
pattern from empirical data and it is widely used in the
high-dimensional statistics literature (e.g., Bühlmann &
Van De Geer, 2011; Zhao & Yu, 2006; Van de Geer et al.,
2011). Assumption 3.1 implies that for j to be in Jk⇤ , the
coefficients vector corresponding to kernel kj can not be
zero or arbitrarily close to zero. In practice,

���(j)
��
2

has
to be comparable with the noise level for the activity of a
base kernel not to be mistaken with randomness.

4. Meta-learning the Hypothesis Space
(META-KEL)

In the following section, we present our formulation of
the meta-learning problem and analyze the properties of
the learned hypothesis space. We meta-learn the kernel by
solving the following optimization problem. Then, we set
the hypothesis space of the downstream learning algorithm
to be the RKHS of the meta-learned kernel.

min
⌘,f1,...,fm

1

m

mX

s=1

"
1

n

nX

i=1

(ys,i � fs(xs,i))
2

#

+
�

2

mX

s=1

kfsk2k +
�

2
k⌘k1

s.t. 8s : fs 2 Hk, k =
pX

j=1

⌘jkj , 0  ⌘

(7)

We will refer to this problem as Meta-Kernel Learning
(META-KEL). The first part of the objective is similar to
the kernel ridge regression loss, and accounts for how well
a series of regularized fs fit the meta-data. The last term
regularizes our choice of the kernel function. We use `1-
norm regularization for ⌘ to implicitly perform meta-model-
selection. As shown in Proposition 4.4, the meta-learned
kernel will reflect the sparsity pattern of the true kernel. The
optimization problem (7) is convex and admits an efficient
solution, as explained next.

We first introduce a vectorized formulation of Equation (7).
Let ys 2 Rn denote the observed values for a task s

and y = (yT
1 , · · · ,yT

m)T 2 Rmn the multi-task stacked
vector of observations. We then design a multi-task fea-
ture matrix. We define � to be a mn ⇥ md block-
diagonal matrix, where each block s corresponds to �s =
(�(xs,1), · · · ,�(xs,n))T , the n⇥d feature matrix of task s.
Figure 6 provides an illustration thereof. As shown in Propo-
sition 4.1, this vectorized design brings forth a parametric
equivalent of META-KEL, which happens to be the well-
known Group Lasso problem.
Proposition 4.1 (Solution of META-KEL). Let k =P

j ⌘̂jkj be a solution to Problem (7). Then, for all
1  j  p, it holds that

⌘̂j =
����̂(j)

���
2

with �̂ = (�̂(j))jp as the solution of the following convex
optimization problem:

min
�

1

mn
ky ���k22 + �

pX

j=1

����(j)
���
2
. (8)

We show this equivalence by eliminating ⌘. We use a trick
introduced by Bach et al. (2004), which, for w, v 2 R states
2|w| = minv>0 w

2
/v + v. The proof is given in Appendix

A.2. Problem (8) can be optimized by any Group Lasso
solver. Bach et al. (2011) present a number of coordinate
descent algorithms which efficiently find the solution.

Before introducing the meta-learned kernel k̂, we note that
Reproducing Kernel Hilbert Spaces are equivalent up to
scaling of the kernel function. For c > 0, both Hk and the
scaled version Hck contain the same set of functions. Going
from Hk to Hck, the RKHS norm of any member f would
scale by 1/c, i.e. kfkk = ckfkck. Hence, the norm k⌘̂k1
will be irrelevant when meta-learning the function space.
This norm can be scaled or normalized, and still yield the
same hypothesis space, only with a scaled operator norm.
For consistency of notation, we define k̂ as follows. For any
two points x, x0 2 X , set

k̂(x,x0) =
pX

j=1

⌘̂j

c1
�T

j (x)�j(x
0), (9)

Meta-Loss

Theorem (Hypothesis Space Recovery, Informal)

Let 0 < � < 1. Assume meta-data satisfies the Restricted

Eigenvalue Assumption and (a relaxed) Beta-min Condition.

For the appropriate choice of �, with probability greater than 1� �,

Hk⇤ ✓ Hk̂ ,

kf kk̂  kf kk⇤

⇣
1 + ✏(n,m) + o

�
✏(n,m)

�⌘
,

where ✏(n,m) = O

⇣
1/

p
mn

⇣
log p/� +

p
mdmax log p/�

⌘⌘
.

Meta-Learning Hypothesis Spaces

Ct�1(k;x) = [µt�1(k;x)± ⌫t�t�1(k;x)]

µt�1(k;x) = kT
t�1(x)(Kt�1 + �̄

2I)�1yt�1 (D.1)

�
2
t�1(k;x) = k(x,x)� kT

t�1(x)(Kt�1 + �̄
2I)�1kt�1(x)

Data from m similar tasks is available (fixed design)

ys,i = fs(xs,i) + "s,i, for 1  i  n and 1  s  m

"s,i: also �
2 sub-Gussian, i.i.d.

fs : X ! R, fs 2 Hk⇤ , kfskk⇤  B

s  m

i  n

Assume that true kernel can be decomposed as

k
⇤(x,x0) =

pX

j=1

⌘
⇤
j kj(x,x

0)

p < 1

⌘
⇤
j : unknown, non-negative

Better choice is ⌘⇤j 2 {0, 1}.

kj : known, finite-dimensional

Is extendable to infinite-dimensional kernels.

k⌘⇤k1  1 and kj(x,x0)  1

J
⇤ = {1  j  p : ⌘⇤j 6= 0} captures sparsity pattern of tk.

Let k̂ be the minimizer of

(META-KEL)

We require regularity assumptions on the meta-data:

Restricted Eigenvalue Assumption and Multi-task Group Beta-min Condition.

k̂ =
pX

j=1

⌘̂jkj , ⌘̂j =
����̂(j)

���
2

�̂(j) = argmin
�

1

mn
ky ���k22 + �

pX

j=1

����(j)
���
2

(D.2)

kfull(x,x
0) =

1

p

pX

j=1

kj(x,x
0)

If ⌘⇤j 2 0, 1, we can show Ĵ = J
⇤ with high probability, for an improved Meta-KeL.

Hk⇤
w.h.p.
✓ Hk̂

w.h.p.
(Hkfull

Meta-Loss

Proposition (Sparsity of k̂ , Informal)

Let 0 < � < 1. Assume ⌘⇤
is s-sparse.

Under assumptions of the theorem above, and for mn large

enough, ⌘̂ is also s-sparse with probability greater than 1� �.

Meta-Loss

Proposition

Meta-KeL is convex, has a solution and optimizing it is as di�cult

as the Group Lasso.

Meta-Learning Hypothesis Spaces

Ct�1(k;x) = [µt�1(k;x)± ⌫t�t�1(k;x)]

µt�1(k;x) = kT
t�1(x)(Kt�1 + �̄

2I)�1yt�1 (D.1)

�
2
t�1(k;x) = k(x,x)� kT

t�1(x)(Kt�1 + �̄
2I)�1kt�1(x)

Data from m similar tasks is available (fixed design)

ys,i = fs(xs,i) + "s,i, for 1  i  n and 1  s  m

"s,i: also �
2 sub-Gussian, i.i.d.

fs : X ! R, fs 2 Hk⇤ , kfskk⇤  B

s  m

i  n

Assume that true kernel can be decomposed as

k
⇤(x,x0) =

pX

j=1

⌘
⇤
j kj(x,x

0)

p < 1

⌘
⇤
j : unknown, non-negative

Better choice is ⌘⇤j 2 {0, 1}.

kj : known, finite-dimensional

Is extendable to infinite-dimensional kernels.

k⌘⇤k1  1 and kj(x,x0)  1

J
⇤ = {1  j  p : ⌘⇤j 6= 0} captures sparsity pattern of tk.

Let k̂ be the minimizer of

(META-KEL)

We require regularity assumptions on the meta-data:

Restricted Eigenvalue Assumption and Multi-task Group Beta-min Condition.

k̂ =
pX

j=1

⌘̂jkj , ⌘̂j =
����̂(j)

���
2

�̂(j) = argmin
�

1

mn
ky ���k22 + �

pX

j=1

����(j)
���
2

(D.2)

kfull(x,x
0) =

1

p

pX

j=1

kj(x,x
0)

If ⌘⇤j 2 0, 1, we can show Ĵ = J
⇤ with high probability, for an improved Meta-KeL.

