

Reachability Constrained Reinforcement Learning

Haitong Ma*1,2

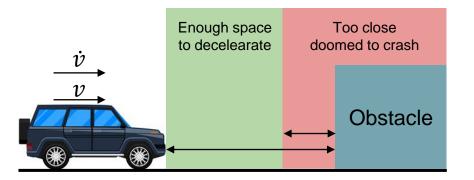
Shengbo Eben Li¹

Jianyu Chen^{3,4}

- * Equal contributions
- ¹ School of Vehicle and Mobility, Tsinghua University
- ² John A. Paulson School of Engineering and Applied Sciences, Harvard University
- ³ Institute for Interdisciplinary Information Sciences, Tsinghua University
- ⁴ Shanghai Qizhi Institute

Motivation

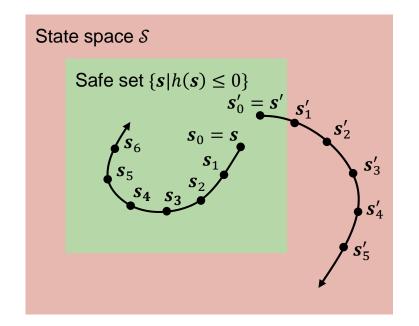
Constrained/safe RL restricting expected cumulative costs cannot tell the persistent safety.



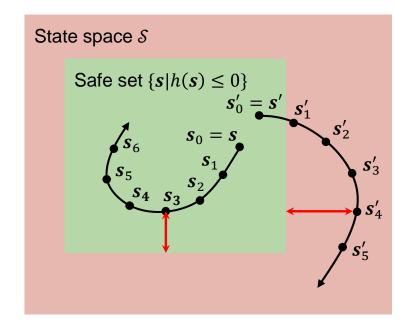
We propose to constrain the worst-case violation to characterize persistently safe states.

• Once the worst case is safe, the whole trajectory is safe

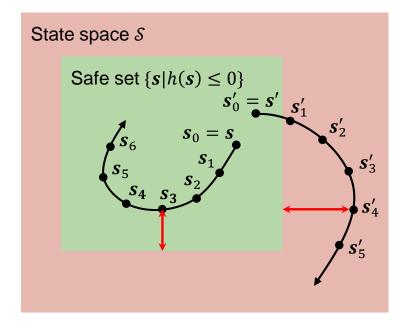
Definition: The worst-case state constraint violation h(s) during a trajectory induced by policy π .



Definition: The worst-case state constraint violation h(s) during a trajectory induced by policy π .

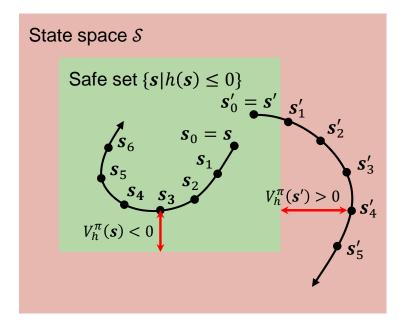


Definition: The worst-case state constraint violation h(s) during a trajectory induced by policy π .



$$V_h^{\pi}(\boldsymbol{s}) \coloneqq \max_t h(\boldsymbol{s}_t) \, | \boldsymbol{s}_0 = \boldsymbol{s}, \pi$$

Definition: The worst-case state constraint violation h(s) during a trajectory induced by policy π .

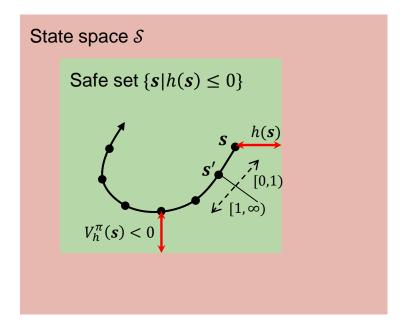


$$V_h^{\pi}(\boldsymbol{s}) \coloneqq \max_t h(\boldsymbol{s}_t) \, | \boldsymbol{s}_0 = \boldsymbol{s}, \pi$$

Reachability constraint: $V_h^{\pi}(s) \le 0$

Safety value function - computation

We extend results in [Fisac et al., 2019] to a general **bootstrap form** of safety value function.



