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Background: Meta-Learning
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> Humans can learn new concepts with limited examples.
> However, deep networks are data-hungry.
> Meta-learning aims to extract meta-knowledge from seen tasks to accelerate learning unseen tasks.



Background: MAML

MAML learns a globally-shared initialization for all tasks.

Model-agnostic meta-learning for fast adaptation of deep networks, Finn, C., Abbeel, P., and Levine, S., ICML 2017



Background: Complex Environment
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A single meta-model may not be sufficient to capture all the meta-knowledge



Background: Structured Meta-Learning
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> Recent structured meta-learning methods (DPMM and TSA-MAML) cluster tasks into multiple groups .
> Cluster centroids form group-specific initializations.
> However, task model parameters may lie in a subspace mixture.

Reconciling meta-learning and continual learning with online mixtures of tasks. Jerfel, G., Grant, E., Griths, T., and Heller, K. A. NeurlPS 2019.
Task similarity aware meta learning: Theory-inspired improvement on MAML. Zhou, P., Zou, Y., Yuan, X., Feng, J., Xiong, C., and Hoi, S. UAI 2021.



Background: Research Gap

Prior work This work
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Meta-learning for mixed linear regression. Kong, W., Somani, R., Song, Z., Kakade, S., and Oh, S. ICML 2020.
Provable meta-learning of linear representations. Tripuraneni, N., Jin, C., and Jordan, M. ICML 2021.



MUSML: A Subspace Mixture

» task parameter w,’s are assumed to lie in K subspaces {S,, ..., Sk}
» S, € R¥™™M s a basis of S,
» meta-parameters: {S,, ..., S}



Algorithm 1 MUItiple Subspaces for Meta-Learning

MUSML: Base Learner (MUSML).

Require: stepsize «, {rn,}; number of inner gradient
steps 1;,,, number of subspaces K, subspace dimen-

. . . . . g Jasd cenie . . (O)

> in each S, we search for a linear combination to form SIoniaR, empemiNTE i Al EaRonig

L dOET — 0 % T —1do
task model w, = S, v>,: 2:  sample a task 7 with D" and DV!;
T kY1k p T T
3

* . tr base learner:
vy, =arg min L(D;"; S,v
7,k gvTE]Rm ( T 'Yk r)

4: fork=1 K do
. .. (0) ]
> use convex program when £(D; w) is convex S: }mna/nze Vg = VT(O)’ .
. . . ek 6: ot = 0. 1w in — 1 do
» in nonconvex case, we seek an approximate minimizer: B Lo e )
for t, _ 1 T ¥ T’l - VT,IC - v(t,k) ( T 2 k*t’vT.k)’
— e ding 8: end for '
(Tin).
CONSBNCESS ( tr (t )) 9: Vrk =V "
Ve = Vrk —av itk 1)‘6 Dr ’Sk 10: O = ELEETISE oy o
11:  end for
( m)

and then UVrk = 12: meta-learner:
13: Ly = Zk LS e L(DY; Sk iVrk);
kl

1 €xXp(—0, 1 /7t)

14: {Sl,t+1 ..... Sk t+1} = {Sl,tr ceey Sk,t} —
NtV {S1s,...56.: Lol
15: end for

16: Return S; 7,..., Sk 7.




MUSML: Meta-Learner (one-hot selection)
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choose the best subspace
(k‘r = arg mkinL(D'Lt'r; Skvr,k))

T

update the chosen space
using validation set

inefficient: only one subspace is updated at each step.
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Algorithm 1 MuUIltiple Subspaces for Meta-Learning
(MUSML).
M U S M L Meta_Lea rner (SOft Selection) Require: stepsize o, {n;}; number of inner gra.dient
steps T3, number of subspaces K, subspace dimen-
sion m, temperature {%}; initialization v(o);

1: fort =0,1,...., T —1do
2:  sample a task 7 with D" and DY,
. . ) 3 base learner:
weighted validation loss 4 fork=1,...,Kdo
% ey 5: initialize v°) = v(o)
e 0t k/V 6 for t’ =0, 1 ..... Tin — 1 do
> z % ,/y LD Seve)| 7 VI _ ) oy S £(DY ;S5 vED);
Z e Ttk
k=1%kr=1 8 end for
. 5 S A e S |
10: 107 = E('D;r: Sk_,tV-,-’k); :
i: _ emfor-------------__ 1
12: : meta learnei ( g I
ex Or, t vt . 5 |
13: : Zk LR lpexp( x:)r’ikl/%)[,('D L Skt Vrk); !
I 1
40 {Suiga-5 Skl = {Sue Ska} —
All spaces are updated simultaneously. & Lngtfvo.r{sl emaSeot ]
\\\\ 16: Return Sl,T« ] SK,T~
r———"--"—"=--=-=-- N =
1 ® vy — 0, soft selection becomes one-hot |
. . 1
I ® y - o, soft selection becomes uniform I
I . . .
;@ In practice, a linear annealing schedule I 10