Hk⇤
w.h.p.
✓ Hk̂

w.h.p.
(Hkfull

Meta-Learning Hypothesis Spaces

Ct�1(k;x) = [µt�1(k;x)± ⌫t�t�1(k;x)]

µt�1(k;x) = kT
t�1(x)(Kt�1 + �̄

2I)�1yt�1 (D.1)

�
2
t�1(k;x) = k(x,x)� kT

t�1(x)(Kt�1 + �̄
2I)�1kt�1(x)

Data from m similar tasks is available (fixed design)

ys,i = fs(xs,i) + "s,i, for 1  i  n and 1  s  m

"s,i: also �
2 sub-Gussian, i.i.d.

fs : X ! R, fs 2 Hk⇤ , kfskk⇤  B

s  m

i  n

Assume that true kernel can be decomposed as

k
⇤(x,x0) =

pX

j=1

⌘
⇤
j kj(x,x

0)

p < 1

⌘
⇤
j : unknown, non-negative

Better choice is ⌘⇤j 2 {0, 1}.

kj : known, finite-dimensional

Is extendable to infinite-dimensional kernels.

k⌘⇤k1  1 and kj(x,x0)  1

J
⇤ = {1  j  p : ⌘⇤j 6= 0} captures sparsity pattern of tk.

Let k̂ be the minimizer of

Proposition

We require regularity assumptions on the meta-data:

Restricted Eigenvalue Assumption and Multi-task Group Beta-min Condition.

Meta-Learning Hypothesis Spaces

i.e., exists dj < 1 where kj(x,x0) = �T (x)�(x0) and � 2 Rdj .

i.e., the sparsity patterns match with high probability.

Construct the confidence sets (see Equation 1)

Ct�1(k̂;x) = [µt�1(k̂;x)± ⌫t�t�1(k̂;x)]

⌫t = B

⇣
1 + ✏(n,m)

⌘
+ �

q
d̂ log (1 + �̄�2t) + 2 + 2 log(1/�)

For calculating µt�1 and �t�1, set �̄ = 1 + 2/t.

where d̂ is the dimension of k̂.

i.e., exists d̂ < 1 where k̂(x,x0) = �T (x)�(x0) where � 2 Rd̂

Theorem D.1 (Confidence Bounds with META-KEL). Let f 2 Hk⇤ with kfkk⇤  B, where k
⇤ is unknown. Under the

assumptions of the previous theorem, with probability greater than 1� �,

P
⇣
8x 2 X , 8t � 1 : f(x) 2 Ct�1(k̂;x)

⌘
� 1� �.

This theorem implies, with probability greater than 1� �

|µt�1(k
⇤;x)� f(x)|  �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘

As more meta-data is provided, i.e., as m and n grow, ✏(n,m) vanishes
and d̂ ! d

⇤, the dimension of k⇤.
With oracle knowledge of k⇤,

|µt�1(k
⇤;x)� f(x)|  �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘
.

The meta-learned confidence bounds approach the oracle bounds,
as amounts of offline data grows.

Meta-Learning Hypothesis Spaces

i.e., exists dj < 1 where kj(x,x0) = �T (x)�(x0) and � 2 Rdj .

i.e., the sparsity patterns match with high probability.

Construct the confidence sets (see Equation 1)

Ct�1(k̂;x) = [µt�1(k̂;x)± ⌫t�t�1(k̂;x)]

⌫t = B

⇣
1 + ✏(n,m)

⌘
+ �

q
d̂ log (1 + �̄�2t) + 2 + 2 log(1/�)

For calculating µt�1 and �t�1, set �̄ = 1 + 2/t.

where d̂ is the dimension of k̂.

i.e., exists d̂ < 1 where k̂(x,x0) = �T (x)�(x0) where � 2 Rd̂

Theorem D.1 (Confidence Bounds with META-KEL). Let f 2 Hk⇤ with kfkk⇤  B, where k
⇤ is unknown. Under the

assumptions of the previous theorem, with probability greater than 1� �,

P
⇣
8x 2 X , 8t � 1 : f(x) 2 Ct�1(k̂;x)

⌘
� 1� �.

This theorem implies, with probability greater than 1� �

|µt�1(k
⇤;x)� f(x)|  �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘

As more meta-data is provided, i.e., as m and n grow, ✏(n,m) vanishes
and d̂ ! d

⇤, the dimension of k⇤.
With oracle knowledge of k⇤,

|µt�1(k
⇤;x)� f(x)|  �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘
.

The meta-learned confidence bounds approach the oracle bounds,
as amounts of offline data grows.

Meta-Learning Hypothesis Spaces

i.e., exists dj < 1 where kj(x,x0) = �T (x)�(x0) and � 2 Rdj .

i.e., the sparsity patterns match with high probability.

Construct the confidence sets (see Equation 1)

Ct�1(k̂;x) = [µt�1(k̂;x)± ⌫t�t�1(k̂;x)]

⌫t = B

⇣
1 + ✏(n,m)

⌘
+ �

q
d̂ log (1 + �̄�2t) + 2 + 2 log(1/�)

For calculating µt�1 and �t�1, set �̄ = 1 + 2/t.

where d̂ is the dimension of k̂.

i.e., exists d̂ < 1 where k̂(x,x0) = �T (x)�(x0) where � 2 Rd̂

Theorem D.1 (Confidence Bounds with META-KEL). Let f 2 Hk⇤ with kfkk⇤  B, where k
⇤ is unknown. Under the

assumptions of the previous theorem, with probability greater than 1� �,

P
⇣
8x 2 X , 8t � 1 : f(x) 2 Ct�1(k̂;x)

⌘
� 1� �.

This theorem implies, with probability greater than 1� �

|µt�1(k
⇤;x)� f(x)|  �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘

As more meta-data is provided, i.e., as m and n grow, ✏(n,m) vanishes
and d̂ ! d

⇤, the dimension of k⇤.
With oracle knowledge of k⇤,

|µt�1(k
⇤;x)� f(x)|  �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘
.

The meta-learned confidence bounds approach the oracle bounds,
as amounts of offline data grows.

Meta-Learning Hypothesis Spaces

i.e., exists dj < 1 where kj(x,x0) = �T (x)�(x0) and � 2 Rdj .

i.e., the sparsity patterns match with high probability.

Construct the confidence sets (see Equation 1)

Ct�1(k̂;x) = [µt�1(k̂;x)± ⌫t�t�1(k̂;x)]

⌫t = B

⇣
1 + ✏(n,m)

⌘
+ �

q
d̂ log (1 + �̄�2t) + 2 + 2 log(1/�)

For calculating µt�1 and �t�1, set �̄ = 1 + 2/t.

where d̂ is the dimension of k̂.

i.e., exists d̂ < 1 where k̂(x,x0) = �T (x)�(x0) where � 2 Rd̂

Theorem D.1 (Confidence Bounds with META-KEL). Let f 2 Hk⇤ with kfkk⇤  B, where k
⇤ is unknown. Under the

assumptions of the previous theorem, with probability greater than 1� �,

P
⇣
8x 2 X , 8t � 1 : f(x) 2 Ct�1(k̂;x)

⌘
� 1� �.

This theorem implies, with probability greater than 1� �

|µt�1(k
⇤;x)� f(x)|  �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘

As more meta-data is provided, i.e., as m and n grow, ✏(n,m) vanishes
and d̂ ! d

⇤, the dimension of k⇤.
With oracle knowledge of k⇤,

|µt�1(k
⇤;x)� f(x)|  �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘
.

The meta-learned confidence bounds approach the oracle bounds,
as amounts of offline data grows.

Meta-Learning Hypothesis Spaces

i.e., exists dj < 1 where kj(x,x0) = �T (x)�(x0) and � 2 Rdj .

i.e., the sparsity patterns match with high probability.

Construct the confidence sets (see Equation 1)

Ct�1(k̂;x) = [µt�1(k̂;x)± ⌫t�t�1(k̂;x)]

⌫t = B

⇣
1 + ✏(n,m)

⌘
+ �

q
d̂ log (1 + �̄�2t) + 2 + 2 log(1/�)

For calculating µt�1 and �t�1, set �̄ = 1 + 2/t.

where d̂ is the dimension of k̂.

i.e., exists d̂ < 1 where k̂(x,x0) = �T (x)�(x0) where � 2 Rd̂

Theorem D.1 (Confidence Bounds with META-KEL). Let f 2 Hk⇤ with kfkk⇤  B, where k
⇤ is unknown. Under the

assumptions of the previous theorem, with probability greater than 1� �,

P
⇣
8x 2 X , 8t � 1 : f(x) 2 Ct�1(k̂;x)

⌘
� 1� �.

This theorem implies, with probability greater than 1� �

|µt�1(k
⇤;x)� f(x)|  �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘

As more meta-data is provided, i.e., as m and n grow, ✏(n,m) vanishes
and d̂ ! d

⇤, the dimension of k⇤.
With oracle knowledge of k⇤,

|µt�1(k
⇤;x)� f(x)|  �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘
.

