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The meta-learned confidence bounds approach the oracle bounds,
as amounts of offline data grows.

We let k⇤(x, x0) = 1
5

P
j2J⇤ Pj(x)Pj(x0), where Pj is a degree-j Leg-

endre polynomial and J
⇤ is a random subset of size 5 from {1, · · · , 20}.

Using this kernel, we generate a random meta-data set of size m = n = 50.
On a test task, with a fresh new function f

⇤, we assess the confidence sets
at t = 4. We check 1) if the sets are valid and 2) if they are tight.

We commit to confidence sets of the form,

Ct�1(k1;x)

Ct�1(k2;x)

Ct�1(k
⇤;x)

Ct�1(k̂;x)

Goal: Find k̂ such that these sets are valid,

Empirical width of the confidence band.

Empirical coverage of the confidence band
vs. the true 1� �

Both quantities are averages over a sample
of size 1000 from X . Error bars show stan-
dard error for 50 runs of the problem.

If applied to Bandit optimization, the sets imply a sublinear regret guaran-
tee for the GP-UCB algorithm using k̂. This regret bound approaches that
of the oracle algorithm.

Sequential decision-making describes a class of problems where a learner
sequentially interacts with an unknown stochastic environment, with the
goal of maximizing a reward.

Obtaining reliable confidence sequences for unknown target functions is
a central challenge in sequential decision-making tasks, e.g., Bayesian
Optimization and model-based RL.

These confidence sets are typically constructed by relying on oracle
knowledge of the hypothesis space, e.g., a known RKHS. This is a strong
assumption.

We propose any-time valid confidence sets that rely on a meta-learned
hypothesis space, instead of assuming oracle knowledge.
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goal of maximizing a reward.
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hypothesis space, instead of assuming oracle knowledge.

Valid but too wideInvalid Valid and tight



Hypothesis Spaces and Confidence Sets

3

Hk⇤Hk̂

Hk1 Hk2

Valid and tight

Valid but too wide

True sets (Valid)

Invalid

Meta-Learning Hypothesis Spaces

With oracle knowledge of k⇤,

|µt�1(k
⇤;x)� f(x)|  �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘
.

The meta-learned confidence bounds approach the oracle bounds,
as amounts of offline data grows.

We let k⇤(x, x0) = 1
5

P
j2J⇤ Pj(x)Pj(x0), where Pj is a degree-j Leg-

endre polynomial and J
⇤ is a random subset of size 5 from {1, · · · , 20}.

Using this kernel, we generate a random meta-data set of size m = n = 50.
On a test task, with a fresh new function f

⇤, we assess the confidence sets
at t = 4. We check 1) if the sets are valid and 2) if they are tight.

We commit to confidence sets of the form,

Ct�1(k1;x)

Ct�1(k2;x)

Ct�1(k
⇤;x)

Ct�1(k̂;x)

Goal: Find k̂ such that these sets are valid,

Empirical width of the confidence band.

Empirical coverage of the confidence band
vs. the true 1� �

Both quantities are averages over a sample
of size 1000 from X . Error bars show stan-
dard error for 50 runs of the problem.

If applied to Bandit optimization, the sets imply a sublinear regret guaran-
tee for the GP-UCB algorithm using k̂. This regret bound approaches that
of the oracle algorithm.

Sequential decision-making describes a class of problems where a learner
sequentially interacts with an unknown stochastic environment, with the
goal of maximizing a reward.

Obtaining reliable confidence sequences for unknown target functions is
a central challenge in sequential decision-making tasks, e.g., Bayesian
Optimization and model-based RL.

These confidence sets are typically constructed by relying on oracle
knowledge of the hypothesis space, e.g., a known RKHS. This is a strong
assumption.

We propose any-time valid confidence sets that rely on a meta-learned
hypothesis space, instead of assuming oracle knowledge.

Meta-Learning Hypothesis Spaces

With oracle knowledge of k⇤,

|µt�1(k
⇤;x)� f(x)|  �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘
.

The meta-learned confidence bounds approach the oracle bounds,
as amounts of offline data grows.

We let k⇤(x, x0) = 1
5

P
j2J⇤ Pj(x)Pj(x0), where Pj is a degree-j Leg-

endre polynomial and J
⇤ is a random subset of size 5 from {1, · · · , 20}.

Using this kernel, we generate a random meta-data set of size m = n = 50.
On a test task, with a fresh new function f

⇤, we assess the confidence sets
at t = 4. We check 1) if the sets are valid and 2) if they are tight.

We commit to confidence sets of the form,

Ct�1(k1;x)

Ct�1(k2;x)

Ct�1(k
⇤;x)

Ct�1(k̂;x)

Goal: Find k̂ such that these sets are valid,

Empirical width of the confidence band.

Empirical coverage of the confidence band
vs. the true 1� �

Both quantities are averages over a sample
of size 1000 from X . Error bars show stan-
dard error for 50 runs of the problem.

If applied to Bandit optimization, the sets imply a sublinear regret guaran-
tee for the GP-UCB algorithm using k̂. This regret bound approaches that
of the oracle algorithm.

Sequential decision-making describes a class of problems where a learner
sequentially interacts with an unknown stochastic environment, with the
goal of maximizing a reward.

Obtaining reliable confidence sequences for unknown target functions is
a central challenge in sequential decision-making tasks, e.g., Bayesian
Optimization and model-based RL.

These confidence sets are typically constructed by relying on oracle
knowledge of the hypothesis space, e.g., a known RKHS. This is a strong
assumption.

We propose any-time valid confidence sets that rely on a meta-learned
hypothesis space, instead of assuming oracle knowledge.

Meta-Learning Hypothesis Spaces

With oracle knowledge of k⇤,

|µt�1(k
⇤;x)� f(x)|  �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘
.

The meta-learned confidence bounds approach the oracle bounds,
as amounts of offline data grows.

We let k⇤(x, x0) = 1
5

P
j2J⇤ Pj(x)Pj(x0), where Pj is a degree-j Leg-

endre polynomial and J
⇤ is a random subset of size 5 from {1, · · · , 20}.

Using this kernel, we generate a random meta-data set of size m = n = 50.
On a test task, with a fresh new function f

⇤, we assess the confidence sets
at t = 4. We check 1) if the sets are valid and 2) if they are tight.