Self-consistency condition:

 $V_h^{\pi}(\boldsymbol{s}) = \max\{h(\boldsymbol{s}), V_h^{\pi}(\boldsymbol{s}')\}$

J. Fisac, et al. Bridging Hamilton-Jacobi Safety Analysis and Reinforcement Learning. ICRA 2019

Reachability Constrained RL

Problem Formulation

 $\max_{\pi} J(\pi) = \mathbb{E}_{s \sim d_0} \left[V^{\pi}(s) \cdot \mathbb{1}_{s \in \mathcal{S}_f} - V_h^{\pi}(s) \cdot \mathbb{1}_{s \notin \mathcal{S}_f} \right]$ s.t. $V_h^{\pi}(s) \leq 0 \forall$ possibly feasible initial state

Constraints on each state

Lagrangian-based solution with multiplier network [Ma et al., 2021]

 $\max_{\lambda \ge 0} \min_{\theta} \mathbb{E}_{s \sim d_0} [V^{\pi}(s) + \lambda(s; \xi) V_h^{\pi}(s)]$ $\lambda(s; \xi): \text{ mapping from state to}$ multiplier

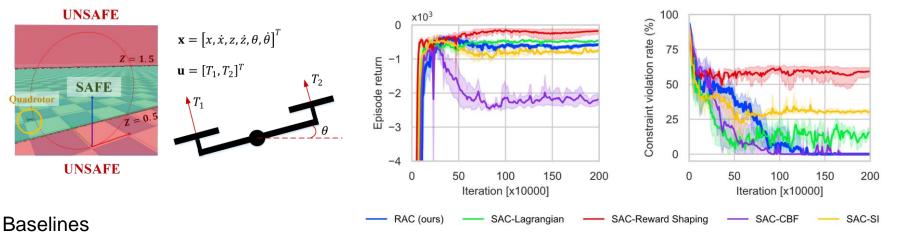
Difference with CMDP-based Constrained RL

Constraints on a trajectory

H. Ma, et, al. Feasible Actor-Critic: Constrained Reinforcement Learning for Ensuring Statewise Safety. arXiv:2105.10682

Experiments - safe-control-gym

2D Quadrotors tracking while maintaining safe height

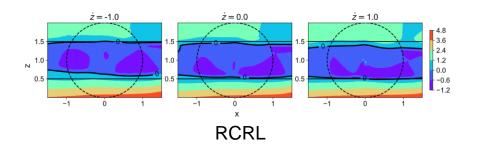


- SAC-Lagrangian: CMDP-based
- SAC-Reward shaping
- SAC-CBF/SI

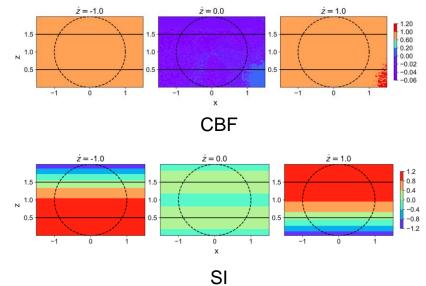
- × Unsafe policy
- × Unsafe policy
- × CBF: safe but not moving / SI: unsafe policy

Experiments - safe-control-gym

Safety value function visualizations



 \dot{z} - quadrotor vertical speed



RCRL has the largest safe sets

Conclusion

- We propose a novel reachability constraint to characterize the persistent safety of policies
- RCRL can converge to a zero-violation policy with competitive reward performance
 - Because the learned safe value can find those persistently safe states

- For more details, please see our paper: <u>https://arxiv.org/abs/2205.07536</u>
- Open-sourced implementation:

https://github.com/mahaitongdae/Reachability_Constrained_RL