The meta-learned confidence bounds approach the oracle bounds,
as amounts of offline data grows.

Meta-Learning Hypothesis Spaces

i.e., exists dj < 1 where kj(x,x0) = �T (x)�(x0) and � 2 Rdj .

i.e., the sparsity patterns match with high probability.

Construct the confidence sets (see Equation 1)

Ct�1(k̂;x) = [µt�1(k̂;x)± ⌫t�t�1(k̂;x)]

⌫t = B

⇣
1 + ✏(n,m)

⌘
+ �

q
d̂ log (1 + �̄�2t) + 2 + 2 log(1/�)

For calculating µt�1 and �t�1, set �̄ = 1 + 2/t.

where d̂ is the dimension of k̂.

i.e., exists d̂ < 1 where k̂(x,x0) = �T (x)�(x0) where � 2 Rd̂

Theorem D.1 (Confidence Bounds with META-KEL). Let f 2 Hk⇤ with kfkk⇤  B, where k
⇤ is unknown. Under the

assumptions of the previous theorem, with probability greater than 1� �,

P
⇣
8x 2 X , 8t � 1 : f(x) 2 Ct�1(k̂;x)

⌘
� 1� �.

This theorem implies, with probability greater than 1� �

|µt�1(k
⇤;x)� f(x)|  �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘

As more meta-data is provided, i.e., as m and n grow, ✏(n,m) vanishes
and d̂ ! d

⇤, the dimension of k⇤.
With oracle knowledge of k⇤,

|µt�1(k
⇤;x)� f(x)|  �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘
.

The meta-learned confidence bounds approach the oracle bounds,
as amounts of offline data grows.

Meta-Loss

Theorem (Confidence Bounds with Meta-KeL)

Let f 2 Hk⇤ with kf kk⇤  B , where k
⇤
is unknown.

Under the assumptions of the previous theorem, with probability

greater than 1� �,

P
⇣
8x 2 X , 8t � 1 : f (x) 2 Ct�1(k̂ ; x)

⌘
� 1� �.

Meta-Learning Hypothesis Spaces

i.e., exists dj < 1 where kj(x,x0) = �T (x)�(x0) and � 2 Rdj .

i.e., the sparsity patterns match with high probability.

Construct the confidence sets (see Equation 1)

Ct�1(k̂;x) = [µt�1(k̂;x)± ⌫t�t�1(k̂;x)]

⌫t = B

⇣
1 + ✏(n,m)

⌘
+ �

q
d̂ log (1 + �̄�2t) + 2 + 2 log(1/�)

For calculating µt�1 and �t�1, set �̄ = 1 + 2/t.

where d̂ is the dimension of k̂.

i.e., exists d̂ < 1 where k̂(x,x0) = �T (x)�(x0) where � 2 Rd̂

Theorem D.1 (Confidence Bounds with META-KEL). Let f 2 Hk⇤ with kfkk⇤  B, where k
⇤ is unknown. Under the

assumptions of the previous theorem, with probability greater than 1� �,

P
⇣
8x 2 X , 8t � 1 : f(x) 2 Ct�1(k̂;x)

⌘
� 1� �.

This theorem implies, with probability greater than 1� �

|µt�1(k
⇤;x)� f(x)|  �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘

As more meta-data is provided, i.e., as m and n grow, ✏(n,m) vanishes
and d̂ ! d

⇤, the dimension of k⇤.
With oracle knowledge of k⇤,

|µt�1(k
⇤;x)� f(x)|  �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘
.

The meta-learned confidence bounds approach the oracle bounds,
as amounts of offline data grows.

Meta-Learning Hypothesis Spaces

i.e., exists dj < 1 where kj(x,x0) = �T (x)�(x0) and � 2 Rdj .

i.e., the sparsity patterns match with high probability.

Construct the confidence sets (see Equation 1)

Ct�1(k̂;x) = [µt�1(k̂;x)± ⌫t�t�1(k̂;x)]

⌫t = B

⇣
1 + ✏(n,m)

⌘
+ �

q
d̂ log (1 + �̄�2t) + 2 + 2 log(1/�)

For calculating µt�1 and �t�1, set �̄ = 1 + 2/t.

where d̂ is the dimension of k̂.

i.e., exists d̂ < 1 where k̂(x,x0) = �T (x)�(x0) where � 2 Rd̂

Theorem D.1 (Confidence Bounds with META-KEL). Let f 2 Hk⇤ with kfkk⇤  B, where k
⇤ is unknown. Under the

assumptions of the previous theorem, with probability greater than 1� �,

P
⇣
8x 2 X , 8t � 1 : f(x) 2 Ct�1(k̂;x)

⌘
� 1� �.

This theorem implies, with probability greater than 1� �

|µt�1(k
⇤;x)� f(x)|  �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘

As more meta-data is provided, i.e., as m and n grow, ✏(n,m) vanishes
and d̂ ! d

⇤, the dimension of k⇤.
With oracle knowledge of k⇤,

|µt�1(k
⇤;x)� f(x)|  �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘
.

The meta-learned confidence bounds approach the oracle bounds,
as amounts of offline data grows.

Meta-Learning Hypothesis Spaces

i.e., exists dj < 1 where kj(x,x0) = �T (x)�(x0) and � 2 Rdj .

i.e., the sparsity patterns match with high probability.

Construct the confidence sets (see Equation 1)

Ct�1(k̂;x) = [µt�1(k̂;x)± ⌫t�t�1(k̂;x)]

⌫t = B

⇣
1 + ✏(n,m)

⌘
+ �

q
d̂ log (1 + �̄�2t) + 2 + 2 log(1/�)

For calculating µt�1 and �t�1, set �̄ = 1 + 2/t.

where d̂ is the dimension of k̂.

i.e., exists d̂ < 1 where k̂(x,x0) = �T (x)�(x0) where � 2 Rd̂

Theorem D.1 (Confidence Bounds with META-KEL). Let f 2 Hk⇤ with kfkk⇤  B, where k
⇤ is unknown. Under the

assumptions of the previous theorem, with probability greater than 1� �,

P
⇣
8x 2 X , 8t � 1 : f(x) 2 Ct�1(k̂;x)

⌘
� 1� �.

This theorem implies, with probability greater than 1� �

|µt�1(k̂;x)� f(x)|  �t�1(k̂;x)
⇣
B +B✏(n,m) + �

q
d̂ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘

As more meta-data is provided, i.e., as m and n grow, ✏(n,m) vanishes
and d̂ ! d

⇤, the dimension of k⇤.
With oracle knowledge of k⇤,

|µt�1(k
⇤;x)� f(x)|  �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘
.

The meta-learned confidence bounds approach the oracle bounds,
as amounts of offline data grows.

Meta-Learning Hypothesis Spaces

i.e., exists dj < 1 where kj(x,x0) = �T (x)�(x0) and � 2 Rdj .

i.e., the sparsity patterns match with high probability.

Construct the confidence sets (see Equation 1)

Ct�1(k̂;x) = [µt�1(k̂;x)± ⌫t�t�1(k̂;x)]

⌫t = B

⇣
1 + ✏(n,m)

⌘
+ �

q
d̂ log (1 + �̄�2t) + 2 + 2 log(1/�)

For calculating µt�1 and �t�1, set �̄ = 1 + 2/t.

where d̂ is the dimension of k̂.

i.e., exists d̂ < 1 where k̂(x,x0) = �T (x)�(x0) where � 2 Rd̂

Theorem D.1 (Confidence Bounds with META-KEL). Let f 2 Hk⇤ with kfkk⇤  B, where k
⇤ is unknown. Under the

assumptions of the previous theorem, with probability greater than 1� �,

P
⇣
8x 2 X , 8t � 1 : f(x) 2 Ct�1(k̂;x)

⌘
� 1� �.

This theorem implies, with probability greater than 1� �

|µt�1(k
⇤;x)� f(x)|  �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘

As more meta-data is provided, i.e., as m and n grow, ✏(n,m) vanishes
and d̂ ! d

⇤, the dimension of k⇤.
With oracle knowledge of k⇤,

|µt�1(k
⇤;x)� f(x)|  �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘
.

The meta-learned confidence bounds approach the oracle bounds,
as amounts of offline data grows.

Meta-Learning Hypothesis Spaces

i.e., exists dj < 1 where kj(x,x0) = �T (x)�(x0) and � 2 Rdj .

i.e., the sparsity patterns match with high probability.

