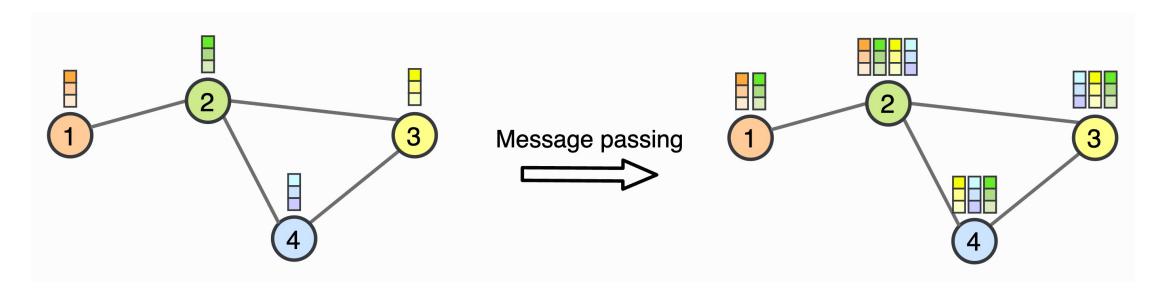
Optimization-Induced Graph Implicit Nonlinear Diffusion

Qi Chen, Yifei Wang, Yisen Wang, Jiansheng Yang, Zhouchen Lin

Graph Neural Networks (GNNs)

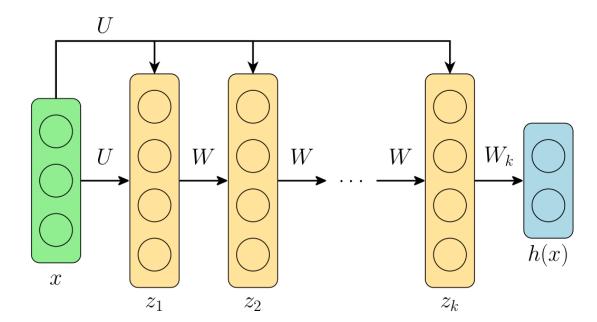


- MPNNs can only aggregate information from *T*-hop neighbors with *T* propagation steps!
- Problem:
 - *T* cannot be large due to the **Over-Smoothing** problem.
 - The ability to capture global information is limited by the FINITE propagation steps.
- A possible solution:

GNNs with **INFINITE** layers: Implicit GNNs

Implicit GNNs: GNNs with Infinite Layers

- Implicit Models and Fixed Point Equations
 - An example: IGNN
 - A typical weight-tied k-layer GNN: $Z_k = \sigma(AZ_{k-1}W + UX)$, $k = 1, 2, \cdots, n$



What would happen if we were to repeat this update an infinite number of times?

 \Rightarrow

A fixed point equation $Z = \sigma(AZW + UX)$

Implicit GNNs: GNNs with Infinite Layers

- Implicit Models and Fixed Point Equations
 - An example: IGNN
 - A typical weight-tied k-layer GNN: $Z_k = \sigma(AZ_{k-1}W + UX)$, $k = 1, 2, \dots, n$.
 - The fixed point equation when $n \to +\infty$:

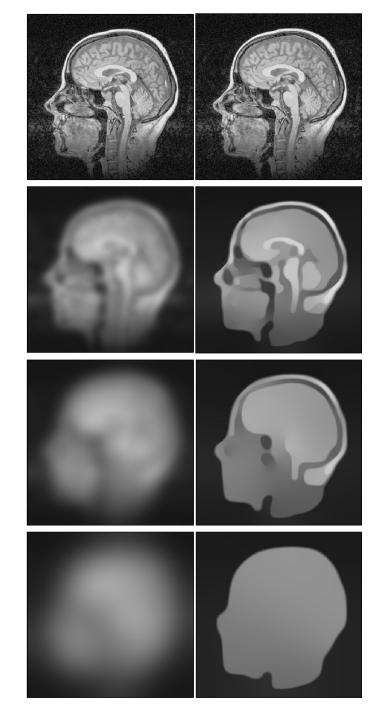
$$Z = \sigma(AZW + UX).$$

- Pros
 - **Simple** to construct a model.
 - **Efficient** to calculate the equilibrium.
 - Global receptive fields.
- Cons:
 - Existing implicit GNNs adopt **linear isotropic** diffusion, which is the cause of oversmoothing.

Inspirations from PM Diffusion

- Diffusion in image processing
 - Example: Evolution of an MRI slice under different diffusions.
 - Left Column: Linear diffusion.
 - Right Column: Edge-enhancing anisotropic diffusion.
 - Anisotropic diffusion is a cure to over-smoothing.
- Inspiration

Using nonlinear diffusion to construct implicit GNNs!



Graph Implicit Nonlinear Diffusion (GIND)

Our fixed point equation

$$\mathbf{Z} = -\hat{\mathbf{G}}^{\top} \sigma(\hat{\mathbf{G}}(\mathbf{Z} + b_{\Omega}(\mathbf{X}))\mathbf{K}^{\top})\mathbf{K},$$
 $\hat{\mathbf{Y}} = g_{\Theta}(\mathbf{X} + \mathbf{Z}),$
Information exchange

- *X*: input feature matrix
- *Z*: the equilibrium state
- *Y*: the output feature
- G: normalized incidence matrix (discrete gradient operator)
- b_{Ω} : an affine transformation
- g_{θ} : the readout head
- σ : Tanh

Anisotropic Property

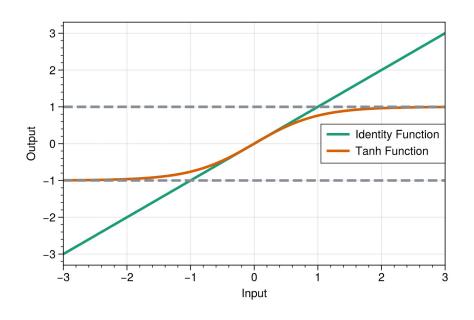


Figure 1. Comparison of two activation functions: $\sigma(x) = x$ and $\sigma(x) = \tanh(x)$. The nonlinear activation $\tanh(\cdot)$ keeps small values while shrinking large values.

