Meta-Learning Hypothesis Spaces for Sequential Decision-making Parnian Kassraie, Jonas Rothfuss, Andreas Krause

Motivation: Sequential Decision-making

Sequential Decision Problems:

- Bandits / Bayesian Optimization
- Active Learning
- Model-based RL

Motivation: Sequential Decision-making

Interact with environment

Sequential Decision Problems:

- Bandits / Bayesian Optimization
- Active Learning
- Model-based RL

Repeat

Confidence sets are great for guiding explorations!

width \longleftrightarrow current uncertainty

center ←→ current knowledge

$$\mathcal{C}_{t-1}(k_2; \boldsymbol{x})$$
 Invalid

$$C_{t-1}(k^*; \boldsymbol{x})$$
 True sets (Valid)

$$C_{t-1}(k_2; \boldsymbol{x})$$
 Invalid

$$\mathcal{C}_{t-1}(k_1; \boldsymbol{x})$$
 Valid but too wide

$$C_{t-1}(k^*; \boldsymbol{x})$$
 True sets (Valid)

How can we find a good $\mathcal{H}_{\hat{k}}$?

Our approach: Meta-learning \mathcal{H}_{k^*}

Data from similar tasks

Our approach: Meta-learning \mathcal{H}_{k^*}

Data from similar tasks

Pool of candidate kernels / features

$$k_1(\boldsymbol{x}, \boldsymbol{x}') \begin{array}{c} k_3(\boldsymbol{x}, \boldsymbol{x}') \end{array} k_5(\boldsymbol{x}, \boldsymbol{x}') \ k_2(\boldsymbol{x}, \boldsymbol{x}') \end{array}$$

(True) kernel has sparse additive structure

$$k^*(oldsymbol{x},oldsymbol{x}') = \sum_{j=1}^p \eta_j^* k_j(oldsymbol{x},oldsymbol{x}')$$

[this holds for all Mercer kernels]

Our approach: Meta-learning \mathcal{H}_{k^*}

Data from similar tasks

Pool of candidate kernels / features

$$k_1(\boldsymbol{x}, \boldsymbol{x}') \begin{array}{c} k_3(\boldsymbol{x}, \boldsymbol{x}') \end{array} k_5(\boldsymbol{x}, \boldsymbol{x}') \ k_2(\boldsymbol{x}, \boldsymbol{x}') \end{array}$$

(True) kernel has sparse additive structure

$$k^*(oldsymbol{x},oldsymbol{x}') = \sum_{j=1}^p \eta_j^* k_j(oldsymbol{x},oldsymbol{x}')$$

[this holds for all Mercer kernels]

Meta-KeL

Shrinks hypothesis space by eliminating kernels / features that are w.h.p. not active in the meta-training tasks

Can be reduced to a group lasso problem!

Properties of the meta-learned kernel

Theorem (Informal)

Under mild regularity assumptions on the meta-data, with probability greater than $1-\delta$,

- The meta-learned hypothesis space contains all relevant hypotheses, i.e., $\mathcal{H}_{k^*} \subseteq \mathcal{H}_{\hat{k}}$
- The confidence sets of \hat{k} are calibrated, i.e., $\forall f \in \mathcal{H}_{k^*}$:

$$\mathbb{P}\left(\forall \pmb{x} \in \mathcal{X}, \, \forall t \geq 1: \, f(\pmb{x}) \in \mathcal{C}_{t-1}(\hat{k}; \pmb{x})\right) \geq 1 - \delta.$$

Properties of the meta-learned kernel

Theorem (Informal)

Under mild regularity assumptions on the meta-data, with probability greater than $1-\delta$,

- The meta-learned hypothesis space contains all relevant hypotheses, i.e., $\mathcal{H}_{k^*} \subseteq \mathcal{H}_{\hat{k}}$
- The confidence sets of \hat{k} are calibrated, i.e., $\forall f \in \mathcal{H}_{k^*}$:

$$\mathbb{P}\left(\forall \boldsymbol{x} \in \mathcal{X}, \, \forall t \geq 1: \, f(\boldsymbol{x}) \in \mathcal{C}_{t-1}(\hat{k}; \boldsymbol{x})\right) \geq 1 - \delta.$$

+ The meta-learned confidence bounds approach the oracle bounds as the amount of meta-training data grows

Application: Bayesian Optimization

f is the objective function of a BO problem.

$$R_T = \sum_{t=1}^{T} [f(\boldsymbol{x}^*) - f(\boldsymbol{x}_t)]$$

$$R_T/T \to 0 \text{ as } T \to \infty$$

Application: Bayesian Optimization

f is the objective function of a BO problem.

$$R_T = \sum_{t=1}^{T} [f(x^*) - f(x_t)]$$

Goal

$$R_T/T \to 0 \text{ as } T \to \infty$$

GP-UCB Policy: [GP-UCB, Srinivas et al.]

Corollary

Provided that there is enough meta-data,

- The learner achieves sublinear regret, w.h.p.
- This guarantee is tight compared to the one for the Oracle learner, and approaches it at a $\mathcal{O}(1/\sqrt{mn})$ rate.

Poster session: Thu 21 Jul 6 p.m. EDT — 8:30 p.m. EDT

Meta-Learning Hypothesis Spaces for Sequential Decision-making Parnian Kassraie, Jonas Rothfuss, Andreas Krause