Construct the confidence sets (see Equation 1)

Ct�1(k̂;x) = [µt�1(k̂;x)± ⌫t�t�1(k̂;x)]

⌫t = B

⇣
1 + ✏(n,m)

⌘
+ �

q
d̂ log (1 + �̄�2t) + 2 + 2 log(1/�)

For calculating µt�1 and �t�1, set �̄ = 1 + 2/t.

where d̂ is the dimension of k̂.

i.e., exists d̂ < 1 where k̂(x,x0) = �T (x)�(x0) where � 2 Rd̂

Theorem D.1 (Confidence Bounds with META-KEL). Let f 2 Hk⇤ with kfkk⇤  B, where k
⇤ is unknown. Under the

assumptions of the previous theorem, with probability greater than 1� �,

P
⇣
8x 2 X , 8t � 1 : f(x) 2 Ct�1(k̂;x)

⌘
� 1� �.

This theorem implies, with probability greater than 1� �

|µt�1(k̂;x)� f(x)|  �t�1(k̂;x)
⇣
B +B✏(n,m) + �

q
d̂ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘

As more meta-data is provided, i.e., as m and n grow,
✏(n,m) vanishes and d̂ ! d

⇤, the dimension of k⇤.

With oracle knowledge of k⇤,

|µt�1(k
⇤;x)� f(x)|  �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘
.

The meta-learned confidence bounds approach the oracle bounds,
as amounts of offline data grows.

We let k
⇤(x, x0) = 1

5

P
j2J⇤ Pj(x)Pj(x0), where Pj is a degree-j Legendre

polynomial and J
⇤ is a random subset of size 5 from {1, · · · , 20}. Using this kernel,

we generate a random meta-data set of size m = n = 50. On a test task, with a fresh
new function f

⇤, we assess the confidence sets at t = 4.
Empirical width of the confidence band.

Empirical coverage of the confidence band
vs. the true 1� �

Both quantities are averages over a sample of size 1000 from X .
Error bars show standard error for 50 runs of the problem.

1� �

Meta-Learning Hypothesis Spaces

i.e., exists dj < 1 where kj(x,x0) = �T (x)�(x0) and � 2 Rdj .

i.e., the sparsity patterns match with high probability.

Construct the confidence sets (see Equation 1)

Ct�1(k̂;x) = [µt�1(k̂;x)± ⌫t�t�1(k̂;x)]

⌫t = B

⇣
1 + ✏(n,m)

⌘
+ �

q
d̂ log (1 + �̄�2t) + 2 + 2 log(1/�)

For calculating µt�1 and �t�1, set �̄ = 1 + 2/t.

where d̂ is the dimension of k̂.

i.e., exists d̂ < 1 where k̂(x,x0) = �T (x)�(x0) where � 2 Rd̂

Theorem D.1 (Confidence Bounds with META-KEL). Let f 2 Hk⇤ with kfkk⇤  B, where k
⇤ is unknown. Under the

assumptions of the previous theorem, with probability greater than 1� �,

P
⇣
8x 2 X , 8t � 1 : f(x) 2 Ct�1(k̂;x)

⌘
� 1� �.

This theorem implies, with probability greater than 1� �

|µt�1(k̂;x)� f(x)|  �t�1(k̂;x)
⇣
B +B✏(n,m) + �

q
d̂ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘

As more meta-data is provided, i.e., as m and n grow,
✏(n,m) vanishes and d̂ ! d

⇤, the dimension of k⇤.

With oracle knowledge of k⇤,

|µt�1(k
⇤;x)� f(x)|  �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘
.

The meta-learned confidence bounds approach the oracle bounds,
as amounts of offline data grows.

We let k⇤(x, x0) = 1
5

P
j2J⇤ Pj(x)Pj(x0), where Pj is a degree-j Leg-

endre polynomial and J
⇤ is a random subset of size 5 from {1, · · · , 20}.

Using this kernel, we generate a random meta-data set of size m = n = 50.
On a test task, with a fresh new function f

⇤, we assess the confidence sets
at t = 4. We check 1) if the sets are valid and 2) if they are tight.

Empirical width of the confidence band.

Empirical coverage of the confidence band
vs. the true 1� �

Both quantities are averages over a sample of size 1000 from X .
Error bars show standard error for 50 runs of the problem.

1� �

Meta-Learning Hypothesis Spaces

i.e., exists dj < 1 where kj(x,x0) = �T (x)�(x0) and � 2 Rdj .

i.e., the sparsity patterns match with high probability.

Construct the confidence sets (see Equation 1)

Ct�1(k̂;x) = [µt�1(k̂;x)± ⌫t�t�1(k̂;x)]

⌫t = B

⇣
1 + ✏(n,m)

⌘
+ �

q
d̂ log (1 + �̄�2t) + 2 + 2 log(1/�)

For calculating µt�1 and �t�1, set �̄ = 1 + 2/t.

where d̂ is the dimension of k̂.

i.e., exists d̂ < 1 where k̂(x,x0) = �T (x)�(x0) where � 2 Rd̂

Theorem D.1 (Confidence Bounds with META-KEL). Let f 2 Hk⇤ with kfkk⇤  B, where k
⇤ is unknown. Under the

assumptions of the previous theorem, with probability greater than 1� �,

P
⇣
8x 2 X , 8t � 1 : f(x) 2 Ct�1(k̂;x)

⌘
� 1� �.

This theorem implies, with probability greater than 1� �

|µt�1(k̂;x)� f(x)|  �t�1(k̂;x)
⇣
B +B✏(n,m) + �

q
d̂ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘

As more meta-data is provided, i.e., as m and n grow,
✏(n,m) vanishes and d̂ ! d

⇤, the dimension of k⇤.

With oracle knowledge of k⇤,

|µt�1(k
⇤;x)� f(x)|  �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘
.

The meta-learned confidence bounds approach the oracle bounds,
as amounts of offline data grows.

We let k⇤(x, x0) = 1
5

P
j2J⇤ Pj(x)Pj(x0), where Pj is a degree-j Leg-

endre polynomial and J
⇤ is a random subset of size 5 from {1, · · · , 20}.

Using this kernel, we generate a random meta-data set of size m = n = 50.
On a test task, with a fresh new function f

⇤, we assess the confidence sets
at t = 4. We check 1) if the sets are valid and 2) if they are tight.

Empirical width of the confidence band.

Empirical coverage of the confidence band
vs. the true 1� �

Both quantities are averages over a sample of size 1000 from X .
Error bars show standard error for 50 runs of the problem.

If applied to Bandit optimization, the sets imply a sublinear regret guaran-
tee for the GP-UCB algorithm using k̂. This regret bound approaches that
of the oracle algorithm.

Sequential decision-making describes a class of problems where a learner
sequentially interacts with an unknown stochastic environment, with the
goal of maximizing a reward.

Obtaining reliable confidence sequences for unknown target functions is
a central challenge in sequential decision-making tasks, e.g., Bayesian
Optimization and model-based RL.

Meta-Learning Hypothesis Spaces

i.e., exists dj < 1 where kj(x,x0) = �T (x)�(x0) and � 2 Rdj .

i.e., the sparsity patterns match with high probability.

Construct the confidence sets (see Equation 1)

Ct�1(k̂;x) = [µt�1(k̂;x)± ⌫t�t�1(k̂;x)]

⌫t = B

⇣
1 + ✏(n,m)

⌘
+ �

q
d̂ log (1 + �̄�2t) + 2 + 2 log(1/�)

For calculating µt�1 and �t�1, set �̄ = 1 + 2/t.

where d̂ is the dimension of k̂.

i.e., exists d̂ < 1 where k̂(x,x0) = �T (x)�(x0) where � 2 Rd̂

Theorem D.1 (Confidence Bounds with META-KEL). Let f 2 Hk⇤ with kfkk⇤  B, where k
⇤ is unknown. Under the

assumptions of the previous theorem, with probability greater than 1� �,

P
⇣
8x 2 X , 8t � 1 : f(x) 2 Ct�1(k̂;x)

⌘
� 1� �.

This theorem implies, with probability greater than 1� �

|µt�1(k̂;x)� f(x)|  �t�1(k̂;x)
⇣
B +B✏(n,m) + �

q
d̂ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘

As more meta-data is provided, i.e., as m and n grow,
✏(n,m) vanishes and d̂ ! d

⇤, the dimension of k⇤.

With oracle knowledge of k⇤,

|µt�1(k
⇤;x)� f(x)|  �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘
.

The meta-learned confidence bounds approach the oracle bounds,
as amounts of offline data grows.

We let k⇤(x, x0) = 1
5

P
j2J⇤ Pj(x)Pj(x0), where Pj is a degree-j Leg-

endre polynomial and J
⇤ is a random subset of size 5 from {1, · · · , 20}.

