What Language Model Architecture and Pretraining Objective Work Best for Zero-Shot Generalization?

Thomas Wang^{1*} Adam Roberts^{2*} Daniel Hesslow³ Teven Le Scao¹ Hyung Won Chung² Iz Beltagy⁴ Julien Launay^{3,5} Colin Raffel¹

¹Hugging Face ²Google ³Lighton ⁴Allen Institute for Al ⁵LPENS, École Normale Supérieure

Systematic study of variants

Experiments and results without MTF

	EAI-Eval	T0-Eval
Causal decoder	44.2	42.4
Non-causal decoder	43.5	41.8
Encoder-decoder	39.9	41.7
Random baseline	32.9	41.7

After full or prefix language modeling pretraining, the causal decoder (FLM) exhibits the best zero-shot generalization abilities

Experiments and results with MTF

Introducing adaptation

Introducing adaptation

Conclusion

- Without multitask finetuning, causal decoder pretrained with full language modeling performs best
- With multitask finetuning, encoder decoder pretrained with masked language modeling performs best
- We can convert a causal decoder model pretrained on full language modeling to a performant non causal decoder model by having a intermediary masked language modeling adaptation.

Acknowledgements

Google Research

This work was granted access to the HPC resources of Institut du développement et des ressources en informatique scientifique (IDRIS) du Centre national de la recherche scientifique (CNRS) under the allocation 2021-A0101012475 made by Grand équipement national de calcul intensif (GENCI). We thank the TPU Research Cloud team for providing us with generous access to TPUv4. We thank the TPUv4 Alpha team for providing technical support for this work.