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Graph Neural Networks (GNNs)
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« MPNNSs can only aggregate information from T-hop neighbors with T propagation steps!
* Problem:
e T cannot be large due to the Over-Smoothing problem.
* The ability to capture global information is limited by the FINITE propagation steps.
* A possible solution:
GNNs with INFINITE layers: Implicit GNNs

https://uvadlc-notebooks.readthedocs.io/en/latest/tutorial _notebooks/tutorial7/GNN_overview.html



Implicit GNNs: GNNs with Infinite Layers

* Implicit Models and Fixed Point Equations

* An example: IGNN
* A typical weight-tied k-layer GNN: Z;, = 0(AZ}_W + UX),k =1,2,---,n
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What would happen if we
were to repeat this update an
infinite number of times?
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A fixed point equation
Z=0(AZW + UX)
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Bai, S., Zico Kolter, J., & Koltun, V. Deep equilibrium models. NeurlPS 2019..



Implicit GNNs: GNNs with Infinite Layers

* Implicit Models and Fixed Point Equations

* An example: IGNN
* A typical weight-tied k-layer GNN: Z;, = 0(AZ}_W + UX),k = 1,2, ,n.

* The fixed point equation when n — 400
Z =0(AZW + UX).

* Pros
e Simple to construct a model.
* Efficient to calculate the equilibrium.
* Global receptive fields.

* Cons:

* Existing implicit GNNs adopt linear isotropic diffusion, which is the cause of over-
smoothing.

Gu, F., Chang, H., Zhu, W., Sojoudi, S., & El Ghaoui, L. Implicit graph neural networks. NeurIPS 2020.



Inspirations from PM Diffusion

e Diffusion in image processing
* Example: Evolution of an MRI slice under different
diffusions.
e Left Column: Linear diffusion.
* Right Column: Edge-enhancing anisotropic diffusion.

* Anisotropic diffusion is a cure to over-smoothing.

* Inspiration
Using nonlinear diffusion to construct implicit GNNs!

Weickert, J. (2008). Anisotropic Diffusion in Image Processing.



Graph Implicit Nonlinear Diffusion (GIND)

e Our fixed point equation * Anisotropic Property
Z=-G 0(G(Z+ ba(X))KTK, ]
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Y = g@(X_I_ Z)7

e X:input feature matrix _
e Z:the equilibrium state e
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* Y:the output feature 2/
» G: normalized incidence matrix (discrete N

gradientoperator) I MR " S T M
* bq: an affine transformation e
* 9p: the readout head Figure 1. Comparison of two activation functions: o(z) = = and
e o:Tanh o(z) = tanh(z). The nonlinear activation tanh(-) keeps small

values while shrinking large values.



Graph Implicit Nonlinear Diffusion (GIND)

* From the optimization perspective
* The equilibrium of GIND correspond to the solution of a convex objective.

Theorem 4.1. Assume that the nonlinear function o (-) is
monotone and L -Lipschitz, i.e.,

0< a(“)_‘b’(b) <L,VabeRa#b (11
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and 1 > L, K®GH = Ly ||K||§ HG“ . Then there
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exists a convex function p(z), such that its minimizer is the

solution to the equilibrium equation z = f(z). Further-
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more, we have Prox,(z) = -7 (Ls2z + f(2)).




Method: Graph Implicit Nonlinear Diffusion

* From the optimization perspective
* The equilibrium of GIND correspond to the solution of a convex objective.

* Optimization-Inspired Variants:

e Optimization-Inspired Skip-Connection:
z=T@Z)=0—-a)z+ af (2)

* Optimization-Inspired Feature Regularization: combining the objective with
regularization R(z) is equivalent to appending one layer before the original layer.

z =T'(z) o I'p, where 'y = Proxs.



Experiments

* Node-level tasks

Table 1. Results on heterophilic node classification datasets: mean accuracy (%) =+ standard deviation over different data splits.

Type Method Cornell Texas Wisconsin ~ Chameleon Squirrel
GCN 59.19+£3.51 64.05+£5.28 61.17+4.71 42.34+2.77 29.0£1.10
GAT 59.46+6.94 61.62+5.77 60.78+8.27 46.03+£2.51 30.51+£1.28
JKNet 58.18+3.87 63.78+6.30 60.98+2.97 44.454+3.17 30.83%+1.65

Explicit APPNP 63.78+£5.43 64.32+7.03 61.57+£3.31 43.85+2.43 30.67£1.06
Geom-GCN 60.81 67.57 64.12 60.9 38.14
GCNII 76.75+£5.95 73.51+£9.95 78.82+5.74 48.59+1.88 32.204+1.06
H2GCN 82.22+5.67 84.76+5.57 85.88+4.58 60.304+2.31 40.75+1.44
IGNN 61.35+4.84 58.37+£5.82 53.53+6.49 41.38+2.53 24.99+2.11

Implicit EIGNN 85.13+5.57 84.60+5.41 86.86+5.54 62.924+1.59 46.37%+1.39
GIND (ours) 85.68+3.83 86.22+5.19 88.04+3.97 66.82+2.37 56.71+2.07




Experiments

* Graph-level tasks

Table 4. Results of graph classification: mean accuracy (%) =+ standard deviation over 10 random data splits.

Type Method MUTAG PTC COX2  PROTEINS NCI1
WL 84.1£1.9 58.0+2.5 83.24+0.2 74.7£0.5 84.51+0.5
DCNN 67.0 56.6 - 61.3 62.6
Explicit DGCNN 85.8 58.6 - o) 74.4
GIN 89.44+5.6 64.6+7.0 - 76.24+2.8  82.7£1.7
FDGNN 88.5+3.8 63.4+54 83.3+29 T76.8429 77.8%+1.6
IGNN* 76.0+£13.4 60.5+£64 79.7£3.4  76.5+34  73.5£1.9
Implicit CGS 89.41+5.6 64.7+64 - 76.3+4.9  77.6+£2.0
GIND (ours) 89.3+74 66.9+6.6 84.844.2 77.2+29 78.8+1.7




Conclusion

* GIND is the first implicit GNN with nonlinear diffusion.
* GIND has an underlying optimization objective.
e Qutperforming SOTA in a variety of tasks.