Analysis

» Under some conditions, we obtain an upper bound for the population risk

v2+120v(1+maéd)Tin

2
R(S) < R* + pVMEy Enty ||v e, = viry || + 0 EvEpgdist (w), i, ) + K \/ e

(1) minimum risk
(2) distance between approximate minimizer and exact minimizer

(3) approximation error using learned subspaces

(4) complexity of subspaces (K and m)
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Experiments: Few-Shot Regression (synthetic Data

YV VYV

a nonlinear model: f(x; w;) = e%We1* + w_,|sin(x) |;
wy = [wg 15w, ;] is sampled from one of the two subspaces:
» Line-A: w; = S;a, + 0.1¢;, where S; = [1;1],a, ~ U(1,5),&, ~ N (0,]);
» Line-B: w; = S,a, + 0.1&,, where S, = [—1;1],a, ~ U(0,2),&, ~ N (0,D);
samples: y = f(x; w;) + 0.05¢, where x ~ U(-5,5) and & ~ NV (0,1);
K=2m=1.
y¢. a linear annealing schedule

: Setup)
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Experiments: Few-Shot Regression (Synthetic Data : Results)

visualization of task model parameters
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» MUSML discovers underlying subspaces

>

meta-testing MSE

MAML
BMG
DPMM
HSML
ARML
TSA-MAML
MUSML

MUSML performs the best.

0.74
0.67
0.56
0.49
0.60
0.58
0.07
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Experiments: Few-shot Classification (setup)

» meta-datasets:

1. Meta-Dataset-BTAF

2. Meta-Dataset-ABF

3. Meta-Dataset-CIO
» f(;w): Conv4 backbone + Prototype classifier
» K and m are chosen from 1 to 5

Bird
Texture
Aircraft

Fungi
CIFAR-FS
Mini-ImageNet
Omniglot

#classes
(meta-train/meta-valid/meta-test)

64/16/20
30/7/10
64/16/20
64/16/20
64/16/20
64/16/20
71/15/16
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Experiments: Few-shot Classification (Resuits)

Accuracy of 5-way 5-shot classification

_ Meta-Dataset-BTAF Meta-Dataset-ABF | Meta-Dataset-CIO

MAML 57.78 63.86 74.46
ProtoNet 62.29 65.62 76.51
ANIL 58.57 64.43 74.61
BMG 60.10 65.80 77.46
DPMM 63.00 66.26 76.63
TSA-MAML 63.20 68.17 76.89
HSML 62.39 64.17 75.54
ARML 63.95 64.52 76.12
TSA-ProtoNet 63.57 68.77 77.27
MUSML 66.18 71.10 77.83

» MUSML is more accurate than both structured and unstructured meta-learning methods.



Experiments: Few-shot Classification (Resuits)

task assignment to the learned subspaces
(5-way 5-shot setting on Meta-Dataset-BTAF)
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» MUSML discovers task structure.
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Experiments: Cross-Domain Few-shot Classification

accuracy of cross-domain 5-way 5-shot setting
(Meta-Dataset-BTAF -> Meta-Dataset-C|O)

MAML 64.25
ProtoNet 66.13
ANIL 65.19
BMG 66.98
DPMM 66.73
TSA-MAML 66.85
HSML 65.18
ARML 65.37
TSA-ProtoNet 66.92
MUSML 67.41

» MUSML is also effective on unseen domains.
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Experiments: Improving Existing Meta-learning Algorithms

accuracy of 5-way 5-shot classification

Meta-SGD 58.93 64.19 75.95
MUSML-SGD 65.72 69.15 77.48
Meta-Curvature 60.02 64.51 76.13
MUSML-Curvature 66.10 69.23 77.96

> A subspace mixture is beneficial for both Meta-SGD and Meta-Curvature.
» MUSML can be used for any meta-learning algorithms.
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Summary

Problem: meta-learning in complex environment (task models are diverse)
MUSML.: learning a subspace mixture for building task models

Each subspace can be viewed as a type of meta-knowledge

Experimental results verify the effectiveness of MUSML

YV VYV VYV V
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