We commit to confidence sets of the form,

Ct�1(k1;x)

Ct�1(k2;x)

Ct�1(k
⇤;x)

Ct�1(k̂;x)

Goal: Find k̂ such that these sets are valid,

Empirical width of the confidence band.

Empirical coverage of the confidence band
vs. the true 1� �

Both quantities are averages over a sample
of size 1000 from X . Error bars show stan-
dard error for 50 runs of the problem.

If applied to Bandit optimization, the sets imply a sublinear regret guaran-
tee for the GP-UCB algorithm using k̂. This regret bound approaches that
of the oracle algorithm.

Sequential decision-making describes a class of problems where a learner
sequentially interacts with an unknown stochastic environment, with the
goal of maximizing a reward.

Obtaining reliable confidence sequences for unknown target functions is
a central challenge in sequential decision-making tasks, e.g., Bayesian
Optimization and model-based RL.

These confidence sets are typically constructed by relying on oracle
knowledge of the hypothesis space, e.g., a known RKHS. This is a strong
assumption.

We propose any-time valid confidence sets that rely on a meta-learned
hypothesis space, instead of assuming oracle knowledge.

Meta-Learning Hypothesis Spaces

With oracle knowledge of k⇤,

|µt�1(k
⇤;x)� f(x)|  �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘
.

The meta-learned confidence bounds approach the oracle bounds,
as amounts of offline data grows.

We let k⇤(x, x0) = 1
5

P
j2J⇤ Pj(x)Pj(x0), where Pj is a degree-j Leg-

endre polynomial and J
⇤ is a random subset of size 5 from {1, · · · , 20}.

Using this kernel, we generate a random meta-data set of size m = n = 50.
On a test task, with a fresh new function f

⇤, we assess the confidence sets
at t = 4. We check 1) if the sets are valid and 2) if they are tight.

We commit to confidence sets of the form,

Ct�1(k1;x)

Ct�1(k2;x)

Ct�1(k
⇤;x)

Ct�1(k̂;x)

Goal: Find k̂ such that these sets are valid,

Empirical width of the confidence band.

Empirical coverage of the confidence band
vs. the true 1� �

Both quantities are averages over a sample
of size 1000 from X . Error bars show stan-
dard error for 50 runs of the problem.

If applied to Bandit optimization, the sets imply a sublinear regret guaran-
tee for the GP-UCB algorithm using k̂. This regret bound approaches that
of the oracle algorithm.

Sequential decision-making describes a class of problems where a learner
sequentially interacts with an unknown stochastic environment, with the
goal of maximizing a reward.

Obtaining reliable confidence sequences for unknown target functions is
a central challenge in sequential decision-making tasks, e.g., Bayesian
Optimization and model-based RL.

These confidence sets are typically constructed by relying on oracle
knowledge of the hypothesis space, e.g., a known RKHS. This is a strong
assumption.

We propose any-time valid confidence sets that rely on a meta-learned
hypothesis space, instead of assuming oracle knowledge.

Meta-Learning Hypothesis Spaces

Algorithm 1 Iterative META-KEL solver
1: Input Dm,n, �, kj : 81  j  p, ✏, Tstop

2: Initialize (↵(0)
1 , · · · ,↵(0)

m ,⌘(0))
3: t 1
4: while t  Tstop or L1(↵

(t�1)
1 , · · · ,↵(t�1)

1 ;⌘(t�1)) � ✏ do
5: ⌘(t)  argminL1(↵

(t�1)
1 , · · · ,↵(t�1)

m ;⌘)
6: for all s 2 [1, · · · ,m] do
7: ↵(t)

s  argminL2(⌘(t);↵s)
8: end for
9: t t+ 1

10: end while

Figure 7: Examples of possible functions fs for the meta-dataset.
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Figure 8: BO (minimization) with META-KEL. Upper plot shows the state at t = 5 and the lower plot at t = 55.
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Assume that true kernel can be decomposed as

k(x,x0) =
pX

j=1

⌘
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j kj(x,x

0)

p < 1

⌘
⇤
j : unknown, non-negative

Better choice is ⌘⇤j 2 {0, 1}.

kj : known, finite-dimensional

Is extendable to infinite-dimensional kernels.

k⌘⇤k1  1 and kj(x,x0)  1

Sparsity pattern J
⇤ = {1  j  p : ⌘⇤j 6= 0}

Meta-loss

Proposition

We require regularity assumptions on the meta-data: Restricted Eigenvalue Assumption and Multi-task Group Beta-min
Condition.
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For each task s, the function fs is contained in Hk⇤ . By the
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where �⇤

s 2 Rd is the coefficients vector of task s and
�⇤

s
(j) 2 Rdj is the sub-vector corresponding to kernel kj . It

is not possible to meta-select a base kernel kj which has not
contributed to the generation of the meta-data. Therefore, if
a base kernel is active in the construction of Hk⇤ , it is only
natural to assume that there is some task in the meta-data
which reflects this presence. More formally, we assume that,
for any j 2 Jk⇤ , there exists some s  m where �⇤

s
(j) 6= 0.

We define �⇤ = (�⇤
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nated coefficients vector for all tasks. To refer to the group
of coefficients that correspond to kernel kj across all tasks,
we use �⇤(j) = ((�⇤
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(j))T , · · · , (�⇤
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(j))T )T 2 Rmdj . Our

next assumption guarantees that the meta-learning problem
is not ill-posed.
Assumption 3.1 (Group Beta-min Condition). There exists
c1 > 0 s.t. for all j 2 Jk⇤ it holds that
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This assumption is inevitable for recovering the sparsity
pattern from empirical data and it is widely used in the
high-dimensional statistics literature (e.g., Bühlmann &
Van De Geer, 2011; Zhao & Yu, 2006; Van de Geer et al.,
2011). Assumption 3.1 implies that for j to be in Jk⇤ , the
coefficients vector corresponding to kernel kj can not be
zero or arbitrarily close to zero. In practice,
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��
2

has
to be comparable with the noise level for the activity of a
base kernel not to be mistaken with randomness.