Using this kernel, we generate a random meta-data set of size m = n = 50.
On a test task, with a fresh new function f

⇤, we assess the confidence sets
at t = 4. We check 1) if the sets are valid and 2) if they are tight.

Empirical width of the confidence band.

Empirical coverage of the confidence band
vs. the true 1� �

Both quantities are averages over a sample of size 1000 from X .
Error bars show standard error for 50 runs of the problem.

If applied to Bandit optimization, the sets imply a sublinear regret guaran-
tee for the GP-UCB algorithm using k̂. This regret bound approaches that
of the oracle algorithm.

Sequential decision-making describes a class of problems where a learner
sequentially interacts with an unknown stochastic environment, with the
goal of maximizing a reward.

Obtaining reliable confidence sequences for unknown target functions is
a central challenge in sequential decision-making tasks, e.g., Bayesian
Optimization and model-based RL.

Meta-Learning Hypothesis Spaces

i.e., exists dj < 1 where kj(x,x0) = �T (x)�(x0) and � 2 Rdj .

i.e., the sparsity patterns match with high probability.

Construct the confidence sets (see Equation 1)

Ct�1(k̂;x) = [µt�1(k̂;x)± ⌫t�t�1(k̂;x)]

⌫t = B

⇣
1 + ✏(n,m)

⌘
+ �

q
d̂ log (1 + �̄�2t) + 2 + 2 log(1/�)

For calculating µt�1 and �t�1, set �̄ = 1 + 2/t.

where d̂ is the dimension of k̂.

i.e., exists d̂ < 1 where k̂(x,x0) = �T (x)�(x0) where � 2 Rd̂

Theorem D.1 (Confidence Bounds with META-KEL). Let f 2 Hk⇤ with kfkk⇤  B, where k
⇤ is unknown. Under the

assumptions of the previous theorem, with probability greater than 1� �,

P
⇣
8x 2 X , 8t � 1 : f(x) 2 Ct�1(k̂;x)

⌘
� 1� �.

This theorem implies, with probability greater than 1� �

|µt�1(k̂;x)� f(x)|  �t�1(k̂;x)
⇣
B +B✏(n,m) + �

q
d̂ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘

As more meta-data is provided, i.e., as m and n grow, ✏(n,m) vanishes
and d̂ ! d

⇤, the dimension of k⇤.
With oracle knowledge of k⇤,

|µt�1(k
⇤;x)� f(x)|  �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘
.

The meta-learned confidence bounds approach the oracle bounds,
as amounts of offline data grows.

We let k
⇤(x, x0) = 1

5

P
j2J⇤ Pj(x)Pj(x0), where Pj is a degree-j Legendre

polynomial and J
⇤ is a random subset of size 5 from {1, · · · , 20}. Using this kernel,

we generate a random meta-data set of size m = n = 50. On a test task, with a fresh
new function f

⇤, we assess the confidence sets at t = 4.
Empirical width of the confidence band.

Empirical coverage of the confidence band
vs. the true 1� �.
Both quantities are averages over a sample of size 1000 from X .
Error bars show standard error for 50 runs of the problem.

1� �

M
et

a-
Le

ar
ni

ng
H

yp
ot

he
sis

Sp
ac

es

i.e
.,

ex
is

ts
d
j
<

1
w

he
re

k
j
(x

,
x
0)
=

�
T
(x

)�
(x

0)
an

d
�
2
R

d
j
.

i.e
.,

th
e

sp
ar

si
ty

pa
tte

rn
sm

at
ch

w
ith

hi
gh

pr
ob

ab
ili

ty
.

C
on

st
ru

ct
th

e
co

nfi
de

nc
e

se
ts

(s
ee

Eq
ua

tio
n

1)

C t
�
1
(k̂
;x

)
=

[µ
t�

1
(k̂
;x

)
±

⌫
t�

t�
1
(k̂
;x

)]

⌫
t
=

B

⇣ 1
+

✏
(n
,
m
)⌘

+
�

q
d̂
lo
g
(1

+
�̄
�
2
t
)
+
2
+
2
lo
g(
1/

�
)

Fo
rc

al
cu

la
tin

g
µ
t�

1
an

d
�
t�

1
,s

et
�̄
=

1
+
2/

t
.

w
he

re
d̂

is
th

e
di

m
en

si
on

of
k̂

.

i.e
.,

ex
is

ts
d̂
<

1
w

he
re

k̂
(x

,
x
0)
=

�
T
(x

)�
(x

0)
w

he
re

�
2
R

d̂

Th
eo

re
m

D
.1

(C
on

fid
en

ce
B

ou
nd

s
w

ith
M

E
TA

-K
E

L
).

Le
tf

2
H

k
⇤

w
ith

kf
k k

⇤


B
,w

he
re

k
⇤

is
un

kn
ow

n.
U

nd
er

th
e

as
su

m
pt

io
ns

of
th

e
pr

ev
io

us
th

eo
re

m
,w

ith
pr

ob
ab

ili
ty

gr
ea

te
r

th
an

1
�

�
,

P
⇣ 8x

2
X
,
8t

�
1
:
f
(x

)
2
C t

�
1
(k̂
;x

)⌘
�

1
�

�
.

Th
is

th
eo

re
m

im
pl

ie
s,

w
ith

pr
ob

ab
ili

ty
gr

ea
te

rt
ha

n
1
�

�

|µ
t�

1
(k̂
;x

)
�

f
(x

)|


�
t�

1
(k̂
;x

)⇣ B
+

B
✏
(n
,
m
)
+

�

q
d̂
lo
g
� 1

+
�̄
�
2
t
� +

2
+

2
lo
g(
1/

�
))
⌘

A
sm

or
e

m
et

a-
da

ta
is

pr
ov

id
ed

,i
.e

.,
as

m
an

d
n

gr
ow

,✏
(n
,
m
)

va
ni

sh
es

an
d
d̂
!

d
⇤ ,

th
e

di
m

en
si

on
of

k
⇤ .

W
ith

or
ac

le
kn

ow
le

dg
e

of
k
⇤ ,

|µ
t�

1
(k

⇤ ;
x
)
�
f
(x

)|


�
t�

1
(k

⇤ ;
x
)⇣ B

+
�

q
d
⇤
lo
g
� 1

+
�̄
�
2
t
� +

2
+

2
lo
g(
1/

�
))
⌘ .

Th
e

m
et

a-
le

ar
ne

d
co

nfi
de

nc
e

bo
un

ds
ap

pr
oa

ch
th

e
or

ac
le

bo
un

ds
,

as
am

ou
nt

so
fo

ffl
in

e
da

ta
gr

ow
s.

W
e

le
t
k
⇤ (
x
,
x
0)

=
1 5

P
j2

J
⇤
P
j
(x
)P

j
(x

0)
,

w
he

re
P
j

is
a

de
gr

ee
-j

Le
ge

nd
re

po
ly

no
m

ia
la

nd
J
⇤

is
a

ra
nd

om
su

bs
et

of
si

ze
5

fr
om

{1
,
··
·,

20
}.

U
si

ng
th

is
ke

rn
el

,
w

e
ge

ne
ra

te
a

ra
nd

om
m

et
a-

da
ta

se
to

fs
iz

e
m

=
n
=

50
.O

n
a

te
st

ta
sk

,w
ith

a
fr

es
h

ne
w

fu
nc

tio
n
f
⇤ ,

w
e

as
se

ss
th

e
co

nfi
de

nc
e

se
ts

at
t
=

4.
Em

pi
ric

al
w

id
th

of
th

e
co

nfi
de

nc
e

ba
nd

.

Em
pi

ric
al

co
ve

ra
ge

of
th

e
co

nfi
de

nc
e

ba
nd

vs
.t

he
tru

e
1
�
�
.

B
ot

h
qu

an
tit

ie
sa

re
av

er
ag

es
ov

er
a

sa
m

pl
e

of
si

ze
10

00
fr

om
X

.
Er

ro
rb

ar
ss

ho
w

st
an

da
rd

er
ro

rf
or

50
ru

ns
of

th
e

pr
ob

le
m

.

1
�

�

M
et

a-
Le

ar
ni

ng
H

yp
ot

he
sis

Sp
ac

es

i.e
.,

ex
is

ts
d
j
<

1
w

he
re

k
j
(x

,
x
0)
=

�
T
(x

)�
(x

0)
an

d
�
2
R

d
j
.

i.e
.,

th
e

sp
ar

si
ty

pa
tte

rn
s

m
at

ch
w

ith
hi

gh
pr

ob
ab

ili
ty

.

