Optimization-Induced Graph Implicit Nonlinear Diffusion Qi Chen, Yifei Wang, Yisen Wang, Jiansheng Yang, Zhouchen Lin ## Graph Neural Networks (GNNs) - MPNNs can only aggregate information from *T*-hop neighbors with *T* propagation steps! - Problem: - *T* cannot be large due to the **Over-Smoothing** problem. - The ability to capture global information is limited by the FINITE propagation steps. - A possible solution: GNNs with **INFINITE** layers: Implicit GNNs #### Implicit GNNs: GNNs with Infinite Layers - Implicit Models and Fixed Point Equations - An example: IGNN - A typical weight-tied k-layer GNN: $Z_k = \sigma(AZ_{k-1}W + UX)$, $k = 1, 2, \cdots, n$ What would happen if we were to repeat this update an infinite number of times? \Rightarrow A fixed point equation $Z = \sigma(AZW + UX)$ #### Implicit GNNs: GNNs with Infinite Layers - Implicit Models and Fixed Point Equations - An example: IGNN - A typical weight-tied k-layer GNN: $Z_k = \sigma(AZ_{k-1}W + UX)$, $k = 1, 2, \dots, n$. - The fixed point equation when $n \to +\infty$: $$Z = \sigma(AZW + UX).$$ - Pros - **Simple** to construct a model. - **Efficient** to calculate the equilibrium. - Global receptive fields. - Cons: - Existing implicit GNNs adopt **linear isotropic** diffusion, which is the cause of oversmoothing. #### Inspirations from PM Diffusion - Diffusion in image processing - Example: Evolution of an MRI slice under different diffusions. - Left Column: Linear diffusion. - Right Column: Edge-enhancing anisotropic diffusion. - Anisotropic diffusion is a cure to over-smoothing. - Inspiration Using nonlinear diffusion to construct implicit GNNs! ## Graph Implicit Nonlinear Diffusion (GIND) Our fixed point equation $$\mathbf{Z} = -\hat{\mathbf{G}}^{\top} \sigma(\hat{\mathbf{G}}(\mathbf{Z} + b_{\Omega}(\mathbf{X}))\mathbf{K}^{\top})\mathbf{K},$$ $\hat{\mathbf{Y}} = g_{\Theta}(\mathbf{X} + \mathbf{Z}),$ Information exchange - *X*: input feature matrix - *Z*: the equilibrium state - *Y*: the output feature - G: normalized incidence matrix (discrete gradient operator) - b_{Ω} : an affine transformation - g_{θ} : the readout head - σ : Tanh #### Anisotropic Property Figure 1. Comparison of two activation functions: $\sigma(x) = x$ and $\sigma(x) = \tanh(x)$. The nonlinear activation $\tanh(\cdot)$ keeps small values while shrinking large values. ## Graph Implicit Nonlinear Diffusion (GIND) - From the optimization perspective - The equilibrium of GIND correspond to the solution of a convex objective. **Theorem 4.1.** Assume that the nonlinear function $\sigma(\cdot)$ is monotone and L_{σ} -Lipschitz, i.e., $$0 \le \frac{\sigma(a) - \sigma(b)}{a - b} \le L_{\sigma}, \forall \ a, b \in \mathbb{R}, a \ne b, \tag{11}$$ and $1 \ge L_{\sigma} \| \mathbf{K} \otimes \hat{\mathbf{G}} \|_{2}^{2} = L_{\sigma} \| \mathbf{K} \|_{2}^{2} \| \hat{\mathbf{G}} \|_{2}^{2}$. Then there exists a convex function $\varphi(\mathbf{z})$, such that its minimizer is the solution