4. Meta-learning the Hypothesis Space
(META-KEL)

In the following section, we present our formulation of
the meta-learning problem and analyze the properties of
the learned hypothesis space. We meta-learn the kernel by
solving the following optimization problem. Then, we set
the hypothesis space of the downstream learning algorithm
to be the RKHS of the meta-learned kernel.
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We will refer to this problem as Meta-Kernel Learning
(META-KEL). The first part of the objective is similar to
the kernel ridge regression loss, and accounts for how well
a series of regularized fs fit the meta-data. The last term
regularizes our choice of the kernel function. We use `1-
norm regularization for ⌘ to implicitly perform meta-model-
selection. As shown in Proposition 4.4, the meta-learned
kernel will reflect the sparsity pattern of the true kernel. The
optimization problem (7) is convex and admits an efficient
solution, as explained next.

We first introduce a vectorized formulation of Equation (7).
Let ys 2 Rn denote the observed values for a task s

and y = (yT
1 , · · · ,yT

m)T 2 Rmn the multi-task stacked
vector of observations. We then design a multi-task fea-
ture matrix. We define � to be a mn ⇥ md block-
diagonal matrix, where each block s corresponds to �s =
(�(xs,1), · · · ,�(xs,n))T , the n⇥d feature matrix of task s.
Figure 6 provides an illustration thereof. As shown in Propo-
sition 4.1, this vectorized design brings forth a parametric
equivalent of META-KEL, which happens to be the well-
known Group Lasso problem.
Proposition 4.1 (Solution of META-KEL). Let k =P
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We show this equivalence by eliminating ⌘. We use a trick
introduced by Bach et al. (2004), which, for w, v 2 R states
2|w| = minv>0 w

2
/v + v. The proof is given in Appendix

A.2. Problem (8) can be optimized by any Group Lasso
solver. Bach et al. (2011) present a number of coordinate
descent algorithms which efficiently find the solution.
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Reproducing Kernel Hilbert Spaces are equivalent up to
scaling of the kernel function. For c > 0, both Hk and the
scaled version Hck contain the same set of functions. Going
from Hk to Hck, the RKHS norm of any member f would
scale by 1/c, i.e. kfkk = ckfkck. Hence, the norm k⌘̂k1
will be irrelevant when meta-learning the function space.
This norm can be scaled or normalized, and still yield the
same hypothesis space, only with a scaled operator norm.
For consistency of notation, we define k̂ as follows. For any
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a series of regularized fs fit the meta-data. The last term
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norm regularization for ⌘ to implicitly perform meta-model-
selection. As shown in Proposition 4.4, the meta-learned
kernel will reflect the sparsity pattern of the true kernel. The
optimization problem (7) is convex and admits an efficient
solution, as explained next.
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A.2. Problem (8) can be optimized by any Group Lasso
solver. Bach et al. (2011) present a number of coordinate
descent algorithms which efficiently find the solution.
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same hypothesis space, only with a scaled operator norm.
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Theorem (Hypothesis Space Recovery, Informal)
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kj : known, finite-dimensional

Is extendable to infinite-dimensional kernels.

k⌘⇤k1  1 and kj(x,x0)  1
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⇤ = {1  j  p : ⌘⇤j 6= 0} captures sparsity pattern of tk.

Let k̂ be the minimizer of
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If ⌘⇤j 2 0, 1, we can show Ĵ = J
⇤ with high probability, for an improved Meta-KeL.
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w.h.p.
✓ Hk̂

w.h.p.
( Hkfull

Meta-Loss

Proposition (Sparsity of k̂ , Informal)

Let 0 < � < 1. Assume ⌘⇤
is s-sparse.

Under assumptions of the theorem above, and for mn large

enough, ⌘̂ is also s-sparse with probability greater than 1� �.

Meta-Loss

Proposition

Meta-KeL is convex, has a solution and optimizing it is as di�cult

as the Group Lasso.
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Proposition

We require regularity assumptions on the meta-data:

Restricted Eigenvalue Assumption and Multi-task Group Beta-min Condition.
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i.e., exists dj < 1 where kj(x,x0) = �T (x)�(x0) and � 2 Rdj .

i.e., the sparsity patterns match with high probability.

Construct the confidence sets (see Equation 1)

Ct�1(k̂;x) = [µt�1(k̂;x)± ⌫t�t�1(k̂;x)]
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j2J⇤ Pj(x)Pj(x0), where Pj is a degree-j Legendre

polynomial and J
⇤ is a random subset of size 5 from {1, · · · , 20}. Using this kernel,

we generate a random meta-data set of size m = n = 50. On a test task, with a fresh
new function f

⇤, we assess the confidence sets at t = 4.
Empirical width of the confidence band.

Empirical coverage of the confidence band
vs. the true 1� �

Both quantities are averages over a sample of size 1000 from X .
Error bars show standard error for 50 runs of the problem.
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5

P
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polynomial and J
⇤ is a random subset of size 5 from {1, · · · , 20}. Using this kernel,
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i.e., exists dj < 1 where kj(x,x0) = �T (x)�(x0) and � 2 Rdj .

i.e., the sparsity patterns match with high probability.

Construct the confidence sets (see Equation 1)

Ct�1(k̂;x) = [µt�1(k̂;x)± ⌫t�t�1(k̂;x)]

⌫t = B

⇣
1 + ✏(n,m)

⌘
+ �

q
d̂ log (1 + �̄�2t) + 2 + 2 log(1/�)

For calculating µt�1 and �t�1, set �̄ = 1 + 2/t.

where d̂ is the dimension of k̂.

i.e., exists d̂ < 1 where k̂(x,x0) = �T (x)�(x0) where � 2 Rd̂

Theorem D.1 (Confidence Bounds with META-KEL). Let f 2 Hk⇤ with kfkk⇤  B, where k
⇤ is unknown. Under the

assumptions of the previous theorem, with probability greater than 1� �,

P
⇣
8x 2 X , 8t � 1 : f(x) 2 Ct�1(k̂;x)

⌘
� 1� �.

This theorem implies, with probability greater than 1� �

|µt�1(k̂;x)� f(x)|  �t�1(k̂;x)
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As more meta-data is provided, i.e., as m and n grow,
✏(n,m) vanishes and d̂ ! d

⇤, the dimension of k⇤.

With oracle knowledge of k⇤,

|µt�1(k
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⌘
.

The meta-learned confidence bounds approach the oracle bounds,
as amounts of offline data grows.