C
on

st
ru

ct
th

e
co

nfi
de

nc
e

se
ts

(s
ee

Eq
ua

tio
n

1)

C t
�
1
(k̂
;x

)
=

[µ
t�

1
(k̂
;x

)
±

⌫
t�

t�
1
(k̂
;x

)]

⌫
t
=

B

⇣ 1
+

✏
(n
,
m
)⌘

+
�

q
d̂
lo
g
(1

+
�̄
�
2
t
)
+
2
+
2
lo
g(
1/

�
)

Fo
rc

al
cu

la
tin

g
µ
t�

1
an

d
�
t�

1
,s

et
�̄
=

1
+
2/

t
.

w
he

re
d̂

is
th

e
di

m
en

si
on

of
k̂

.

i.e
.,

ex
is

ts
d̂
<

1
w

he
re

k̂
(x

,
x
0)
=

�
T
(x

)�
(x

0)
w

he
re

�
2
R

d̂

T
he

or
em

D
.1

(C
on

fid
en

ce
B

ou
nd

s
w

ith
M

E
TA

-K
E

L
).

Le
tf

2
H

k
⇤

w
ith

kf
k k

⇤


B
,w

he
re

k
⇤

is
un

kn
ow

n.
U

nd
er

th
e

as
su

m
pt

io
ns

of
th

e
pr

ev
io

us
th

eo
re

m
,w

ith
pr

ob
ab

ili
ty

gr
ea

te
r

th
an

1
�

�
,

P
⇣ 8x

2
X
,
8t

�
1
:
f
(x

)
2
C t

�
1
(k̂
;x

)⌘
�

1
�

�
.

Th
is

th
eo

re
m

im
pl

ie
s,

w
ith

pr
ob

ab
ili

ty
gr

ea
te

rt
ha

n
1
�

�

|µ
t�

1
(k̂
;x

)
�

f
(x

)|


�
t�

1
(k̂
;x

)⇣ B
+

B
✏
(n
,
m
)
+

�

q
d̂
lo
g
� 1

+
�̄
�
2
t
� +

2
+

2
lo
g(
1/

�
))
⌘

A
s

m
or

e
m

et
a-

da
ta

is
pr

ov
id

ed
,i

.e
.,

as
m

an
d
n

gr
ow

,✏
(n
,
m
)

va
ni

sh
es

an
d
d̂
!

d
⇤ ,

th
e

di
m

en
si

on
of

k
⇤ .

W
ith

or
ac

le
kn

ow
le

dg
e

of
k
⇤ ,

|µ
t�

1
(k

⇤ ;
x
)
�
f
(x

)|


�
t�

1
(k

⇤ ;
x
)⇣ B

+
�

q
d
⇤
lo
g
� 1

+
�̄
�
2
t
� +

2
+

2
lo
g(
1/

�
))
⌘ .

Th
e

m
et

a-
le

ar
ne

d
co

nfi
de

nc
e

bo
un

ds
ap

pr
oa

ch
th

e
or

ac
le

bo
un

ds
,

as
am

ou
nt

s
of

of
fli

ne
da

ta
gr

ow
s.

W
e

le
t
k
⇤ (
x
,
x
0)

=
1 5

P
j
2
J

⇤
P
j
(x
)P

j
(x

0)
,

w
he

re
P
j

is
a

de
gr

ee
-j

Le
ge

nd
re

po
ly

no
m

ia
la

nd
J
⇤

is
a

ra
nd

om
su

bs
et

of
si

ze
5

fr
om

{1
,
··
·,

20
}.

U
si

ng
th

is
ke

rn
el

,
w

e
ge

ne
ra

te
a

ra
nd

om
m

et
a-

da
ta

se
to

fs
iz

e
m

=
n
=

50
.O

n
a

te
st

ta
sk

,w
ith

a
fr

es
h

ne
w

fu
nc

tio
n
f
⇤ ,

w
e

as
se

ss
th

e
co

nfi
de

nc
e

se
ts

at
t
=

4.
Em

pi
ric

al
w

id
th

of
th

e
co

nfi
de

nc
e

ba
nd

.

Em
pi

ric
al

co
ve

ra
ge

of
th

e
co

nfi
de

nc
e

ba
nd

vs
.t

he
tru

e
1
�

�

B
ot

h
qu

an
tit

ie
s

ar
e

av
er

ag
es

ov
er

a
sa

m
pl

e
of

si
ze

10
00

fr
om

X
.

Er
ro

rb
ar

s
sh

ow
st

an
da

rd
er

ro
rf

or
50

ru
ns

of
th

e
pr

ob
le

m
.

1
�

�

Meta-Learning Hypothesis Spaces

i.e., exists dj < 1 where kj(x,x0) = �T (x)�(x0) and � 2 Rdj .

i.e., the sparsity patterns match with high probability.

Construct the confidence sets (see Equation 1)

Ct�1(k̂;x) = [µt�1(k̂;x)± ⌫t�t�1(k̂;x)]

⌫t = B

⇣
1 + ✏(n,m)

⌘
+ �

q
d̂ log (1 + �̄�2t) + 2 + 2 log(1/�)

For calculating µt�1 and �t�1, set �̄ = 1 + 2/t.

where d̂ is the dimension of k̂.

i.e., exists d̂ < 1 where k̂(x,x0) = �T (x)�(x0) where � 2 Rd̂

Theorem D.1 (Confidence Bounds with META-KEL). Let f 2 Hk⇤ with kfkk⇤  B, where k
⇤ is unknown. Under the

assumptions of the previous theorem, with probability greater than 1� �,

P
⇣
8x 2 X , 8t � 1 : f(x) 2 Ct�1(k̂;x)

⌘
� 1� �.

This theorem implies, with probability greater than 1� �

|µt�1(k̂;x)� f(x)|  �t�1(k̂;x)
⇣
B +B✏(n,m) + �

q
d̂ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘

As more meta-data is provided, i.e., as m and n grow,
✏(n,m) vanishes and d̂ ! d

⇤, the dimension of k⇤.

With oracle knowledge of k⇤,

|µt�1(k
⇤;x)� f(x)|  �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘
.

The meta-learned confidence bounds approach the oracle bounds,
as amounts of offline data grows.

We let k⇤(x, x0) = 1
5

P
j2J⇤ Pj(x)Pj(x0), where Pj is a degree-j Leg-

endre polynomial and J
⇤ is a random subset of size 5 from {1, · · · , 20}.

Using this kernel, we generate a random meta-data set of size m = n = 50.
On a test task, with a fresh new function f

⇤, we assess the confidence sets
at t = 4. We check 1) if the sets are valid and 2) if they are tight.

Empirical width of the confidence band.

Empirical coverage of the confidence band
vs. the true 1� �

Both quantities are averages over a sample
of size 1000 from X . Error bars show stan-
dard error for 50 runs of the problem.

If applied to Bandit optimization, the sets imply a sublinear regret guaran-
tee for the GP-UCB algorithm using k̂. This regret bound approaches that
of the oracle algorithm.

Sequential decision-making describes a class of problems where a learner
sequentially interacts with an unknown stochastic environment, with the
goal of maximizing a reward.

Obtaining reliable confidence sequences for unknown target functions is
a central challenge in sequential decision-making tasks, e.g., Bayesian
Optimization and model-based RL. Meta-Learning Hypothesis Spaces

These confidence sets are typically constructed by relying on oracle knowl-
edge of the hypothesis space, e.g., a known RKHS. This is a strong as-
sumption.

We propose any-time valid confidence sets that rely on a meta-learned
hypothesis space, instead of assuming oracle knowledge.

Meta-Learning Hypothesis Spaces

These confidence sets are typically constructed by relying on oracle knowl-
edge of the hypothesis space, e.g., a known RKHS. This is a strong as-
sumption.

We propose any-time valid confidence sets that rely on a meta-learned
hypothesis space, instead of assuming oracle knowledge.

(True) kernel has sparse additive structure

[this holds for all Mercer kernels]

Data from similar tasks Pool of candidate kernels / features

Meta-KeL

Shrinks hypothesis space by eliminating kernels / features
that are w.h.p. not active in the meta-training tasks

Can be reduced to a
group lasso problem!