Graph Implicit Nonlinear Diffusion (GIND)

- From the optimization perspective
 - The equilibrium of GIND correspond to the solution of a convex objective.

Theorem 4.1. Assume that the nonlinear function $\sigma(\cdot)$ is monotone and L_{σ} -Lipschitz, i.e.,

$$0 \le \frac{\sigma(a) - \sigma(b)}{a - b} \le L_{\sigma}, \forall \ a, b \in \mathbb{R}, a \ne b, \tag{11}$$

and $1 \ge L_{\sigma} \| \mathbf{K} \otimes \hat{\mathbf{G}} \|_{2}^{2} = L_{\sigma} \| \mathbf{K} \|_{2}^{2} \| \hat{\mathbf{G}} \|_{2}^{2}$. Then there exists a convex function $\varphi(\mathbf{z})$, such that its minimizer is the solution to the equilibrium equation $\mathbf{z} = f(\mathbf{z})$. Furthermore, we have $\operatorname{Prox}_{\varphi}(\mathbf{z}) = \frac{1}{L_{\sigma}+1}(L_{\sigma}\mathbf{z} + f(\mathbf{z}))$.

Method: Graph Implicit Nonlinear Diffusion

- From the optimization perspective
 - The equilibrium of GIND correspond to the solution of a convex objective.
 - Optimization-Inspired Variants:
 - Optimization-Inspired Skip-Connection:

$$z = \Gamma(z) \coloneqq (1 - \alpha)z + \alpha f(z)$$

• Optimization-Inspired Feature Regularization: combining the objective with regularization $\mathcal{R}(z)$ is equivalent to appending one layer before the original layer.

$$z = \Gamma(z) \circ \Gamma_{\mathcal{R}}$$
, where $\Gamma_{\mathcal{R}} = Prox_{\mathcal{R}}$.

Experiments

Node-level tasks

Table 1. Results on heterophilic node classification datasets: mean accuracy (%) \pm standard deviation over different data splits.

Type	Method	Cornell	Texas	Wisconsin	Chameleon	Squirrel
Explicit	GCN	59.19 ± 3.51	64.05 ± 5.28	61.17 ± 4.71	42.34 ± 2.77	29.0±1.10
	GAT	59.46 ± 6.94	61.62 ± 5.77	60.78 ± 8.27	46.03 ± 2.51	30.51 ± 1.28
	JKNet	58.18 ± 3.87	63.78 ± 6.30	60.98 ± 2.97	44.45 ± 3.17	30.83 ± 1.65
	APPNP	63.78 ± 5.43	64.32 ± 7.03	61.57 ± 3.31	$43.85{\pm}2.43$	30.67 ± 1.06
	Geom-GCN	60.81	67.57	64.12	60.9	38.14
	GCNII	76.75 ± 5.95	73.51 ± 9.95	78.82 ± 5.74	48.59 ± 1.88	32.20 ± 1.06
	H2GCN	82.22 ± 5.67	84.76 ± 5.57	85.88 ± 4.58	60.30 ± 2.31	40.75 ± 1.44
Implicit	IGNN	61.35±4.84	58.37±5.82	53.53±6.49	41.38±2.53	24.99 ± 2.11
	EIGNN	85.13 ± 5.57	84.60 ± 5.41	86.86 ± 5.54	62.92 ± 1.59	46.37 ± 1.39
	GIND (ours)	85.68±3.83	86.22±5.19	88.04±3.97	66.82±2.37	56.71±2.07

Experiments

Graph-level tasks

Table 4. Results of graph classification: mean accuracy (%) \pm standard deviation over 10 random data splits.

Туре	Method	MUTAG	PTC	COX2	PROTEINS	NCI1
Explicit	WL	84.1 ± 1.9	58.0 ± 2.5	83.2 ± 0.2	74.7 ± 0.5	84.5±0.5
	DCNN	67.0	56.6	-	61.3	62.6
	DGCNN	85.8	58.6	-	75.5	74.4
	GIN	89.4 ± 5.6	64.6 ± 7.0	-	76.2 ± 2.8	82.7 ± 1.7
	FDGNN	88.5 ± 3.8	63.4 ± 5.4	83.3 ± 2.9	76.8 ± 2.9	77.8 ± 1.6
Implicit	IGNN*	76.0 ± 13.4	60.5 ± 6.4	79.7±3.4	76.5 ± 3.4	73.5±1.9
	CGS	89.4 ± 5.6	64.7 ± 6.4	-	76.3 ± 4.9	77.6 ± 2.0
	GIND (ours)	89.3±7.4	66.9±6.6	84.8±4.2	77.2±2.9	78.8 ± 1.7

Conclusion

- GIND is the first implicit GNN with nonlinear diffusion.
- GIND has an underlying optimization objective.
- Outperforming SOTA in a variety of tasks.