We let k⇤(x, x0) = 1
5

P
j2J⇤ Pj(x)Pj(x0), where Pj is a degree-j Leg-

endre polynomial and J
⇤ is a random subset of size 5 from {1, · · · , 20}.

Using this kernel, we generate a random meta-data set of size m = n = 50.
On a test task, with a fresh new function f

⇤, we assess the confidence sets
at t = 4. We check 1) if the sets are valid and 2) if they are tight.

Empirical width of the confidence band.

Empirical coverage of the confidence band
vs. the true 1� �

Both quantities are averages over a sample
of size 1000 from X . Error bars show stan-
dard error for 50 runs of the problem.

If applied to Bandit optimization, the sets imply a sublinear regret guaran-
tee for the GP-UCB algorithm using k̂. This regret bound approaches that
of the oracle algorithm.

Sequential decision-making describes a class of problems where a learner
sequentially interacts with an unknown stochastic environment, with the
goal of maximizing a reward.

Obtaining reliable confidence sequences for unknown target functions is
a central challenge in sequential decision-making tasks, e.g., Bayesian
Optimization and model-based RL. Meta-Learning Hypothesis Spaces

These confidence sets are typically constructed by relying on oracle knowl-
edge of the hypothesis space, e.g., a known RKHS. This is a strong as-
sumption.

We propose any-time valid confidence sets that rely on a meta-learned
hypothesis space, instead of assuming oracle knowledge.
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Meta-loss

Proposition

We require regularity assumptions on the meta-data: Restricted Eigenvalue Assumption and Multi-task Group Beta-min
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(j) 2 Rdj is the sub-vector corresponding to kernel kj . It

is not possible to meta-select a base kernel kj which has not
contributed to the generation of the meta-data. Therefore, if
a base kernel is active in the construction of Hk⇤ , it is only
natural to assume that there is some task in the meta-data
which reflects this presence. More formally, we assume that,
for any j 2 Jk⇤ , there exists some s  m where �⇤

s
(j) 6= 0.

We define �⇤ = (�⇤

1
T
, · · · ,�⇤

m
T )T 2 Rmd as the concate-

nated coefficients vector for all tasks. To refer to the group
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Assumption 3.1 (Group Beta-min Condition). There exists
c1 > 0 s.t. for all j 2 Jk⇤ it holds that
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This assumption is inevitable for recovering the sparsity
pattern from empirical data and it is widely used in the
high-dimensional statistics literature (e.g., Bühlmann &
Van De Geer, 2011; Zhao & Yu, 2006; Van de Geer et al.,
2011). Assumption 3.1 implies that for j to be in Jk⇤ , the
coefficients vector corresponding to kernel kj can not be
zero or arbitrarily close to zero. In practice,
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to be comparable with the noise level for the activity of a
base kernel not to be mistaken with randomness.

4. Meta-learning the Hypothesis Space
(META-KEL)

In the following section, we present our formulation of
the meta-learning problem and analyze the properties of
the learned hypothesis space. We meta-learn the kernel by
solving the following optimization problem. Then, we set
the hypothesis space of the downstream learning algorithm
to be the RKHS of the meta-learned kernel.
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We will refer to this problem as Meta-Kernel Learning
(META-KEL). The first part of the objective is similar to
the kernel ridge regression loss, and accounts for how well
a series of regularized fs fit the meta-data. The last term
regularizes our choice of the kernel function. We use `1-
norm regularization for ⌘ to implicitly perform meta-model-
selection. As shown in Proposition 4.4, the meta-learned
kernel will reflect the sparsity pattern of the true kernel. The
optimization problem (7) is convex and admits an efficient
solution, as explained next.

We first introduce a vectorized formulation of Equation (7).
Let ys 2 Rn denote the observed values for a task s

and y = (yT
1 , · · · ,yT

m)T 2 Rmn the multi-task stacked
vector of observations. We then design a multi-task fea-
ture matrix. We define � to be a mn ⇥ md block-
diagonal matrix, where each block s corresponds to �s =
(�(xs,1), · · · ,�(xs,n))T , the n⇥d feature matrix of task s.
Figure 6 provides an illustration thereof. As shown in Propo-
sition 4.1, this vectorized design brings forth a parametric
equivalent of META-KEL, which happens to be the well-
known Group Lasso problem.
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We show this equivalence by eliminating ⌘. We use a trick
introduced by Bach et al. (2004), which, for w, v 2 R states
2|w| = minv>0 w
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/v + v. The proof is given in Appendix

A.2. Problem (8) can be optimized by any Group Lasso
solver. Bach et al. (2011) present a number of coordinate
descent algorithms which efficiently find the solution.
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If ⌘⇤j 2 0, 1, we can show Ĵ = J
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Meta-Loss

Proposition (Sparsity of k̂ , Informal)

Let 0 < � < 1. Assume ⌘⇤
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Meta-Loss

Proposition

Meta-KeL is convex, has a solution and optimizing it is as di�cult

as the Group Lasso.
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Proposition

We require regularity assumptions on the meta-data:

Restricted Eigenvalue Assumption and Multi-task Group Beta-min Condition.
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i.e., exists dj < 1 where kj(x,x0) = �T (x)�(x0) and � 2 Rdj .
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We let k
⇤(x, x0) = 1

5

P
j2J⇤ Pj(x)Pj(x0), where Pj is a degree-j Legendre

polynomial and J
⇤ is a random subset of size 5 from {1, · · · , 20}. Using this kernel,

we generate a random meta-data set of size m = n = 50. On a test task, with a fresh
new function f

⇤, we assess the confidence sets at t = 4.
Empirical width of the confidence band.

Empirical coverage of the confidence band
vs. the true 1� �

Both quantities are averages over a sample of size 1000 from X .
Error bars show standard error for 50 runs of the problem.
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If applied to Bandit optimization, the sets imply a sublinear regret guaran-
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5
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j2J⇤ Pj(x)Pj(x0), where Pj is a degree-j Legendre

polynomial and J
⇤ is a random subset of size 5 from {1, · · · , 20}. Using this kernel,

we generate a random meta-data set of size m = n = 50. On a test task, with a fresh
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⇤, we assess the confidence sets at t = 4.
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Error bars show standard error for 50 runs of the problem.
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i.e., exists dj < 1 where kj(x,x0) = �T (x)�(x0) and � 2 Rdj .

i.e., the sparsity patterns match with high probability.