to the equilibrium equation $\mathbf{z} = f(\mathbf{z})$. Furthermore, we have $\operatorname{Prox}_{\varphi}(\mathbf{z}) = \frac{1}{L_{\sigma}+1}(L_{\sigma}\mathbf{z} + f(\mathbf{z}))$. ## Method: Graph Implicit Nonlinear Diffusion - From the optimization perspective - The equilibrium of GIND correspond to the solution of a convex objective. - Optimization-Inspired Variants: - Optimization-Inspired Skip-Connection: $$z = \Gamma(z) \coloneqq (1 - \alpha)z + \alpha f(z)$$ • Optimization-Inspired Feature Regularization: combining the objective with regularization $\mathcal{R}(z)$ is equivalent to appending one layer before the original layer. $$z = \Gamma(z) \circ \Gamma_{\mathcal{R}}$$, where $\Gamma_{\mathcal{R}} = Prox_{\mathcal{R}}$. ## Experiments #### Node-level tasks Table 1. Results on heterophilic node classification datasets: mean accuracy (%) \pm standard deviation over different data splits. | Type | Method | Cornell | Texas | Wisconsin | Chameleon | Squirrel | |----------|-------------|------------------|------------------|------------------|------------------|------------------| | Explicit | GCN | 59.19 ± 3.51 | 64.05 ± 5.28 | 61.17 ± 4.71 | 42.34 ± 2.77 | 29.0±1.10 | | | GAT | 59.46 ± 6.94 | 61.62 ± 5.77 | 60.78 ± 8.27 | 46.03 ± 2.51 | 30.51 ± 1.28 | | | JKNet | 58.18 ± 3.87 | 63.78 ± 6.30 | 60.98 ± 2.97 | 44.45 ± 3.17 | 30.83 ± 1.65 | | | APPNP | 63.78 ± 5.43 | 64.32 ± 7.03 | 61.57 ± 3.31 | $43.85{\pm}2.43$ | 30.67 ± 1.06 | | | Geom-GCN | 60.81 | 67.57 | 64.12 | 60.9 | 38.14 | | | GCNII | 76.75 ± 5.95 | 73.51 ± 9.95 | 78.82 ± 5.74 | 48.59 ± 1.88 | 32.20 ± 1.06 | | | H2GCN | 82.22 ± 5.67 | 84.76 ± 5.57 | 85.88 ± 4.58 | 60.30 ± 2.31 | 40.75 ± 1.44 | | Implicit | IGNN | 61.35±4.84 | 58.37±5.82 | 53.53±6.49 | 41.38±2.53 | 24.99 ± 2.11 | | | EIGNN | 85.13 ± 5.57 | 84.60 ± 5.41 | 86.86 ± 5.54 | 62.92 ± 1.59 | 46.37 ± 1.39 | | | GIND (ours) | 85.68±3.83 | 86.22±5.19 | 88.04±3.97 | 66.82±2.37 | 56.71±2.07 | #### Experiments #### Graph-level tasks Table 4. Results of graph classification: mean accuracy (%) \pm standard deviation over 10 random data splits. | Туре | Method | MUTAG | PTC | COX2 | PROTEINS | NCI1 | |----------|--------------|-----------------|----------------|----------------|----------------|----------------| | Explicit | WL | 84.1 ± 1.9 | 58.0 ± 2.5 | 83.2 ± 0.2 | 74.7 ± 0.5 | 84.5±0.5 | | | DCNN | 67.0 | 56.6 | - | 61.3 | 62.6 | | | DGCNN | 85.8 | 58.6 | - | 75.5 | 74.4 | | | GIN | 89.4 ± 5.6 | 64.6 ± 7.0 | - | 76.2 ± 2.8 | 82.7 ± 1.7 | | | FDGNN | 88.5 ± 3.8 | 63.4 ± 5.4 | 83.3 ± 2.9 | 76.8 ± 2.9 | 77.8 ± 1.6 | | Implicit | IGNN* | 76.0 ± 13.4 | 60.5 ± 6.4 | 79.7±3.4 | 76.5 ± 3.4 | 73.5±1.9 | | | CGS | 89.4 ± 5.6 | 64.7 ± 6.4 | - | 76.3 ± 4.9 | 77.6 ± 2.0 | | | GIND (ours) | 89.3±7.4 | 66.9±6.6 | 84.8±4.2 | 77.2±2.9 | 78.8 ± 1.7 | #### Conclusion - GIND is the first implicit GNN with nonlinear diffusion. - GIND has an underlying optimization objective. - Outperforming SOTA in a variety of tasks.