Properties of the meta-learned kernel

5

Hk⇤
Hk̂

Hkfull

Properties of the meta-learned kernel

5

Hk⇤
Hk̂

Hkfull

+ The meta-learned confidence bounds approach the
oracle bounds as the amount of meta-training data grows

Application: Bayesian Optimization

6

Goal

Meta-Learning Hypothesis Spaces for Sequential Decision-making

Parnian Kassraie 1 Jonas Rothfuss 1 Andreas Krause 1

Abstract
Obtaining reliable, adaptive confidence sets for
prediction functions (hypotheses) is a central
challenge in sequential decision-making tasks,
such as bandits and model-based reinforcement
learning. These confidence sets typically rely on
prior assumptions on the hypothesis space, e.g.,
the known kernel of a Reproducing Kernel Hilbert
Space (RKHS). Hand-designing such kernels is
error prone, and misspecification may lead to
poor or unsafe performance. In this work, we
propose to meta-learn a kernel from offline data
(META-KEL). For the case where the unknown
kernel is a combination of known base kernels,
we develop an estimator based on structured
sparsity. Under mild conditions, we guarantee
that our estimated RKHS yields valid confidence
sets that, with increasing amounts of offline
data, become as tight as those given the true
unknown kernel. We demonstrate our approach
on the kernelized bandit problem (a.k.a. Bayesian
optimization), where we establish regret bounds
competitive with those given the true kernel. We
also empirically evaluate the effectiveness of our
approach on a Bayesian optimization task.

1. Introduction
A number of well-studied machine learning problems such
as bandits, Bayesian optimization (BO) and model-based
reinforcement learning are characterized by an agent that
sequentially interacts with an unknown, responsive system.
Throughout the interaction, the agent’s goal is to maximize
the cumulative reward based on an unknown underlying
function f . Common to such sequential decision-making
problems is an exploration-exploitation trade-off. That is,
the agent needs to optimize its reward while, at the same
time, learns more about the unknown function f . Confi-
dence sets capture and quantify the uncertainty of the learner
about f . Thus, they are an integral tool for directing explo-

1ETH Zurich, Switzerland. Correspondence to: Parnian Kass-
raie <pkassraie@ethz.ch>.

Preprint.

Figure 1: Overview of the described framework with k
⇤ as

the true kernel function and k̂ as the solution to META-KEL.

ration towards areas of high uncertainty and balancing it
against exploitation. Moreover, in safety-critical applica-
tions, confidence sets are used to reason about the safety of
actions. Thus, they are central to efficiency and safety of
exploration. In theoretical analysis of sequential decision-
making algorithms, a common assumption is that f resides
in an RKHS with a known kernel function. This assumption
allows for the construction of the confidence sets.

In practice, however, the true kernel is unknown and needs
to be hand-crafted based on the problem instance. This is
a delicate task, since the hand-crafted hypothesis space has
to contain the unknown target function f . If this is not the
case, the learner may be over-confident and converge to a
sub-optimal policy, or incorrectly classify actions as safe.
At the same time, we want the chosen hypothesis space to
be as small so that the variance of the associated learner
is low and the agent converges quickly. This constitutes
a dilemma, where we need to trade off efficiency with a
potential loss in consistency.

We approach this dilemma in a data-driven manner. Many
applications of sequential decision-making, such as hyper-
parameter tuning with BO or online nonlinear control, are
of repetitive nature. Often, there is available data from
similar but not identical tasks which have been solved before.
Therefore, we propose to meta-learn the kernel function,
and thus the RKHS, from offline meta-data. Our method,
Meta-Kernel Learning (META-KEL), works with a generic
(i.e., not necessarily i.i.d.) data model and may be applied
to a variety of sequential decision-making tasks.

is the objective function of a BO problem.

Regret

Meta-Learning Hypothesis Spaces

|Jk⇤ |  s be the number candidate kernels that contribute to
k
⇤. If Assumption 4.2 holds with (s), then with probability

greater than 1 � �, the number of kernels active in k̂ is
bounded by

|Jk̂| 
4s

mn2(s)

which implies that if mn >
4s

p2(s) , then with the same
probability

Hk̂ (Hkfull .

Hence, in the presence of enough meta-data, Hk̂ is a strict
subset of Hkfull , and therefore

Hk⇤
w.h.p.
✓ Hk̂

w.h.p.
(Hkfull

where the left relation is due to Theorem 4.3. Figure 2 illus-
trates the nested sets. We conclude that our meta-learned
hypothesis space has favorable properties: it contains the
true hypothesis space, and it is sparse in structure, in partic-
ular, smaller than the conservative candidate space.

The fact that Hk̂ is smaller than Hkfull reduces the complex-
ity of the downstream learning problem and yields faster
convergence rates. We provide an example of this effect
in Section 5, where we analyze a Bayesian optimization
problem, and establish how choosing k̂ improves upon kfull.
Finally, our experiments (e.g. Figure 4) support the claim
that in practice the BO algorithm is faster in finding the
optimum when it uses the meta-learned kernel.

Figure 2: The oracle Hk⇤ (Eq. 5), the meta-learned Hk̂
(Eq. 9) and the hand-picked Hkfull (Eq. 10) hypothesis
spaces (informal)

5. Sequential Decision-making with
META-KEL

We now analyze the effect of using k̂ as kernel function in
the downstream sequential decision-making problem. We
adopt the common construction of confidence sets given
in Equation (2), and define Ĉt�1(x) := Ct�1(k̂;x). We
let µ̂t�1(x) := µt�1(k̂;x), and �̂t�1(x) := �t�1(k̂;x),
where µt�1(k;x) and �t�1(k;x) are as defined in Equa-
tion (3) with �̄ = 1 + 2/T .3

3The functions µ̂t�1 and �̂t�1 are the posterior mean and vari-
ance of GP(0, k̂), conditioned on Ht�1, with noise variance �̄

2.

Theorem 5.1 shows that for the right choice of ⌫t, the set
Ĉt�1(x) is a valid confidence bound for any f 2 Hk⇤ ,
evaluated at any x 2 X , at any step t, with high probability.
Theorem 5.1 (Confidence Bounds with META-KEL). Let
f 2 Hk⇤ with kfkk⇤  B, where k

⇤ is unknown. Under
the assumptions of Theorem 4.3, with probability greater
than 1� �, for all x 2 X and 1  t  T ,

|µ̂t�1(x)�f(x)|  ⌫t�̂t�1(x)

B

✓
1 +

✏(n,m)

2c1

◆

+ �

s

d̂ log

✓
1 +

�̄�2t

c1

◆
+ 2 + 2 log(1/�)

!

where d̂ =
P

j2Jk̂
dj .

The proof is given in Appendix C. As discussed in Section 4,
the ✏(n,m)/2c1 term shrinks faster than O(1/

p
mn) and

d̂ approaches d⇤ =
P

j2Jk⇤ dj at a similar rate. Therefore,
Theorem 5.1 presents a tight confidence bound relative to
the case when k

⇤ is known by the agent. In this case, due
to Chowdhury & Gopalan (2017), Theorem 2, the 1 � �

confidence bound would be,

|µt�1(x)�f(x)|  �t�1(x)
⇣
B+

�

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘
.

where the mean and variance functions are defined by
µt�1(x) := µt�1(k⇤;x) and �t�1(x) := �t�1(k⇤;x) with
�̄ = 1 + 2/T . We conclude that the base learner does not
require knowledge of the true kernel for constructing confi-
dence sets, as long as there is sufficient meta-data available.
Theorem 4.3 quantifies this notion of sufficiency.

Case Study: Bayesian Optimization As an example ap-
plication, we consider the classic Bayesian optimization
problem, but in the case where Hk⇤ is unknown. This ex-
ample illustrates how Theorem 5.1 may be used to prove
guarantees for a decision-making algorithm, which uses the
meta-learned kernel due to a lack of knowledge of k⇤. We
follow the setup and BO notation of Srinivas et al. (2009).
The agent seeks to maximize an unknown reward function
f , sequentially accessed as described in Equation (1). Their
goal is to choose actions xt which maximize the cumulative
reward achieved over T time steps. This is equivalent to min-
imizing the cumulative regret RT =

PT
t=1[f(x

⇤)� f(xt)],
where x⇤ is a global maximum of f . Note that if RT /T ! 0
as T ! 1 then max1tT f(xt) ! f(x⇤), i.e., the
learner converges to the optimal value. We will refer to
this property as sublinearity of the regret. In the spirit of
the GP-UCB algorithm (Srinivas et al., 2009), we choose
the next point by maximizing the upper confidence bound
as determined by Theorem 5.1

xt = argmax
x2X

µ̂t�1(x) + ⌫t�̂t�1(x) (11)

Application: Bayesian Optimization

6

GP-UCB Policy: [GP-UCB, Srinivas et al.]