Construct the confidence sets (see Equation 1)

Ct�1(k̂;x) = [µt�1(k̂;x)± ⌫t�t�1(k̂;x)]

⌫t = B
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+ �

q
d̂ log (1 + �̄�2t) + 2 + 2 log(1/�)

For calculating µt�1 and �t�1, set �̄ = 1 + 2/t.

where d̂ is the dimension of k̂.

i.e., exists d̂ < 1 where k̂(x,x0) = �T (x)�(x0) where � 2 Rd̂

Theorem D.1 (Confidence Bounds with META-KEL). Let f 2 Hk⇤ with kfkk⇤  B, where k
⇤ is unknown. Under the

assumptions of the previous theorem, with probability greater than 1� �,

P
⇣
8x 2 X , 8t � 1 : f(x) 2 Ct�1(k̂;x)

⌘
� 1� �.

This theorem implies, with probability greater than 1� �
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As more meta-data is provided, i.e., as m and n grow,
✏(n,m) vanishes and d̂ ! d

⇤, the dimension of k⇤.

With oracle knowledge of k⇤,

|µt�1(k
⇤;x)� f(x)|  �t�1(k
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B + �

q
d⇤ log
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.

The meta-learned confidence bounds approach the oracle bounds,
as amounts of offline data grows.

We let k⇤(x, x0) = 1
5

P
j2J⇤ Pj(x)Pj(x0), where Pj is a degree-j Leg-

endre polynomial and J
⇤ is a random subset of size 5 from {1, · · · , 20}.

Using this kernel, we generate a random meta-data set of size m = n = 50.
On a test task, with a fresh new function f

⇤, we assess the confidence sets
at t = 4. We check 1) if the sets are valid and 2) if they are tight.

Empirical width of the confidence band.

Empirical coverage of the confidence band
vs. the true 1� �

Both quantities are averages over a sample
of size 1000 from X . Error bars show stan-
dard error for 50 runs of the problem.

If applied to Bandit optimization, the sets imply a sublinear regret guaran-
tee for the GP-UCB algorithm using k̂. This regret bound approaches that
of the oracle algorithm.

Sequential decision-making describes a class of problems where a learner
sequentially interacts with an unknown stochastic environment, with the
goal of maximizing a reward.

Obtaining reliable confidence sequences for unknown target functions is
a central challenge in sequential decision-making tasks, e.g., Bayesian
Optimization and model-based RL. Meta-Learning Hypothesis Spaces

These confidence sets are typically constructed by relying on oracle knowl-
edge of the hypothesis space, e.g., a known RKHS. This is a strong as-
sumption.

We propose any-time valid confidence sets that rely on a meta-learned
hypothesis space, instead of assuming oracle knowledge.
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edge of the hypothesis space, e.g., a known RKHS. This is a strong as-
sumption.

We propose any-time valid confidence sets that rely on a meta-learned
hypothesis space, instead of assuming oracle knowledge.

(True) kernel has sparse additive structure

[this holds for all Mercer kernels]

Data from similar tasks Pool of candidate kernels / features
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j : unknown, non-negative

Better choice is ⌘⇤j 2 {0, 1}.
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Is extendable to infinite-dimensional kernels.

k⌘⇤k1  1 and kj(x,x0)  1

Sparsity pattern J
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Meta-loss

Proposition

We require regularity assumptions on the meta-data: Restricted Eigenvalue Assumption and Multi-task Group Beta-min
Condition.
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s 2 Rd is the coefficients vector of task s and
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(j) 2 Rdj is the sub-vector corresponding to kernel kj . It

is not possible to meta-select a base kernel kj which has not
contributed to the generation of the meta-data. Therefore, if
a base kernel is active in the construction of Hk⇤ , it is only
natural to assume that there is some task in the meta-data
which reflects this presence. More formally, we assume that,
for any j 2 Jk⇤ , there exists some s  m where �⇤

s
(j) 6= 0.
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This assumption is inevitable for recovering the sparsity
pattern from empirical data and it is widely used in the
high-dimensional statistics literature (e.g., Bühlmann &
Van De Geer, 2011; Zhao & Yu, 2006; Van de Geer et al.,
2011). Assumption 3.1 implies that for j to be in Jk⇤ , the
coefficients vector corresponding to kernel kj can not be
zero or arbitrarily close to zero. In practice,
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to be comparable with the noise level for the activity of a
base kernel not to be mistaken with randomness.

4. Meta-learning the Hypothesis Space
(META-KEL)

In the following section, we present our formulation of
the meta-learning problem and analyze the properties of
the learned hypothesis space. We meta-learn the kernel by
solving the following optimization problem. Then, we set
the hypothesis space of the downstream learning algorithm
to be the RKHS of the meta-learned kernel.
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We will refer to this problem as Meta-Kernel Learning
(META-KEL). The first part of the objective is similar to
the kernel ridge regression loss, and accounts for how well
a series of regularized fs fit the meta-data. The last term
regularizes our choice of the kernel function. We use `1-
norm regularization for ⌘ to implicitly perform meta-model-
selection. As shown in Proposition 4.4, the meta-learned
kernel will reflect the sparsity pattern of the true kernel. The
optimization problem (7) is convex and admits an efficient
solution, as explained next.

We first introduce a vectorized formulation of Equation (7).
Let ys 2 Rn denote the observed values for a task s

and y = (yT
1 , · · · ,yT

m)T 2 Rmn the multi-task stacked
vector of observations. We then design a multi-task fea-
ture matrix. We define � to be a mn ⇥ md block-
diagonal matrix, where each block s corresponds to �s =
(�(xs,1), · · · ,�(xs,n))T , the n⇥d feature matrix of task s.
Figure 6 provides an illustration thereof. As shown in Propo-
sition 4.1, this vectorized design brings forth a parametric
equivalent of META-KEL, which happens to be the well-
known Group Lasso problem.
Proposition 4.1 (Solution of META-KEL). Let k =P
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We show this equivalence by eliminating ⌘. We use a trick
introduced by Bach et al. (2004), which, for w, v 2 R states
2|w| = minv>0 w

2
/v + v. The proof is given in Appendix

A.2. Problem (8) can be optimized by any Group Lasso
solver. Bach et al. (2011) present a number of coordinate
descent algorithms which efficiently find the solution.
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scaled version Hck contain the same set of functions. Going
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If ⌘⇤j 2 0, 1, we can show Ĵ = J
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Proposition (Sparsity of k̂ , Informal)

Let 0 < � < 1. Assume ⌘⇤
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enough, ⌘̂ is also s-sparse with probability greater than 1� �.

Meta-Loss

Proposition

Meta-KeL is convex, has a solution and optimizing it is as di�cult

as the Group Lasso.
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Proposition
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We let k
⇤(x, x0) = 1

5

P
j2J⇤ Pj(x)Pj(x0), where Pj is a degree-j Legendre

polynomial and J
⇤ is a random subset of size 5 from {1, · · · , 20}. Using this kernel,

we generate a random meta-data set of size m = n = 50. On a test task, with a fresh
new function f

⇤, we assess the confidence sets at t = 4.
Empirical width of the confidence band.

Empirical coverage of the confidence band
vs. the true 1� �

Both quantities are averages over a sample of size 1000 from X .
Error bars show standard error for 50 runs of the problem.
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The meta-learned confidence bounds approach the oracle bounds,
as amounts of offline data grows.

We let k
⇤(x, x0) = 1

5

P
j2J⇤ Pj(x)Pj(x0), where Pj is a degree-j Legendre

polynomial and J
⇤ is a random subset of size 5 from {1, · · · , 20}. Using this kernel,

we generate a random meta-data set of size m = n = 50. On a test task, with a fresh
new function f

⇤, we assess the confidence sets at t = 4.
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Empirical coverage of the confidence band
vs. the true 1� �.
Both quantities are averages over a sample of size 1000 from X .
Error bars show standard error for 50 runs of the problem.
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i.e., exists dj < 1 where kj(x,x0) = �T (x)�(x0) and � 2 Rdj .

i.e., the sparsity patterns match with high probability.

Construct the confidence sets (see Equation 1)

Ct�1(k̂;x) = [µt�1(k̂;x)± ⌫t�t�1(k̂;x)]

⌫t = B

⇣
1 + ✏(n,m)

⌘
+ �

q
d̂ log (1 + �̄�2t) + 2 + 2 log(1/�)

For calculating µt�1 and �t�1, set �̄ = 1 + 2/t.

where d̂ is the dimension of k̂.

i.e., exists d̂ < 1 where k̂(x,x0) = �T (x)�(x0) where � 2 Rd̂

Theorem D.1 (Confidence Bounds with META-KEL). Let f 2 Hk⇤ with kfkk⇤  B, where k
⇤ is unknown. Under the

assumptions of the previous theorem, with probability greater than 1� �,

P
⇣
8x 2 X , 8t � 1 : f(x) 2 Ct�1(k̂;x)

⌘
� 1� �.

This theorem implies, with probability greater than 1� �

|µt�1(k̂;x)� f(x)|  �t�1(k̂;x)
⇣
B +B✏(n,m) + �

q
d̂ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘

As more meta-data is provided, i.e., as m and n grow,
✏(n,m) vanishes and d̂ ! d

⇤, the dimension of k⇤.

With oracle knowledge of k⇤,

|µt�1(k
⇤;x)� f(x)|  �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘
.

The meta-learned confidence bounds approach the oracle bounds,
as amounts of offline data grows.

We let k⇤(x, x0) = 1
5

P
j2J⇤ Pj(x)Pj(x0), where Pj is a degree-j Leg-

endre polynomial and J
⇤ is a random subset of size 5 from {1, · · · , 20}.

Using this kernel, we generate a random meta-data set of size m = n = 50.
On a test task, with a fresh new function f

⇤, we assess the confidence sets
at t = 4. We check 1) if the sets are valid and 2) if they are tight.

Empirical width of the confidence band.

Empirical coverage of the confidence band
vs. the true 1� �

Both quantities are averages over a sample
of size 1000 from X . Error bars show stan-
dard error for 50 runs of the problem.

If applied to Bandit optimization, the sets imply a sublinear regret guaran-
tee for the GP-UCB algorithm using k̂. This regret bound approaches that
of the oracle algorithm.

Sequential decision-making describes a class of problems where a learner
sequentially interacts with an unknown stochastic environment, with the
goal of maximizing a reward.

Obtaining reliable confidence sequences for unknown target functions is
a central challenge in sequential decision-making tasks, e.g., Bayesian
Optimization and model-based RL. Meta-Learning Hypothesis Spaces

These confidence sets are typically constructed by relying on oracle knowl-
edge of the hypothesis space, e.g., a known RKHS. This is a strong as-
sumption.

We propose any-time valid confidence sets that rely on a meta-learned
hypothesis space, instead of assuming oracle knowledge.

Meta-Learning Hypothesis Spaces

These confidence sets are typically constructed by relying on oracle knowl-
edge of the hypothesis space, e.g., a known RKHS. This is a strong as-
sumption.

We propose any-time valid confidence sets that rely on a meta-learned
hypothesis space, instead of assuming oracle knowledge.

(True) kernel has sparse additive structure

[this holds for all Mercer kernels]

Data from similar tasks Pool of candidate kernels / features

Meta-KeL

Shrinks hypothesis space by eliminating kernels / features 
that are w.h.p. not active in the meta-training tasks

Can be reduced to a 
group lasso problem!



Properties of the meta-learned kernel 

5

Hk⇤
Hk̂

Hkfull



Properties of the meta-learned kernel 

5

Hk⇤
Hk̂

Hkfull

+ The meta-learned confidence bounds approach the
oracle bounds as the amount of meta-training data grows
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Goal

Meta-Learning Hypothesis Spaces for Sequential Decision-making

Parnian Kassraie 1 Jonas Rothfuss 1 Andreas Krause 1

Abstract
Obtaining reliable, adaptive confidence sets for
prediction functions (hypotheses) is a central
challenge in sequential decision-making tasks,
such as bandits and model-based reinforcement
learning. These confidence sets typically rely on
prior assumptions on the hypothesis space, e.g.,
the known kernel of a Reproducing Kernel Hilbert
Space (RKHS). Hand-designing such kernels is
error prone, and misspecification may lead to
poor or unsafe performance. In this work, we
propose to meta-learn a kernel from offline data
(META-KEL). For the case where the unknown
kernel is a combination of known base kernels,
we develop an estimator based on structured
sparsity. Under mild conditions, we guarantee
that our estimated RKHS yields valid confidence
sets that, with increasing amounts of offline
data, become as tight as those given the true
unknown kernel. We demonstrate our approach
on the kernelized bandit problem (a.k.a. Bayesian
optimization), where we establish regret bounds
competitive with those given the true kernel. We
also empirically evaluate the effectiveness of our
approach on a Bayesian optimization task.