Goal

Meta-Learning Hypothesis Spaces for Sequential Decision-making

Parnian Kassraie 1 Jonas Rothfuss 1 Andreas Krause 1

Abstract
Obtaining reliable, adaptive confidence sets for
prediction functions (hypotheses) is a central
challenge in sequential decision-making tasks,
such as bandits and model-based reinforcement
learning. These confidence sets typically rely on
prior assumptions on the hypothesis space, e.g.,
the known kernel of a Reproducing Kernel Hilbert
Space (RKHS). Hand-designing such kernels is
error prone, and misspecification may lead to
poor or unsafe performance. In this work, we
propose to meta-learn a kernel from offline data
(META-KEL). For the case where the unknown
kernel is a combination of known base kernels,
we develop an estimator based on structured
sparsity. Under mild conditions, we guarantee
that our estimated RKHS yields valid confidence
sets that, with increasing amounts of offline
data, become as tight as those given the true
unknown kernel. We demonstrate our approach
on the kernelized bandit problem (a.k.a. Bayesian
optimization), where we establish regret bounds
competitive with those given the true kernel. We
also empirically evaluate the effectiveness of our
approach on a Bayesian optimization task.

1. Introduction
A number of well-studied machine learning problems such
as bandits, Bayesian optimization (BO) and model-based
reinforcement learning are characterized by an agent that
sequentially interacts with an unknown, responsive system.
Throughout the interaction, the agent’s goal is to maximize
the cumulative reward based on an unknown underlying
function f . Common to such sequential decision-making
problems is an exploration-exploitation trade-off. That is,
the agent needs to optimize its reward while, at the same
time, learns more about the unknown function f . Confi-
dence sets capture and quantify the uncertainty of the learner
about f . Thus, they are an integral tool for directing explo-

1ETH Zurich, Switzerland. Correspondence to: Parnian Kass-
raie <pkassraie@ethz.ch>.

Preprint.

Figure 1: Overview of the described framework with k
⇤ as

the true kernel function and k̂ as the solution to META-KEL.

ration towards areas of high uncertainty and balancing it
against exploitation. Moreover, in safety-critical applica-
tions, confidence sets are used to reason about the safety of
actions. Thus, they are central to efficiency and safety of
exploration. In theoretical analysis of sequential decision-
making algorithms, a common assumption is that f resides
in an RKHS with a known kernel function. This assumption
allows for the construction of the confidence sets.

In practice, however, the true kernel is unknown and needs
to be hand-crafted based on the problem instance. This is
a delicate task, since the hand-crafted hypothesis space has
to contain the unknown target function f . If this is not the
case, the learner may be over-confident and converge to a
sub-optimal policy, or incorrectly classify actions as safe.
At the same time, we want the chosen hypothesis space to
be as small so that the variance of the associated learner
is low and the agent converges quickly. This constitutes
a dilemma, where we need to trade off efficiency with a
potential loss in consistency.

We approach this dilemma in a data-driven manner. Many
applications of sequential decision-making, such as hyper-
parameter tuning with BO or online nonlinear control, are
of repetitive nature. Often, there is available data from
similar but not identical tasks which have been solved before.
Therefore, we propose to meta-learn the kernel function,
and thus the RKHS, from offline meta-data. Our method,
Meta-Kernel Learning (META-KEL), works with a generic
(i.e., not necessarily i.i.d.) data model and may be applied
to a variety of sequential decision-making tasks.

is the objective function of a BO problem.

Regret

Meta-Learning Hypothesis Spaces

|Jk⇤ |  s be the number candidate kernels that contribute to
k
⇤. If Assumption 4.2 holds with (s), then with probability

greater than 1 � �, the number of kernels active in k̂ is
bounded by

|Jk̂| 
4s

mn2(s)

which implies that if mn >
4s

p2(s) , then with the same
probability

Hk̂ (Hkfull .

Hence, in the presence of enough meta-data, Hk̂ is a strict
subset of Hkfull , and therefore

Hk⇤
w.h.p.
✓ Hk̂

w.h.p.
(Hkfull

where the left relation is due to Theorem 4.3. Figure 2 illus-
trates the nested sets. We conclude that our meta-learned
hypothesis space has favorable properties: it contains the
true hypothesis space, and it is sparse in structure, in partic-
ular, smaller than the conservative candidate space.

The fact that Hk̂ is smaller than Hkfull reduces the complex-
ity of the downstream learning problem and yields faster
convergence rates. We provide an example of this effect
in Section 5, where we analyze a Bayesian optimization
problem, and establish how choosing k̂ improves upon kfull.
Finally, our experiments (e.g. Figure 4) support the claim
that in practice the BO algorithm is faster in finding the
optimum when it uses the meta-learned kernel.

Figure 2: The oracle Hk⇤ (Eq. 5), the meta-learned Hk̂
(Eq. 9) and the hand-picked Hkfull (Eq. 10) hypothesis
spaces (informal)

5. Sequential Decision-making with
META-KEL

We now analyze the effect of using k̂ as kernel function in
the downstream sequential decision-making problem. We
adopt the common construction of confidence sets given
in Equation (2), and define Ĉt�1(x) := Ct�1(k̂;x). We
let µ̂t�1(x) := µt�1(k̂;x), and �̂t�1(x) := �t�1(k̂;x),
where µt�1(k;x) and �t�1(k;x) are as defined in Equa-
tion (3) with �̄ = 1 + 2/T .3

3The functions µ̂t�1 and �̂t�1 are the posterior mean and vari-
ance of GP(0, k̂), conditioned on Ht�1, with noise variance �̄

2.

Theorem 5.1 shows that for the right choice of ⌫t, the set
Ĉt�1(x) is a valid confidence bound for any f 2 Hk⇤ ,
evaluated at any x 2 X , at any step t, with high probability.
Theorem 5.1 (Confidence Bounds with META-KEL). Let
f 2 Hk⇤ with kfkk⇤  B, where k

⇤ is unknown. Under
the assumptions of Theorem 4.3, with probability greater
than 1� �, for all x 2 X and 1  t  T ,

|µ̂t�1(x)�f(x)|  ⌫t�̂t�1(x)

B

✓
1 +

✏(n,m)

2c1

◆

+ �

s

d̂ log

✓
1 +

�̄�2t

c1

◆
+ 2 + 2 log(1/�)

!

where d̂ =
P

j2Jk̂
dj .

The proof is given in Appendix C. As discussed in Section 4,
the ✏(n,m)/2c1 term shrinks faster than O(1/

p
mn) and

d̂ approaches d⇤ =
P

j2Jk⇤ dj at a similar rate. Therefore,
Theorem 5.1 presents a tight confidence bound relative to
the case when k

⇤ is known by the agent. In this case, due
to Chowdhury & Gopalan (2017), Theorem 2, the 1 � �

confidence bound would be,

|µt�1(x)�f(x)|  �t�1(x)
⇣
B+

�

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘
.

where the mean and variance functions are defined by
µt�1(x) := µt�1(k⇤;x) and �t�1(x) := �t�1(k⇤;x) with
�̄ = 1 + 2/T . We conclude that the base learner does not
require knowledge of the true kernel for constructing confi-
dence sets, as long as there is sufficient meta-data available.
Theorem 4.3 quantifies this notion of sufficiency.

Case Study: Bayesian Optimization As an example ap-
plication, we consider the classic Bayesian optimization
problem, but in the case where Hk⇤ is unknown. This ex-
ample illustrates how Theorem 5.1 may be used to prove
guarantees for a decision-making algorithm, which uses the
meta-learned kernel due to a lack of knowledge of k⇤. We
follow the setup and BO notation of Srinivas et al. (2009).
The agent seeks to maximize an unknown reward function
f , sequentially accessed as described in Equation (1). Their
goal is to choose actions xt which maximize the cumulative
reward achieved over T time steps. This is equivalent to min-
imizing the cumulative regret RT =

PT
t=1[f(x

⇤)� f(xt)],
where x⇤ is a global maximum of f . Note that if RT /T ! 0
as T ! 1 then max1tT f(xt) ! f(x⇤), i.e., the
learner converges to the optimal value. We will refer to
this property as sublinearity of the regret. In the spirit of
the GP-UCB algorithm (Srinivas et al., 2009), we choose
the next point by maximizing the upper confidence bound
as determined by Theorem 5.1

xt = argmax
x2X

µ̂t�1(x) + ⌫t�̂t�1(x) (11)

Meta-Loss

Corollary

Provided that there is enough meta-data,

– The learner achieves sublinear regret, w.h.p.

– This guarantee is tight compared to the one for the Or-

acle learner, and approaches it at a O(1/
p
mn) rate.

Meta-Learning Hypothesis Spaces for Sequential Decision-making
Parnian Kassraie, Jonas Rothfuss, Andreas Krause

Poster session:
Thu 21 Jul 6 p.m. EDT — 8:30 p.m. EDT