1. Introduction
A number of well-studied machine learning problems such
as bandits, Bayesian optimization (BO) and model-based
reinforcement learning are characterized by an agent that
sequentially interacts with an unknown, responsive system.
Throughout the interaction, the agent’s goal is to maximize
the cumulative reward based on an unknown underlying
function f . Common to such sequential decision-making
problems is an exploration-exploitation trade-off. That is,
the agent needs to optimize its reward while, at the same
time, learns more about the unknown function f . Confi-
dence sets capture and quantify the uncertainty of the learner
about f . Thus, they are an integral tool for directing explo-

1ETH Zurich, Switzerland. Correspondence to: Parnian Kass-
raie <pkassraie@ethz.ch>.

Preprint.

Figure 1: Overview of the described framework with k
⇤ as

the true kernel function and k̂ as the solution to META-KEL.

ration towards areas of high uncertainty and balancing it
against exploitation. Moreover, in safety-critical applica-
tions, confidence sets are used to reason about the safety of
actions. Thus, they are central to efficiency and safety of
exploration. In theoretical analysis of sequential decision-
making algorithms, a common assumption is that f resides
in an RKHS with a known kernel function. This assumption
allows for the construction of the confidence sets.

In practice, however, the true kernel is unknown and needs
to be hand-crafted based on the problem instance. This is
a delicate task, since the hand-crafted hypothesis space has
to contain the unknown target function f . If this is not the
case, the learner may be over-confident and converge to a
sub-optimal policy, or incorrectly classify actions as safe.
At the same time, we want the chosen hypothesis space to
be as small so that the variance of the associated learner
is low and the agent converges quickly. This constitutes
a dilemma, where we need to trade off efficiency with a
potential loss in consistency.

We approach this dilemma in a data-driven manner. Many
applications of sequential decision-making, such as hyper-
parameter tuning with BO or online nonlinear control, are
of repetitive nature. Often, there is available data from
similar but not identical tasks which have been solved before.
Therefore, we propose to meta-learn the kernel function,
and thus the RKHS, from offline meta-data. Our method,
Meta-Kernel Learning (META-KEL), works with a generic
(i.e., not necessarily i.i.d.) data model and may be applied
to a variety of sequential decision-making tasks.

is the objective function of a BO problem.

Regret

Meta-Learning Hypothesis Spaces

|Jk⇤ |  s be the number candidate kernels that contribute to
k
⇤. If Assumption 4.2 holds with (s), then with probability

greater than 1 � �, the number of kernels active in k̂ is
bounded by

|Jk̂| 
4s

mn2(s)

which implies that if mn >
4s

p2(s) , then with the same
probability

Hk̂ ( Hkfull .

Hence, in the presence of enough meta-data, Hk̂ is a strict
subset of Hkfull , and therefore

Hk⇤
w.h.p.
✓ Hk̂

w.h.p.
( Hkfull

where the left relation is due to Theorem 4.3. Figure 2 illus-
trates the nested sets. We conclude that our meta-learned
hypothesis space has favorable properties: it contains the
true hypothesis space, and it is sparse in structure, in partic-
ular, smaller than the conservative candidate space.

The fact that Hk̂ is smaller than Hkfull reduces the complex-
ity of the downstream learning problem and yields faster
convergence rates. We provide an example of this effect
in Section 5, where we analyze a Bayesian optimization
problem, and establish how choosing k̂ improves upon kfull.
Finally, our experiments (e.g. Figure 4) support the claim
that in practice the BO algorithm is faster in finding the
optimum when it uses the meta-learned kernel.

Figure 2: The oracle Hk⇤ (Eq. 5), the meta-learned Hk̂
(Eq. 9) and the hand-picked Hkfull (Eq. 10) hypothesis
spaces (informal)

5. Sequential Decision-making with
META-KEL

We now analyze the effect of using k̂ as kernel function in
the downstream sequential decision-making problem. We
adopt the common construction of confidence sets given
in Equation (2), and define Ĉt�1(x) := Ct�1(k̂;x). We
let µ̂t�1(x) := µt�1(k̂;x), and �̂t�1(x) := �t�1(k̂;x),
where µt�1(k;x) and �t�1(k;x) are as defined in Equa-
tion (3) with �̄ = 1 + 2/T .3

3The functions µ̂t�1 and �̂t�1 are the posterior mean and vari-
ance of GP(0, k̂), conditioned on Ht�1, with noise variance �̄

2.

Theorem 5.1 shows that for the right choice of ⌫t, the set
Ĉt�1(x) is a valid confidence bound for any f 2 Hk⇤ ,
evaluated at any x 2 X , at any step t, with high probability.
Theorem 5.1 (Confidence Bounds with META-KEL). Let
f 2 Hk⇤ with kfkk⇤  B, where k

⇤ is unknown. Under
the assumptions of Theorem 4.3, with probability greater
than 1� �, for all x 2 X and 1  t  T ,

|µ̂t�1(x)�f(x)|  ⌫t�̂t�1(x)

 
B

✓
1 +

✏(n,m)

2c1

◆

+ �

s

d̂ log

✓
1 +

�̄�2t

c1

◆
+ 2 + 2 log(1/�)

!

where d̂ =
P

j2Jk̂
dj .

The proof is given in Appendix C. As discussed in Section 4,
the ✏(n,m)/2c1 term shrinks faster than O(1/

p
mn) and

d̂ approaches d⇤ =
P

j2Jk⇤ dj at a similar rate. Therefore,
Theorem 5.1 presents a tight confidence bound relative to
the case when k

⇤ is known by the agent. In this case, due
to Chowdhury & Gopalan (2017), Theorem 2, the 1 � �

confidence bound would be,

|µt�1(x)�f(x)|  �t�1(x)
⇣
B+

�

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘
.

where the mean and variance functions are defined by
µt�1(x) := µt�1(k⇤;x) and �t�1(x) := �t�1(k⇤;x) with
�̄ = 1 + 2/T . We conclude that the base learner does not
require knowledge of the true kernel for constructing confi-
dence sets, as long as there is sufficient meta-data available.
Theorem 4.3 quantifies this notion of sufficiency.

Case Study: Bayesian Optimization As an example ap-
plication, we consider the classic Bayesian optimization
problem, but in the case where Hk⇤ is unknown. This ex-
ample illustrates how Theorem 5.1 may be used to prove
guarantees for a decision-making algorithm, which uses the
meta-learned kernel due to a lack of knowledge of k⇤. We
follow the setup and BO notation of Srinivas et al. (2009).
The agent seeks to maximize an unknown reward function
f , sequentially accessed as described in Equation (1). Their
goal is to choose actions xt which maximize the cumulative
reward achieved over T time steps. This is equivalent to min-
imizing the cumulative regret RT =

PT
t=1[f(x

⇤)� f(xt)],
where x⇤ is a global maximum of f . Note that if RT /T ! 0
as T ! 1 then max1tT f(xt) ! f(x⇤), i.e., the
learner converges to the optimal value. We will refer to
this property as sublinearity of the regret. In the spirit of
the GP-UCB algorithm (Srinivas et al., 2009), we choose
the next point by maximizing the upper confidence bound
as determined by Theorem 5.1

xt = argmax
x2X

µ̂t�1(x) + ⌫t�̂t�1(x) (11)
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that our estimated RKHS yields valid confidence
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Throughout the interaction, the agent’s goal is to maximize
the cumulative reward based on an unknown underlying
function f . Common to such sequential decision-making
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the agent needs to optimize its reward while, at the same
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about f . Thus, they are an integral tool for directing explo-
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the true kernel function and k̂ as the solution to META-KEL.

ration towards areas of high uncertainty and balancing it
against exploitation. Moreover, in safety-critical applica-
tions, confidence sets are used to reason about the safety of
actions. Thus, they are central to efficiency and safety of
exploration. In theoretical analysis of sequential decision-
making algorithms, a common assumption is that f resides
in an RKHS with a known kernel function. This assumption
allows for the construction of the confidence sets.

In practice, however, the true kernel is unknown and needs
to be hand-crafted based on the problem instance. This is
a delicate task, since the hand-crafted hypothesis space has
to contain the unknown target function f . If this is not the
case, the learner may be over-confident and converge to a
sub-optimal policy, or incorrectly classify actions as safe.
At the same time, we want the chosen hypothesis space to
be as small so that the variance of the associated learner
is low and the agent converges quickly. This constitutes
a dilemma, where we need to trade off efficiency with a
potential loss in consistency.

We approach this dilemma in a data-driven manner. Many
applications of sequential decision-making, such as hyper-
parameter tuning with BO or online nonlinear control, are
of repetitive nature. Often, there is available data from
similar but not identical tasks which have been solved before.
Therefore, we propose to meta-learn the kernel function,
and thus the RKHS, from offline meta-data. Our method,
Meta-Kernel Learning (META-KEL), works with a generic
(i.e., not necessarily i.i.d.) data model and may be applied
to a variety of sequential decision-making tasks.
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where the left relation is due to Theorem 4.3. Figure 2 illus-
trates the nested sets. We conclude that our meta-learned
hypothesis space has favorable properties: it contains the
true hypothesis space, and it is sparse in structure, in partic-
ular, smaller than the conservative candidate space.

The fact that Hk̂ is smaller than Hkfull reduces the complex-
ity of the downstream learning problem and yields faster
convergence rates. We provide an example of this effect
in Section 5, where we analyze a Bayesian optimization
problem, and establish how choosing k̂ improves upon kfull.
Finally, our experiments (e.g. Figure 4) support the claim
that in practice the BO algorithm is faster in finding the
optimum when it uses the meta-learned kernel.
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where µt�1(k;x) and �t�1(k;x) are as defined in Equa-
tion (3) with �̄ = 1 + 2/T .3

3The functions µ̂t�1 and �̂t�1 are the posterior mean and vari-
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Theorem 5.1 shows that for the right choice of ⌫t, the set
Ĉt�1(x) is a valid confidence bound for any f 2 Hk⇤ ,
evaluated at any x 2 X , at any step t, with high probability.
Theorem 5.1 (Confidence Bounds with META-KEL). Let
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mn) and
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where the mean and variance functions are defined by
µt�1(x) := µt�1(k⇤;x) and �t�1(x) := �t�1(k⇤;x) with
�̄ = 1 + 2/T . We conclude that the base learner does not
require knowledge of the true kernel for constructing confi-
dence sets, as long as there is sufficient meta-data available.
Theorem 4.3 quantifies this notion of sufficiency.

Case Study: Bayesian Optimization As an example ap-
plication, we consider the classic Bayesian optimization
problem, but in the case where Hk⇤ is unknown. This ex-
ample illustrates how Theorem 5.1 may be used to prove
guarantees for a decision-making algorithm, which uses the
meta-learned kernel due to a lack of knowledge of k⇤. We
follow the setup and BO notation of Srinivas et al. (2009).
The agent seeks to maximize an unknown reward function
f , sequentially accessed as described in Equation (1). Their
goal is to choose actions xt which maximize the cumulative
reward achieved over T time steps. This is equivalent to min-
imizing the cumulative regret RT =

PT
t=1[f(x

⇤)� f(xt)],
where x⇤ is a global maximum of f . Note that if RT /T ! 0
as T ! 1 then max1tT f(xt) ! f(x⇤), i.e., the
learner converges to the optimal value. We will refer to
this property as sublinearity of the regret. In the spirit of
the GP-UCB algorithm (Srinivas et al., 2009), we choose
the next point by maximizing the upper confidence bound
as determined by Theorem 5.1

xt = argmax
x2X

µ̂t�1(x) + ⌫t�̂t�1(x) (11)

Meta-Loss

Corollary

Provided that there is enough meta-data,

– The learner achieves sublinear regret, w.h.p.

– This guarantee is tight compared to the one for the Or-

acle learner, and approaches it at a O(1/
p
mn) rate.
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